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Growth of log-analytic functions
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Abstract. We show that unary log-analytic functions are polynomially
bounded. In the higher dimensional case, globally a log-analytic function
can have exponential growth. We show that a log-analytic function is
polynomially bounded on a definable set which contains the germ of every
ray at infinity.
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Introduction. Log-analytic functions have been defined by Lion and Rolin in
their seminal paper [3]. They are iterated compositions from either side of
globally subanalytic functions (see [6]) and the global logarithm. In [1], it was
shown that, from the point of view of differentiability, log-analytic functions
behave similarly to globally subanalytic functions. We have strong quasiana-
lyticity, and Tamm’s theorem holds. But with respect to growth properties,
log-analytic functions behave in a different way compared to globally subana-
lytic functions. Globally subanalytic functions are polynomially bounded. This
holds also for log-analytic functions of one variable. But in higher dimension,
surprisingly, the situation changes. Although the global exponential function is
not involved in the definition of log-analytic functions, a log-analytic function
in at least two variables can have exponential growth. We construct an exam-
ple where the function is not polynomially bounded on every dense definable
set. But polynomially boundedness holds on a definable set which is ‘thick’ at
infinity: We show that a log-analytic function is polynomially bounded on a
definable set which contains the germ of every ray at infinity.

Notations. By N = {1, 2, . . .} we denote the set of natural numbers, and by
N0 = {0, 1, 2, . . .} the set of nonnegative integers.
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For t ∈ R, we set R>t := {x ∈ R | x > t} and R≥t := {x ∈ R | x ≥ t}.
Denoting by | · | the Euclidean norm on R

n, we set S
n−1 := {x ∈ R

n | |x| = 1}.
Given a subset A of R

n, we denote by A its closure.
By π : R

n × R → R
n, (x, y) �→ x, we denote the projection on all but the last

coordinate. For a subset A of R
n × R and x ∈ R

n, we set Ax := {y ∈ R |
(x, y) ∈ A}.
By expk, respectively logk, we denote the k-times iterated of the exponential
function, respectively the logarithm.

The results. We assume basic knowledge of o-minimality (see for example van
den Dries [5] and van den Dries and Miller [6]). By definable we mean definable
(with parameters) in the o-minimal structure Ran,exp (see [6] for this structure).

Setting and preliminaries. We recall the precise definition of a log-analytic
function (see Lion and Rolin [3]) and state consequences of preparation results
on special sets (compare with [1]).

Definition 1. Let X ⊂ R
n be definable and let f : X → R be a function.

(a) Let k ∈ N0. By induction on k, we define that f is log-analytic of order
at most k.
Base case: The function f is log-analytic of order at most 0 if f is piece-
wise the restriction of globally subanalytic functions; i.e., there is a finite
decomposition Y of X into definable sets such that for Y ∈ Y, there is a
globally subanalytic function F : R

n → R such that f |Y = F |Y .
Inductive step: The function f is log-analytic of order at most k if the
following holds: There is a finite decomposition Y of X into definable sets
such that for Y ∈ Y, there are p, q ∈ N0, a globally subanalytic function
F : R

p+q → R and log-analytic functions g1, . . . , gp : Y → R, h1, . . . , hq :
Y → R>0 of order at most k − 1 such that

f |Y = F
(
g1, . . . , gp, log(h1), . . . , log(hq)

)
.

(b) Let k ∈ N0. We call f log-analytic of order k if f is log-analytic of order
at most k but not of order at most k − 1.

(c) We call f log-analytic if it is log-analytic of order k for some k ∈ N0.

Definition 2. We call a definable cell Y ⊂ R
n+1 simple at infinity if for every

x ∈ π(Y ), we have Yx = R>dx
for some dx ∈ R≥0.

Remark 3. Let Y be a definable cell decomposition of R
n × R>0. Then

R
n =

⋃
{π(Y ) | Y ∈ Y simple at infinity}.

We set e0 := 0 and ek := exp(ek−1) for k ∈ N.

Definition 4. Let k ∈ N0. A cell Y ⊂ R
n+1 which is simple at infinity is called

k-simple at infinity if inf Yx ≥ ek for all x ∈ π(Y ).

Proposition 5. Let f : R
n × R → R, (x, y) �→ f(x, y), be log-analytic of order

k. Then there is a definable cell decomposition Y of R
n ×R such that for every

Y ∈ Y which is simple at infinity, the cell Y is k-simple at infinity and

f |Y (x, y) = a(x)yq0 log(y)q1 · · · logk(y)qku(x, y)
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where
(1) a : π(Y ) → R is log-analytic and continuous,
(2) q0, . . . , qk ∈ Q,
(3) u : Y → R is log-analytic and there is d ∈ R>0 such that 0 ≤ u(x, y) ≤ d

for all (x, y) ∈ Y .

