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On representations of direct products and the bounded
generation property of branch groups

Steffen Kionke and Eduard Schesler

Abstract. We prove that the minimal representation dimension of a di-
rect product G of non-abelian groups G1, . . . , Gn is bounded below by
n + 1 and thereby answer a question of Abért. If each Gi is moreover
non-solvable, then this lower bound can be improved to be 2n. By com-
bining this with results of Pyber, Segal, and Shusterman on the structure
of boundedly generated groups, we show that branch groups cannot be
boundedly generated.
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Introduction. An infinite group G is called just-infinite if all of its proper quo-
tients are finite. Obvious examples of just-infinite groups are virtually simple
groups. Other examples arise from irreducible lattices in higher rank semisim-
ple Lie groups, such as SLn(Z) for n ≥ 3, after dividing out their centers,
see [12, Chapter IV]. Such groups are in fact hereditarily just-infinite, which
means that they are residually finite and all of their finite index subgroups are
just-infinite. Grigorchuk’s group [8] provided the first example of a just-infinite
group that is not virtually a finite direct power of a simple or a hereditarily
just-infinite group. Grigorchuk’s group is a just-infinite branch group, which
means that its commensurability classes of subnormal subgroups form a lattice
that is isomorphic to the lattice of open and closed subsets of a Cantor set.
By Wilson’s classification [18], just-infinite groups fall into three classes. Every
just-infinite group G is either a branch group or virtually a direct power of a
simple or a hereditarily just-infinite group.
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Since its introduction by McCarthy [13] in the late 1960s, the class of
just-infinite groups remained an active field of research. One reason might
be that every finitely generated infinite group admits a just-infinite quotient.
Thus whenever there is some finitely generated, infinite group G that admits a
property P that is preserved under homomorphic images, then there is also a
finitely generated just-infinite group with P. Following [10], we call a property
P that is preserved under homomorphic images an H-property. Well-known
examples of H-properties include amenability, property (T), bounded gener-
ation, being a torsion group, having subexponential growth etc. In view of
Wilson’s classification, it is natural to investigate which of the three classes of
just-infinite groups contain groups that satisfy a given H-property P. For the
H-property “being a torsion group”, this question is settled. In this case, it is
known that there are finitely generated simple groups [2], just-infinite branch
groups [8], and hereditarily just-infinite groups [7] that are torsion. On the
other hand, there are torsion-free, finitely generated, just-infinite groups that
are simple [11], branch [3], and hereditarily just-infinite (e.g., Z).

The purpose of this note is to study this question for the bounded genera-
tion property. Recall that a group G is boundedly generated if it contains a finite
subset {g1, . . . , gn} such that every g ∈ G can be written as g = gk1

1 · · · gkn
n for

appropriate ki ∈ Z. Since infinite torsion groups are not boundedly generated,
it follows that each of the three classes of just-infinite groups contains a finitely
generated group that does not have the bounded generation property. On the
other hand, it was proven by Carter and Keller [6] that PSLn(Z) is bound-
edly generated for n ≥ 3, which provides an interesting boundedly generated
hereditarily just-infinite group. The existence of boundedly generated, infinite,
simple groups was established by Muranov [14], whose construction seems to
be the only one available at present. It remains to study just-infinite branch
groups. The question of existence of boundedly generated just-infinite branch
groups was raised by Bartholdi, Grigorchuk, and Šuniḱ [10, Question 12] and
remained open to the best of our knowledge. The purpose of the paper is to
show that the answer is negative for arbitrary branch groups (even without
the assumption of being just-infinite).

Theorem 1. There is no boundedly generated branch group.

As a consequence, it follows from Wilson’s classification of just-infinite
groups that every boundedly generated infinite group has a quotient that is
virtually a product of finitely many copies of a boundedly generated simple
or hereditarily just-infinite group. The proof of Theorem 1 is a rather direct
combination of results of Pyber and Segal [15], Shusterman [16], and Abért
[1].

