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Abstract. In this paper, we study the ideals of finite elements in spe-
cial vector lattices of real sequences, first in the duals of Cesàro sequence
spaces cesp for p ∈ {0}∪ [1, ∞) and, second, after the Cesàro sum cesp(X)
of a sequence of Banach spaces is introduced, where p = ∞ is also allowed,
we characterize their duals and the finite elements in these sums if the
summed up spaces are Banach lattices. This is done by means of a re-
markable extension of the corresponding result for direct sums.
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1. Introduction. In the first part of the paper, guided by Bennett’s approach,
we consider the dual spaces dq of the Cesàro sequence spaces cesp for 1 <
p < ∞ where 1/q + 1/p = 1. Equipped with the appropriate norm and the
coordinatewise order, they are Dedekind complete Banach lattices with order
continuous norm. Then of interest are the finite elements in these spaces. In the
last years, these classes of finite elements, which were introduced in [15], are
studied thoroughly by many authors in different Banach lattices, in particular,
in Cesàro sequence spaces by the authors in [11]. The spaces dq do not possess
order units and all kinds of finite elements in them coincide with c00. In the
second part, similarly to the classical (c0-, �p-, and �∞-) direct sums of Banach
lattices in [18, §3.3.3] and [8,9], we introduce the so-called Cesàro sum for
a sequence of Banach spaces, study their dual space, and characterize the
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finite elements if the summed up spaces are Banach lattices. In this paper, the
Theorem 4.3 essentially extends the corresponding result for direct sums in
[9].

2. Preliminaries. The aim of this section is to provide some necessary defi-
nitions and facts. For unexplained terminology concerning the vector lattices
theory, the reader can consult the books [2,4,5,13].

An element ϕ in an Archimedean vector lattice E is called finite whenever
there exists a so-called majorant z ∈ E such that for any x ∈ E, there is a
number cx > 0 with the property that |x| ∧n |ϕ| ≤ cx z holds for any n ∈ N. If
z is a finite element, then ϕ is called totally finite and if |ϕ| itself is a majorant,
the element ϕ is called selfmajorizing. The sets of all finite and totally finite
elements of an Archimedean vector lattice E are denoted by Φ1(E) and Φ2(E),
respectively. All positive selfmajorizing elements are denoted by S+(E) and
Φ3(E) := S+(E) − S+(E). The collections Φi(E) are order ideals in E for
i ∈ {1, 2, 3} (see [18, Chapt. 3]).

We need some more notions and facts the details of which can be found in
[4,5,18].

Definition 2.1. (a) An element u ∈ E+, u �= 0, of a vector lattice E is called
an atom whenever 0 ≤ x ≤ u, 0 ≤ y ≤ u, and x∧ y = 0 imply that either
x = 0 or y = 0.

(b) An element u ∈ E+, u �= 0, of a vector lattice E is called discrete,
whenever 0 ≤ v ≤ u implies v = λu for some λ ∈ R+.

(c) A vector lattice E is said to be atomic if for each x > 0, there exists an
atom u such that 0 < u ≤ x.

In an Archimedean vector lattice E, a positive element is an atom if and
only if it is a discrete element. Also if u is an atom in E, then {λu : λ ∈ R}
(the vector space generated by u) is a projection band. Each atom of a vector
lattice is a totally finite element. Even more, for two elements a and x, one
has

1
n

(|x| ∧ na) ≤ a,

and if a is an atom, then |x| ∧ na = λna ≤ |x| follows for some λn ∈ R+.
The Archimedean property implies ra(|x|) = sup{λ ∈ R+ : λa ≤ |x|} < ∞
for the atom a, which finally yields |x| ∧ na ≤ ra(|x|) a, i.e., the element a is
selfmajorizing.

For a normed vector lattice E, denote by ΓE the set of all atoms of E with
norm 1. Then ΓE is a subset of Φ3(E). It consists of pairwise disjoint elements,
and forms a linearly independent system. According to [18, Theorem 3.18] and
the remark above, we have the following theorem.