Proof. This follows from [1, Theorem 2.30] using the substitution r �→ 1/r.
�

Statement and proof of the results.

Definition 6. Let n ∈ N and let f : R
n → R be a function.

(a) If n = 1, we say that f is polynomially bounded at infinity if there are
constants t ∈ R>0 and N ∈ N such that |f(x)| ≤ xN for all x > t.

(b) If n > 1, we say that f is polynomially bounded at infinity if there are
constants t ∈ R>0 and N ∈ N such that |f(x)| ≤ |x|N for all |x| > t.

Let f be as above and let A ⊂ R
n be unbounded. We say that f is polynomially

bounded at infinity on A if 1Af is polynomially bounded at infinity (where
1A denotes the characteristic function of A).
We handle the unary case first.

Proposition 7. Let f : R → R be log-analytic. Then f is polynomially bounded.

Proof. By Proposition 5, we find k ∈ N0 and t ≥ ek such that

f(x) = axq0 log(x)q1 · · · logk(x)qku(x)

on R≥t where
(1) a ∈ R,
(2) q0, . . . , qk ∈ Q,
(3) u : R>t → R is log-analytic and there is d ∈ R>0 such that 0 ≤ u(x) ≤ d

for all x > t.
This gives that f(x) behaves asymptotically as xq0 log(x)q1 · · · logk(x)qk at +∞
(unless in the trivial case a = 0). By the growth properties of the logarithm,
we are done. �

Definition 8. A subset C of R
n is called a cone if x ∈ C implies rx ∈ C for all

r ∈ R≥0.
Given a cone C with C � {0}, we denote by B(C) := C ∩ S

n−1 its base. Note
that C = R≥0 · B(C).

Proposition 9. Let n ≥ 2 and let f : R
n → R be log-analytic. Then there is a

cone C with nonempty interior such that f is polynomially bounded at infinity
on C.
Proof. We consider the polar coordinates ϕ : S

n−1 × R≥0 → R
n, (v, r) → rv.

Let g : S
n−1 × R≥0 → R, (v, r) �→ f(ϕ(v, r)). By Remark 3 and Proposition

5, we find k ∈ N0 and an open cell Y that is k-simple at infinity such that
g|Y (x) = a(v)rq0 log(r)q1 · · · logk(r)qku(v, r) where
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(1) a : π(Y ) → R is log-analytic and continuous,
(2) q0, . . . , qk ∈ Q,
(3) u : Y → R is log-analytic and there is d ∈ R>0 such that 0 ≤ u(v, r) ≤ d

for all (v, r) ∈ Y .

Choose an open ball B in π(Y ) such that its closure is contained in π(Y ). Then
by continuity, a is bounded on B. By the growth properties of the iterated
logarithms, we get that g is polynomially bounded on Y ∩ (B × R). By the
definition of cells, the map π(Y ) → R≥0, x �→ inf Yx, is continuous. Hence by
the conditions imposed on B, there is T > ek such that the function x �→ inf Yx

on B is bounded from above by T . This implies B × R>T ⊂ Y . Hence, g is
polynomially bounded on B × R>T . We consider the cone C := R≥0 · B which
has nonempty interior. We obtain some N ∈ N such that |f(x)| ≤ |x|N for all
x ∈ C with |x| > T . By the very definition, we obtain that f is polynomially
bounded at infinity on C. �

In the higher dimensional case, global (polynomial) boundedness may fail sim-
ply if the pole locus is not bounded. Consider for example the function

f : R
2 → R, (x, y) �→

{ 1
x−y if x 
= y,

0 if x = y.

Then clearly sup√
x2+y2=r

|f(x, y)| = ∞ for all r > 0.
But even if one restricts to continuous functions, a log-analytic function may
not be polynomially bounded if n ≥ 2.

Proposition 10. Let n ≥ 2. There is a continuous log-analytic function f :
R

n → R which is not polynomially bounded at infinity.

Proof. It suffices to deal with the case n = 2. Consider the function

h : R>1 × R>0 → R, (x, y) �→ −y
(
(log y)2 − 2 log y + 2 − x

)
.