Abért proved that weakly branch groups are not linear over any field (for
branch groups, this result is due to Grigorchuk and Delzant). More precisely,
he defined for every field k, the natural number matk(n) to be the minimal r
such that every graph on n vertices can be represented in the matrix algebra
Mr,r(k) where the graph’s edges encode non-commutation. Abért showed that√�n/2� ≤ matk(n) ≤ 2(n − �log2(n)� + 1) and asked for a linear lower bound
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[1, Question 4]. The following theorem answers this question by considering
the graph Tn that consists of 2n vertices and n disjoint edges. The choice of
the graph Tn was motivated by an argument of Abért [1, Proposition 5] that
tells us that the question can be reduced to that case.

Theorem 2. Let k be a field and let r ≥ 1. Suppose that there are (r × r)-
matrices a1, . . . , an, b1, . . . , bn ∈ Mr,r(k) such that all pairwise commutators
are trivial except for [ai, bi] = aibi −biai for all i ∈ {1, . . . , n}. Then r ≥ n+1.

The lower bound in Theorem 2 is sharp. Let λ ∈ k×. Consider the matrices
ai = I + E1,i+1, bi = I − λEi+1,i+1 ∈ Mn+1,n+1(k) for i = 1, . . . , n, where I is
the identity matrix and Ei,j denotes the elementary matrix whose (i, j)-entry
is 1 and all other entries are 0. Then ai, bi satisfy the assumptions of Theorem
2. If λ �= 1, then ai, bi are invertible. If |k| > 2, this shows with [1, Prop. 5]
that ⌊n

2

⌋
+ 1 ≤ matk(n) ≤ n + 1.

The non-linearity of weakly branch groups follows since these groups con-
tain infinite products of non-abelian groups. Let μk(G) denote the minimal
dimension of a faithful, finite dimensional representation of a group G over a
field k (we write μk(G) = ∞ if G is not linear over k). Theorem 2 directly
implies a lower bound μk(G1 × · · · × Gn) ≥ n + 1 for direct products of non-
abelian groups. Similarly, Theorem 2 provides lower bounds for representations
of products non-commutative (Lie) algebras. If the factors Gi are assumed to
be non-solvable, the lower bound can be improved further.

Theorem 3. Let k be a field, let G1, . . . , Gn be groups, and let G = G1×· · ·×Gn

denote their direct product.
(1) If the groups G1, . . . , Gn are non-abelian, then μk(G) ≥ n + 1.
(2) If the groups G1, . . . , Gn are non-solvable, then μk(G) ≥ 2n.

Both lower bounds in Theorem 3 are sharp. Let ai = I + E1,i+1, bi =
I − 2Ei+1,i+1 ∈ GLn+1(Q) be as above. Setting Gi = 〈ai, bi〉, we can therefore
deduce that μQ(G1×· · ·×Gn) = n+1. Suppose that the groups Gi in Theorem
3 are non-solvable subgroups of GL2(k) for some field k. Then each Gi can be
embedded in a 2 × 2-diagonal block in GL2n(k), which gives us an embedding
of G = G1 × · · · × Gn in GL2n(k). Together with Theorem 3, this implies
μk(G) = 2n. In particular, this applies to the case where each Gi is a non-
abelian free group and thereby recovers [5, Theorem 3] in the SLn-case.

1. Branch groups are not boundedly generated. There are several character-
izations of branch groups. The following one, which is a slight reformulation
of [10, Definition 1.1], does not involve a rooted tree which makes it rather
abstract. However, it suits well for our purposes. A more geometric definition
can be found in [10, Definition 1.13].