Theorem 2.2. Let E be a Banach lattice with order continuous norm. Then
(i) Φ3(E) = Φ2(E) = Φ1(E) = span(ΓE);
(ii) Φ1(E) is closed in E if and only if ΓE is a finite set. In particular,

Φ1(E) = E if and only if E is finite dimensional.

The following results will be used in the sequel.
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Theorem 2.3 ([18, Proposition 3.44]). If a vector lattice E has an order unit,
then Φi(E) = E, i ∈ {1, 2, 3}.

Theorem 2.4 ([18, Theorem 3.15]). Let E be a Banach lattice and ϕ ∈ E. Then
the following statements are equivalent:

(i) ϕ is a finite element.
(ii) The closed unit ball B{ϕ}dd of {ϕ}dd is order bounded in E.

(iii) {ϕ}dd has a generalized order unit, i.e., there exists 0 ≤ z ∈ E such that
for any x ∈ {ϕ}dd, there is a real number γx > 0 with |x| ≤ γxz.

Theorem 2.5 ([18, Theorem 3.28]). Let H be a projection band in a vector
lattice E, and PH the band projection from E onto H. Then PH(Φ1(E)) =
Φ1(E) ∩ H = Φ1(H).

3. The dual space of cesp . The vector space R
N which is partially ordered by

the coordinatewise order is a Dedekind complete vector lattice, where the lat-
tice operations are given coordinatewise: x∨y = (max{x1, y1},max{x2, y2}, . . .)
and x∧y = (min{x1, y1},min{x2, y2}, . . .). As usual (cf. [4, Chapt. 13]) denote
by �∞, �p, c0, and c00 the spaces of bounded, p-summable, null, and finite
sequences in R

N, respectively.
The Cesàro operator C : R

N → R
N is given by

Cx =

(
1
n

n∑
k=1

xk

)
n∈N

for all x = (xn)n∈N in R
N. By using Hardy’s inequality, for x ∈ �p (1 < p < ∞),

we have

‖Cx‖p ≤ ‖C|x|‖p ≤ p

p − 1
‖x‖p .

So, the Cesàro operator C : �p → �p is linear and continuous with operator
norm p

p−1 . For 1 ≤ p ≤ ∞, the Cesàro sequence spaces are defined as

cesp := {x ∈ R
N : C|x| ∈ �p}

with the norm ‖x‖cesp := ‖C|x|‖p .

The space ces0 is defined as

ces0 := {x ∈ R
N : C|x| ∈ c0}

with the norm ‖x‖ces0 := ‖C|x|‖∞ .
Actually, cesp and ces0 spaces are Banach lattices. These spaces have been

thoroughly studied by Leibowitz [14] and Shiue [17]. In particular, they showed
that cesp is trivial if p = 1. Since they are order ideals in R

N, the Dedekind com-
pleteness of the latter implies that all these vector lattices are also Dedekind
complete.

The characterization problem of the dual space ces′
p of the Banach lattice

(cesp, ‖·‖cesp) of Cesàro sequence spaces for 1 < p < ∞, which was offered by
the Dutch Mathematical Society as a prijsvrage [1], was solved by Jagers [12].
A second solution, given by Bennet [6], provides a simple explicit isomorphic
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identification. To present Bennett’s approach, first consider for 0 < q < ∞ the
set

dq :=

{
a = (an)n∈N ∈ R

N :
(

sup
k≥n

|ak|
)

n∈N

∈ �q

}
.

For q = 0 and q = ∞, the above constructed sequences
(
supk≥n |ak|)

n∈N
are

supposed to belong to c0 and �∞, respectively. A simple calculation shows that
d0 = c0 and d∞ = �∞ what is not of interest.