Claim 1: The following holds:

(1) The function h is log-analytic and continuous.
(2) For every x > 1, there exists maxy>0 h(x, y) ∈ R.
(3) The function α : R>1 → R, x �→ maxy>0 h(x, y), is given by α(x) =

2exp(
√

x)(
√

x − 1).

Proof of Claim 1.
(1) being clear, we have to show (2) and (3). For x > 1, we have

lim
y↗∞

h(x, y) = −∞, lim
y↘0

h(x, y) = 0,

and
∂h

∂y
(x, y) = −(log y)2 + x

which vanishes exactly for y = exp(
√

x) and y = exp(−√
x). We have

h(x, exp(
√

x)) = 2exp(
√

x)(
√

x − 1), h(x, exp(−√
x)) = −2exp(

√
x)(

√
x + 1).
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This implies that for x > 1, the function R>0 → R, y �→ h(x, y), attains its
maximum at y = exp(

√
x) with this maximum being given by

max
y>0

h(x, y) = 2exp(
√

x)(
√

x − 1).

This shows (2) and (3). �Claim 1

Let a ∈ R>1 be the (uniquely determined) value such that 2exp(
√

a)(
√

a−1) =
1. Let

g : R≥0 × [0, 1] → R, (x, y) �→
{

max
{
h
(
x, y

1−y ), 1
}

if (x, y) ∈ R>a× ]0, 1[,
1 if (x, y) /∈ R>a× ]0, 1[.

Claim 2: The following holds:
(1) The function g is continuous and log-analytic.
(2) The function β : R≥0 → R, x �→ max0≤y≤1 g(x, y), is given by β(x) = 1

for x ≤ a and β(x) = α(x) for x > a.
Proof of Claim 2.
For (1), note that for b > a,

lim
x→b,y↗1

g(x, y) = lim
x→b,y↗∞

max
{
h(x, y), 1

}
= 1,

lim
x→b,y↘0

g(x, y) = lim
x→b,y↘0

max
{
h(x, y), 1

}
= 1,

that for 0 < c < 1,

lim
x↘a,y→c

g(x, y) = lim
x↘a,y→c

max
{
h(x, y/(1 − y)), 1

}
= 1,

and that

lim
x↘a,y↘0

g(x, y) = lim
x↘a,y↘0

max
{
h(x, y/(1 − y)), 1

}
= 1,

lim
x↘a,y↗1

g(x, y) = lim
x↘a,y↗1

max
{
h(x, y/(1 − y)), 1

}
= 1.

For (2), note that for x > a,

max
0≤y≤1

g(x, y) = max
y>0

h(x, y) = 2exp(
√

x)(
√

x − 1).

�Claim 2

Let

f : R
2 → R, (x, y) �→

{
g
(
x2 + y2, 1

2π arg
( (x,y)√

x2+y2

))
if (x, y) 
= (0, 0),

1 if (x, y) = (0, 0),

where the argument function is given by arg : S
1 → [0, 2π[ with arg((1, 0)) = 0

and counterclockwise orientation. Then f is continuous and log-analytic. Let
γ : R≥0 → R≥0, r �→ max√

x2+y2=r
|f(x, y)|. Then γ(r) = α(r2) for all r ≥ 0.

Hence,

max√
x2+y2=r

|f(x, y)| ≥ exp(r)

for all sufficiently large r. �
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The question is how “big” we can choose a set where polynomial bounded-
ness at infinity holds. In Proposition 9, we have shown that we can choose a
nonempty open cone. By the continuity of the counterexample in Proposition
10, we cannot hope for a dense definable set (or equivalently, a definable set
with dimension of the complement being smaller than n):

Corollary 11. Let n ≥ 2. There is a log-analytic function f : R
n → R such

that f is not polynomially bounded on every dense definable subset.

Remark 12. Note that the above counterexample is globally given by compo-
sition of globally subanalytic functions and the logarithm, not only piecewise.

To formulate an optimal result, we need to introduce some setting to speak
about the ultimate size of a set at ∞. The first definition mimics the tangential
cone at finite points (see for example Kurdyka and Raby [2]).
We fix an unbounded definable subset A of R

n. We let dim∞ A be dim(A∩{x ∈
R

n | |x| > r}) for sufficiently large r (note that this stabilizes) and call it the
dimension of A at infinity.