Definition. A group G is called a branch group if it admits a decreasing se-
quence of subgroups (Hi)i∈N0 with H0 = G and

⋂
i∈N0

Hi = 1, and a sequence
of integers (ki)i∈N0 with k0 = 1 such that for each i, the following hold:
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(1) Hi is a normal subgroup of finite index in G.
(2) Hi splits as a direct product Hi = H

(1)
i × · · · × H

(ki)
i , where the factors

are pairwise isomorphic.
(3) The quotient mi+1 := ki+1/ki is an integer with mi+1 ≥ 2, and the

product decomposition of Hi+1 refines the product decomposition of Hi

in the sense that each factor H
(j)
i of Hi contains the factors H

(�)
i+1 of Hi+1,

where � satisfies (j − 1) · mi+1 + 1 ≤ � ≤ j · mi+1.
(4) G acts transitively by conjugation on the set of factors H

(j)
i of Hi.

As indicated in the introduction, not every branch group is just-infinite.
In fact, there is no need for finitely generated branch groups to admit a just-
infinite quotient that is a branch group. See [17, Theorem 2] for an example of a
finitely generated branch group that maps homomorphically onto Z, which is of
course just-infinite and boundedly generated. As a consequence, to prove that
branch groups cannot be boundedly generated, it is not sufficient to consider
the just-infinite case, in which the claim turns out to be a direct consequence
of results of Abért [1], Pyber and Segal [15].

Proof of Theorem 1. Suppose there is a branch group G that is boundedly
generated. Then [15, Corollary 1.6] tells us that G admits an epimorphism
π : G → Q, where Q is an infinite linear group. However, by [1, Corollary
7], branch groups are not linear over any field. Thus Q is a proper quotient
of G. As such, Q is virtually abelian by [17, Proposition 6]. Since G, being
a boundedly generated group, is finitely generated, it follows that Q has a
(non-trivial) free abelian finite index subgroup Q0. We can therefore consider
the finite index subgroup G0 := π−1(Q0) of G, which by construction maps
onto Z. Let us now fix an arbitrary number n ∈ N. From the definition of a
branch group, it follows that G contains a finite index subgroup of the form
Hi = H

(1)
i ×· · ·×H

(ki)
i , where the factors are pairwise isomorphic and ki ≥ n.

Then Hi ∩ G0 is a finite index subgroup of Hi. In this case, it can be easily
seen that there are pairwise isomorphic finite index subgroups K

(j)
i ≤ H

(j)
i

such that Ki := K
(1)
i ×· · ·×K

(ki)
i ≤ Hi ∩G0. In particular, we see that Ki has

finite index in G0, which implies that it maps onto Z. Thus some, and hence
every, factor K

(j)
i maps onto Z. We can therefore deduce that the torsion-free

part of the abelianization of Ki has rank at least ki ≥ n. As a consequence,
this holds for every finite index subgroup of Ki. In particular, this tells us that
there is no finite index subgroup of Ki that can be generated with less than n
elements. Since n ∈ N was arbitrary, this contradicts a result of Shusterman
[16, Theorem 1.1], which tells us that for every boundedly generated group H,
there is a constant C > 0 such that every finite index subgroup of H contains
a finite index subgroup that can be generated by at most C elements. �
2. Lower bounds for the minimal representation dimension of directs prod-
ucts. Let us now prove the results concerning the minimal representation di-
mensions.

Proof of Theorem 2. For the proof, we combine ideas from [1] and [4]. Extend-
ing scalars, we may assume that k is an infinite field. Recall that I ∈ Mr,r(k)
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denotes the identity matrix. We claim that I, a1, . . . , an, b1, . . . , bn are linearly
independent. This follows along the lines of [1, Proof of Thm. 3]. Suppose that
cI +

∑
j λjaj +

∑
j λ′

jbj = 0 for c, λ1, . . . , λn, λ′
1, . . . , λ

′
n ∈ k. Taking commu-

tators with ai (resp. bi) shows λi = 0 (resp. λ′
i = 0); since I �= 0, the last

remaining coefficient c vanishes as well.
Let V = kr and let C denote the linear span of {I, a1, . . . , an, b1, . . . , bn}