Each sequence a = (an)n∈N ∈ R
N produces another sequence â = (ân)n∈N

with ân := supk≥n |ak| called the least decreasing majorant of a. Clearly, a ∈ dq

if and only if â ∈ �q if and only if â ∈ dq.
Notice that dq is a proper subset of �q for 1 ≤ q < ∞. For example, consider

the sequence a = (an)n∈N, where

an =
{

1
2k/q if n = 2k for some k ∈ N,
0 otherwise.

For the case q = 1, there is a = (0, 1
21 , 0, 1

22 , 0, 0, 0, 1
23 , . . .) and a ∈ �1 is clear.

On the other hand, â = ( 1
21 , 1

21 , 1
22 , 1

22 , 1
23 , 1

23 , 1
23 , 1

23 , 1
24 , . . .), i.e., ân = 1

2m+1 if
n > 2 and satisfies 2m < n ≤ 2m+1, where m ∈ N. Then it is clear that

∞∑
n=1

ân >

∞∑
m=1

(
2m 1

2m+1

)
=

∞∑
m=1

1
2

= ∞, i.e., â /∈ �1 and, hence a /∈ d1.

For q ≥ 1, under the norm

‖a‖dq
:= ‖â‖q =

( ∞∑
n=1

sup
k≥n

|ak|q
)1/q

,

dq is a Banach space. In particular, ‖a‖dq
= ‖â‖q = ‖â‖dq

. Therefore, every
eventually decreasing, non-negative sequence a ∈ �q is an element of dq because
an = ân holds for all sufficiently large n. Hence, c00 is a proper subset of dq,
and so c00 � dq � �q.

The coordinatewise order makes the spaces dq into Dedekind complete Ba-
nach lattices.

Let 1 < p, q < ∞ and 1
p + 1

q = 1. Then there is a lattice isomorphism
between ces′

p and dq whose duality1 with cesp is stated explicitly via

〈a, x〉 :=
∞∑

n=1

anxn, x ∈ cesp, a ∈ dq.

Moreover, the identification is even isometric when cesp is endowed with
another norm equivalent to ‖·‖cesp . For details, see [6] and [7, Lemma 2.2
and Proposition 2.4]. Recently, Curbera and Ricker have proved the identifi-
cation ces′

0 = d1 with equality of norms [10, Lemma 6.2]. On the other hand,
[3, Theorem 1] yields that ces′′

0 = d′
1 = ces∞ with equality of norms. Jagers

[12] proved that cesp is reflexive for 1 < p < ∞. Therefore, by Pettis’ theorem

1This will be denoted by ces′p = dq .
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[16, Corollary 1.11.17], dq is reflexive as well, where 1 < q < ∞. According to
[4, Corollary 9.23], the norm of dq is order continuous for 1 < q < ∞. However,
the norm of ces∞ is not order continuous (see [11, Corollary 4.2]). Nevertheless,
the following Lemma 3.2 shows that the norm of d1 is order continuous.

Recently, the Banach lattice dq has been investigated in detail by Bonet
and Ricker ([7], see also the references therein).

Lemma 3.1. Let (x(n))n∈N be a positive decreasing sequence and 1 ≤ p < ∞.
Then x(n) ↓ 0 in dp if and only if x̂(n) ↓ 0 in dp.

Proof. Let x(n) = (x(n)
k )k∈N. The “if” part is clear from |x(n)

k | ≤ x̂
(n)
k for all

n, k ∈ N. Next, we prove the “only if” part. To this end, let x(n) ↓ 0 in dp.

Then x
(n)
k ↓ 0 in R for each k ∈ N since dp is an ideal in R

N. It suffices to show
that x̂

(n)
k ↓ 0 in R for each k ∈ N. Since the sequence (x(n))n∈N is decreasing

(to 0 ) in dp, we have
(

supi≥k |x(n)
i |

)
k∈N

∈ �p, i.e., (x̂(n)
k )k∈N ∈ �p and so∑∞

k=1 |x̂(n)
k |p < ∞. Given ε > 0, there exists N ∈ N such that

∞∑
k=N

∣∣∣x̂(n)
k

∣∣∣p =
∞∑

k=N

sup
i≥k

∣∣∣x(n)
i

∣∣∣p ≤
∞∑

k=N

sup
i≥k

∣∣∣x(1)
i

∣∣∣p < εp

for all n ∈ N. Moreover, for some n0 ∈ N, one has 0 ≤ x
(n)
k ≤ ε for n ≥ n0 and

k ∈ {1, . . . , N}. Therefore, 0 ≤ x̂
(n)
k ≤ ε holds for all n ≥ n0 and k ∈ N. This