Definition 13. (a) We let B(A,∞) be the set of all v ∈ Sn−1 such that for
every r, ε > 0, there is x ∈ A with |x| > r and

∣
∣x/|x| − v

∣
∣ < ε. We call

C(A,∞) := R≥0 · B(A,∞) the tangent cone of A at infinity.
(b) We let Bstr(A,∞) be the set of all v ∈ Sn−1 such that there is some

t ∈ R≥0 with R≥t · v ⊂ A. We call Cstr(A,∞) := R≥0 · Bstr(A,∞) the
strong tangent cone of A at infinity.

Remark 14. (1) We have Cstr(A,∞) ⊂ C(A,∞).
(2) The tangent cone C(A,∞) of A at infinity is closed and definable with

dim C(A,∞) ≤ dim∞ A.
(3) The strong tangent cone Cstr(A,∞) of A at infinity is definable with

dim Cstr(A,∞) ≤ dim∞ A.
(4) For r > 0, let B(A, r) := {x/r | x ∈ A and |x| = r}. Then B(A,∞) is

the Hausdorff limit of the family
(
B(A, r)

)
r∈R>0

(compare with Lion and
Speissegger [4]) and

Bstr(A,∞) = lim sup
r>0

B(A, r) =
⋃

r>0

⋂

s>r

B(A, s).

The next concept will carry more information. A (closed) ray R in R
n is of

the form R = a+R≥0 ·v where a ∈ R
n and v ∈ S

n−1. We parameterize the set
R of all rays by the bijection R

n × S
n−1 → R, (a, v) �→ a + R≥0 · v. For limit

considerations, it is natural to identify two rays R1 and R2 if R1 ⊂ R2 or
R2 ⊂ R1. This is an equivalence relation ∼ on R. A canonical representative
of the equivalence class of a ray R = a + R≥0 · v is given by o + R≥0 · v where
o ∈ a + R · v with o ⊥ v (or, equivalently, o realizes the distance of the line
a + R · v to the origin). A ray of this form is called a standardized ray. We
identify the set R/ ∼ with the set of the standardized rays and parameterize it
by the bijection S := {(o, v) ∈ R

n×S
n−1 | o ⊥ v} → R/ ∼, (o, v) �→ o+R≥0 ·v.
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Definition 15. (a) We denote by RC(A,∞) the union of all standardized rays
R = o + R≥0 · v such that for every r, ε > 0, there are x ∈ A and y ∈ R
with |x| = |y| > r and |x − y| < ε, and call it the tangent ray cone of A
at infinity.

(b) We denote by RCstr(A,∞) the union of all standardized rays R = o +
R≥0 · v such that o + R≥t · v ⊂ A for some t ∈ R≥0, and call it the strong
tangent ray cone of A at infinity.

Remark 16. (1) We have RCstr(A,∞) ⊂ RC(A,∞).
(2) The tangent ray cone RCA,∞ of A at infinity is closed and definable with

dim RCA,∞ ≤ dim∞ A.
(3) The strong tangent ray cone RCstr

A,∞ of A at infinity is definable with
dim RCstr

A,∞ ≤ dim∞ A.
(4) We have C(A,∞) ⊂ RC(A,∞). In fact, the following stronger statement

holds: A standardized ray o + R≥0 · v is contained in RC(A,∞) if and
only if R≥0 · v is contained in C(A,∞).

(5) We have Cstr(A,∞) ⊂ RCstr(A,∞).

Example 17. Consider the half-strip

S := {(x, y) ∈ R
2 | x > 0, 0 < y < 1}.

We have

C(S,∞) = R≥0 · (1, 0), Cstr(S,∞) = ∅,

and

RC(S,∞) =
{
(0, t) + R≥0 · (1, 0)

∣
∣ t ∈ R

}
,

RCstr(S,∞) =
{
(0, t) + R≥0 · (1, 0)

∣
∣ 0 < t < 1

}
.

Definition 18. (a) We call A spherically dense at infinity if C(A,∞) = R
n.

We call A strongly spherically dense at infinity if Cstr(A,∞) = R
n.

(b) We call A ray dense at infinity if RC(A,∞) contains every standardized
ray. We call A strongly ray dense at infinity if RCstr(A,∞) contains every
standardized ray.

Remark 19. (1) A is spherically dense at infinity if and only if A is ray dense
at infinity.

(2) If A is strongly ray dense at infinity, then A is strongly spherically dense
at infinity. The converse does in general not hold.

Proof. (1): The direction from right to the left being clear by definition, we
show the direction from left to the right. Let o + R≥0 · v ∈ R/ ∼ where
(o, v) ∈ S. Then R≥0 ·v ∈ C(A,∞) since A is spherically dense at infinity.
By the definition of the tangent ray cone, we obtain that o + R≥0 · v ⊂
RC(A,∞).