in Mr,r(k). Consider the linear map Ψ: C → V defined by Ψ(X) = Xv for
some v ∈ V . We will see that the image of Ψ has dimension at least n + 1
if v is chosen appropriately. As the commutators zi = [ai, bi] are non-trivial,
the kernel of each zi is a proper subspace of V . However, V cannot be covered
by a finite union of proper subspaces (as k is infinite). Thus there is a vector
v ∈ V such that ziv �= 0 for all i ∈ {1, . . . , n}. Let α : V → k be a linear
form such that α(v) �= 0 and α(ziv) �= 0 for all i ∈ {1, 2, . . . , n} (such a
linear form α exists, as the dual space V ∗ cannot be covered by finitely many
proper subspaces). Now β : C × C → k defined by β(x, y) = α([x, y](v)) is an
alternating form on C. It is not difficult to see that β is non-degenerate on
the subspace 〈a1, . . . , an, b1, . . . , bn〉 ⊆ C (e.g., the matrix representation has
full rank). Let us observe that kI + ker(Ψ) is an isotropic subspace since for
x, y ∈ kI + ker(Ψ), we have [x, y](v) = xyv − yxv = 0. As v �= 0, we have
I �∈ ker(Ψ) and thus dimk ker(Ψ)+ 1 ≤ n+ 1. This allows us to conclude that

r ≥ dimk(im(Ψ)) = 2n + 1 − dimk ker(Ψ) ≥ n + 1.

�

Proof of Theorem 3. The first assertion follows immediately from Theorem 2.
Assume now that each Gi is non-solvable. If G is not linear, there is nothing
to show. Assume that (ρ, V ) is a finite dimensional faithful representation over
k. By extension of scalars, we may assume that k is algebraically closed. Let
V 1, . . . , V t denote the composition factors of V considered as G-modules. Since
k is algebraically closed, the composition factor V j is isomorphic to a tensor
product

V j = V j
1 ⊗k V j

2 ⊗k · · · ⊗k V j
n

where V j
i is an irreducible Gi-representation; see, e.g., [9, Prop. 2.3.23]. The

composition factors of V |Gi
are the irreducible representations V 1

i , . . . , V t
i each

one possibly occurring several times. Suppose for a contradiction that V j
i is

one-dimensional for all j. Then there is a basis of V such that ρ(Gi) is repre-
sented by upper triangular matrices. This gives a contradiction since Gi is not
solvable.

For each j, let Sj ⊆ {1, . . . , n} be the set of i such that dimk V j
i ≥ 2. By

the observation above, each i ≤ n belongs to at least one of the sets Sj . This
implies

dimk V =
t∑

j=1

n∏

i=1

dimk V j
i ≥

t∑

j=1

2|Sj | ≥
t∑

j=1

2|Sj | ≥ 2n.

�
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[2] Ol’̌sanskĭı, A.J.: Infinite groups with cyclic subgroups. Dokl. Akad. Nauk SSSR

245(4), 785–787 (1979)

[3] Bartholdi, L., Grigorchuk, R.I.: On parabolic subgroups and Hecke algebras of

some fractal groups. Serdica Math. J. 28(1), 47–90 (2002)

[4] Cagliero, L., Rojas, N.: Faithful representations of minimal dimension of current

Heisenberg Lie algebras. Internat. J. Math. 20(11), 1347–1362 (2009)

[5] Campagnolo, C., Kammeyer, H.: Products of free groups in lie groups. J. Algebra

579, 237–255 (2021)

[6] Carter, D., Keller, G.: Bounded elementary generation of SLn(O). Amer. J.

Math. 105(3), 673–687 (1983)

[7] Ershov, M., Jaikin-Zapirain, A.: Property (T) for noncommutative universal

lattices. Invent. Math. 179(2), 303–347 (2010)

[8] Grigorchuk, R.I.: On Burnside’s problem on periodic groups. Funktsional. Anal.

i Prilozhen. 14(1), 53–54 (1980)

[9] Kowalski, E.: An Introduction to the Representation Theory of Groups. Grad-

uate Studies in Mathematics, vol. 155. American Mathematical Society, Provi-

dence, RI (2014)
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