completes the proof. �
Lemma 3.2. The norm in the Banach lattice dp is order continuous for 1 ≤
p < ∞.

Proof. As mentioned above, the norm in the Banach lattice dp is order contin-
uous for 1 < p < ∞. By [5, Theorem 4.9], to complete the proof for the case
p = 1, we must show that xn ↓ 0 in d1 implies ‖xn‖d1

↓ 0. Let xn ↓ 0 in d1.
Then it follows from Lemma 3.1 that x̂n ↓ 0 in d1. Also, x̂n ↓ 0 in �1 since d1
is an ideal in �1. By order continuity of the norm in �1, ‖x̂n‖1 ↓ 0. The proof
follows immediately from ‖xn‖d1

= ‖x̂n‖1 . �
Remark 3.3. Further on, let en denote the sequence (0, 0, . . . , 0︸ ︷︷ ︸

n−1

, 1, 0, 0, . . .).

Note that ên = (1, 1, . . . , 1︸ ︷︷ ︸
n

, 0, . . .) =
∑n

k=1 ek and therefore2, en is an element

of dp for each n ∈ N and 1 ≤ p < ∞. It turns out that each en is an atom in dp.
Actually, there are no other atoms in dp except the non-zero multiples of the
coordinate sequences en. Therefore, Γdp

= {n−1/pen : n ∈ N}. In particular,
dp is an atomic vector lattice.

Theorem 3.4. Let 1 ≤ p < ∞. Then
(i) Φ3(dp) = Φ2(dp) = Φ1(dp) = c00,
(ii) the space dp has no order unit.

2One has ‖en‖dp = ‖ên‖p = (
∑n

k=1 1
p)1/p = n1/p.
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Proof. (i) Since dp is a Banach lattice with order continuous norm, it follows
from Remark 3.3 and Theorem 2.2 that

Φ3(dp) = Φ2(dp) = Φ1(dp) = span(Γdp
) = span{en : n ∈ N} = c00.

(ii) If dp had an order unit, then Φ1(dp) = dp by Theorem 2.3. Due to part
(i), there would be dp = c00, a contradiction since c00 is a proper subspace of
dp.

4. Finite elements in Cesàro sums of Banach lattices. Denote by X a sequence
(Xn, ‖·‖n)n∈N of Banach spaces and let p ∈ {0} ∪ [1,∞]. Then, similar to the
construction of directed sums3 of Banach lattices in [18, §3.3.3], we define the
p-Cesàro sums and dp-sums of X = (Xn)n∈N as follows

cesp(X) :=
{

x = (xn)n∈N : xn ∈ Xn,
( ‖xn‖n

)
n∈N

∈ cesp

}
,

dp(X) :=
{

x = (xn)n∈N : xn ∈ Xn,
( ‖xn‖n

)
n∈N

∈ dp

}
.

Further on, in order to simplify the notation, we write ‖·‖ instead of ‖·‖n and
0 for the zero vector in Xn for each n ∈ N. Under the coordinatewise algebraic
operations, these sets are vector spaces. With the norms defined by

|||x|||cesp(X) =
∥∥∥( ‖xn‖ )

n∈N

∥∥∥
cesp

and |||y|||dp(X) =
∥∥∥( ‖yn‖ )

n∈N

∥∥∥
dp

for x ∈ cesp(X) and y ∈ dp(X), respectively, the spaces cesp(X) and dp(X) are
Banach spaces as well.