(2): The first statement is clear. For the second one, consider the complement
of the above half-strip.

�
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Hence the notion of ray density at infinity does not give anything new. We
have included it for completeness and symmetry.
Here is now the final optimal result.

Theorem 20. Let n ≥ 2 and let f : R
n → R be log-analytic. Then there is a

definable subset U of R
n which is strongly ray dense at infinity such that f is

polynomially bounded at infinity on U .

Proof. Consider the semialgebraic map Φ : S × R≥0 → R
n, (o, v, r) �→ o + rv,

and the log-analytic function F := f ◦Φ : S×R≥0 → R. Let F be log-analytic
of order k ∈ N0. By Proposition 5, we find a definable cell decomposition Y of
S × R≥0 such that for every Y ∈ Y which is simple at infinity, the cell Y is
k-simple at infinity such that

F |Y (o, v, r) = a(o, y)rq0 log(r)q1 · · · logk(r)qku(o, v, r)

where
(1) a : π(Y ) → R is log-analytic and continuous,
(2) q0, . . . , qk ∈ Q,
(3) u : Y → R is log-analytic, and there is d = dY ∈ R>0 such that 0 ≤

u(o, v, r) ≤ d for all (o, v, r) ∈ Y .
We fix Y ∈ Y simple at infinity. Let Z := π(Y ) and δ : Z → R≥0, (o, v) �→
inf Y(o,v). We set frZS := (Z\Z) ∩S. By passing to a finer cell decomposition
of S, we may assume that frZS 
= ∅. For s ∈ R≥0, let

Z(s) :=
{
(o, v) ∈ Z

∣
∣ |(o, v)| ≤ s,dist((o, v), frSZ) ≥ s

}
.

Then Z(s) is compact for every s ≥ 0. We set

Δ : R≥0 → R≥0, s �→ max
{|a(o, v)| ∣

∣ (o, v) ∈ Z(s)
}
.

Note that this is well-defined since a is continuous. Note that here by conven-
tion max ∅ = 0. The function Δ is increasing and definable. Hence, by van den
Dries and Miller ([6, 5.5]), it is bounded by an iterated exponential expl for
some l ∈ N0. Choose N = NY ∈ N with N > |q0| + · · · + |qn|. We set

WY :=
{
(o, v, r) ∈ S × R>0 | (o, v) ∈ Z(logl(r)), r > max{el, δ(o, v)}}.

For (o, v, r) ∈ WY , we have

|F (o, v, r)| = |a(o, v)|rq0 log(r)q1 · · · logk(r)qku(o, v, r) ≤ dY rrNY .

We set VY := Φ(WY ). We obtain that |f(x)| ≤ dY |x|NY +1 on VY .
Let U be the union of all VY with Y ∈ Y simple at infinity. Then U is definable.
We show that this U does the job. Let R = o + R≥0 · v be a standardized ray
and let r > 0. By Remark 3, we find Y ∈ Y that is simple at infinity such
that (o, v) ∈ Z. Note that we use the above notations. There is s ∈ R>0

such that (o, v) ∈ Z(s). By the definition of WY , we find t > 0 such that
{(o, v)} × R≥t ⊂ WY . This gives o + R≥t · v ⊂ VY ⊂ U . So U is strongly ray
dense. Let

dU := max{dy | Y ∈ Y simple at infinity}
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and

NU := max{Ny | Y ∈ Y simple at infinity}.

Then |f(x)| ≤ dU |x|NU+1 for all x ∈ U . Hence, f is polynomially bounded on
U . �

Concluding remarks. In Corollary 11, we have found, for n ≥ 2, a log-analytic
function f : R

n → R and a definable open and unbounded set W such that r �→
infx∈W,|x|=r |f(x)| is of exponential growth. By Proposition 7, the set W cannot
contain the image of an unbounded log-analytic curve. By the same methods as
in the proof of Theorem 20, we can find an open and definable set U such that
f is polynomially bounded at infinity on U , and U contains the germ of every
unbounded log-analytic curve up to a certain complexity (where the complexity
is the complexity of terms in the language Lan(−1, ( n

√
. . .)n=2,3,..., log), compare

with [1, Remark 1.2]. An open question is whether we can find such U that
contains the germ of every unbounded log-analytic curve.
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[2] Kurdyka, K., Raby, G.: Densité des ensembles sous-analytiques. Ann. Inst.

Fourier 39(3), 753–771 (1989)
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