Note that the equality4 ces1 = {0 } implies that ces1(X) is trivial.
For p = 0 and 1 < p ≤ ∞, define the map Jj : Xj → cesp(X) by

Jjx = (xn)n∈N = (0 , . . . ,0 , x︸︷︷︸
j-th term

,0 , . . .) =
{
0 , n �= j,
x, n = j,

for x ∈ Xj and j ∈ N, which is an isomorphism into the space cesp(X). After
some calculation, one obtains

|||Jjx|||cesp(X) =

⎧⎪⎨
⎪⎩‖x‖

(
∞∑

i=j

1
ip

)1/p

, 1 < p < ∞,

1
j ‖x‖ , p = 0 or ∞,

for x ∈ Xj .

Let x = (xn)n∈N ∈ cesp(X) and p ∈ {0} ∪ (1,∞). Observe that∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣x −

N−1∑
n=1

Jnxn

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
p

cesp

=
∞∑

n=N

(
1
n

n∑
k=N

‖xk‖
)p

≤
∞∑

n=N

(
1
n

n∑
k=1

‖xk‖
)p

→ 0

if N → ∞ and∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣x −

N−1∑
n=1

Jnxn

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
ces0

= sup
n≥N

{
1
n

n∑
k=N

‖xk‖
}

≤ sup
n≥N

{
1
n

n∑
k=1

‖xk‖
}

−→
N→∞

0,

which imply x =
∑∞

n=1 Jnxn.

3For simplicity, we restrict our investigation to N – as a countable index set.
4See [14,17].
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Proposition 4.1. Let X = (Xn)n∈N be a sequence of Banach spaces, X′ =
(X ′

n)n∈N the sequence of their dual spaces, and 1 < p, q < ∞ with 1
p + 1

q = 1.

Then the mapping x′ = (x′
n)n∈N �→ fx′ from dq(X′) to ces′

p(X) defined by

fx′(x) :=
∞∑

n=1

〈x′
n, xn〉, x = (xn)n∈N ∈ cesp(X),

is a linear isomorphism from dq(X′) onto ces′
p(X) and satisfies

1
q
|||x′|||dq(X′) ≤ ‖fx′‖ ≤ (p − 1)1/p |||x′|||dq(X′) for all x′ ∈ dq(X′). (4.1)

Similarly, we have ces′
0(X) = d1(X′) with equality of the norms, i.e., ‖fx′‖ =

|||x′|||d1(X′).

Proof. We first demonstrate that the mapping x′ �→ fx′ is well defined. Fix
x′ = (x′

n)n∈N ∈ dq(X′). Then for each x = (xn)n∈N ∈ cesp(X), we have
|〈x′

n, xn〉| ≤ ‖x′
n‖ ‖xn‖ for any n ∈ N and so by referring to the estimation

established after the proof of [6, Theorem 12.3], we get
∞∑

n=1

|〈x′
n, xn〉| ≤

∞∑
n=1

‖x′
n‖ ‖xn‖ ≤ (p − 1)1/p |||x′|||dq(X′)|||x|||cesp(X).

Thus, the formula fx′(x) =
∑∞

n=1〈x′
n, xn〉 defines a continuous linear func-

tional on cesp(X) satisfying the relations

‖fx′‖ ≤ (p − 1)1/p |||x′|||dq(X′) for all x′ ∈ dq(X′). (4.2)

Clearly, the mapping x′ �→ fx′ is a linear operator.
Now, let f ∈ ces′

p(X). Define for any n ∈ N, the linear functionals x′
n : Xn →

R by 〈x′
n, xn〉 = f(Jnxn). Then x′

n ∈ X ′
n and, moreover, f(x) =

∑∞
n=1〈x′

n, xn〉
holds for all x = (xn)n∈N ∈ cesp(X) since x =

∑∞
n=1 Jnxn is true in cesp(X)

(as was mentioned just before the proposition). Fix α > 1. For each n, pick
some yn ∈ Xn with ‖yn‖ = 1 and ‖x′

n‖ ≤ α〈x′
n, yn〉. Observe that for each k,

we have
k∑

n=1

‖x′
n‖ ‖xn‖ ≤

k∑
n=1

α〈x′
n, yn〉 ‖xn‖ = αf

(
k∑

n=1

Jn(‖xn‖ yn)

)

≤ α ‖f‖
∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣

k∑
n=1

Jn(‖xn‖ yn)

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
cesp(X)

≤ α ‖f‖ |||x|||cesp(X).

Taking the limits as k → ∞ and α ↓ 1, we see that
∞∑

n=1

‖x′
n‖ ‖xn‖ ≤ ‖f‖ |||x|||cesp(X).

If (‖x′
n‖)n∈N ∈ dq, i.e., x′ ∈ dq(X′), then from [6, Corollary 12.17], it follows

that f = fx′ and |||x′|||dq(X′) ≤ q ‖fx′‖ . Therefore, this together with (4.2)
implies (4.1) and x′ �→ fx′ is a linear isomorphism from dq(X′) onto ces′

p(X). It
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remains to show that the relation (‖x′
n‖)n∈N ∈ dq holds5: Define the functional

λ : cesp → R by λ
(
(an)n∈N

)
=

∑∞
n=1 ‖x′

n‖ an. By the above inequality, we
have ∣∣λ(

(an)n∈N

)∣∣ ≤
∞∑

n=1

‖x′
n‖ |an| =

∞∑
n=1

‖x′
n‖

∥∥∥∥ an

‖xn‖xn

∥∥∥∥
≤ ‖f‖

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
(

an

‖xn‖xn

)
n∈N

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
cesp(X)

= ‖f‖ ‖(an)n∈N‖cesp .

Therefore, λ ∈ (cesp)′, i.e., (‖x′
n‖)n∈N ∈ dq.

By the same method and [10, Lemma 6.2], one can show ces′
0(X) = d1(X′)

even with equality of norms. �

Remark 4.2. If cesp(X) is endowed with a special norm equivalent to ‖·‖cesp ,

then by using [6, Theorem 4.5 and Corollary 12.17], it can be established that
the mapping defined in Proposition 4.1 is an isometry.

Turn now to the case that each Xn is a Banach lattice. Then with the
coordinatewise defined lattice operations, the spaces cesp(X) and dp(X) are
even Banach lattices, Jj is a lattice isomorphism from Xj to cesp(X), and for
any j ∈ N, the set JjXj is a projection band in cesp(X). The latter implies
Φ1(JjXj) = JjΦ1(Xj). Denote by Pj : cesp(X) → JjXj the band projection
from cesp(X) onto JjXj , where Pj

(
(xn)n∈N

)
= Jjxj . By Theorem 2.5 and in

view of the just mentioned behaviour of JjΦ1(Xj), there hold the equalities

Pj

(
Φ1

(
cesp(X)

))
= Φ1

(
cesp(X)

) ∩ JjXj = Φ1(JjXj) = JjΦ1(Xj). (4.3)

The mapping x′ �→ fx′ defined in Proposition 4.1 is now an onto lattice
isomorphism since both the map and its inverse are positive operators.

As the characterization of the finite elements in the Banach lattices cesp,
where 1 < p ≤ ∞ or p = 0, we get a quite direct generalization of the results
for the classical cases Xn = c0, �p, and �∞, see [18, Theorem 3.33].

Theorem 4.3. The following statements hold:
(i) For p = 0 and 1 < p < ∞, the element ϕ = (ϕn)n∈N is finite in cesp(X)

if and only if ϕn ∈ Φ1(Xn) for all n ∈ N and ϕn = 0 for all but finitely
many n ∈ N.

(ii) The element ϕ = (ϕn)n∈N is finite in ces∞(X) if and only if there exist
wn ∈ X+

n such that (n ‖wn‖)n∈N
∈ ces∞ and

B{ϕn}dd ⊂ [−wn, wn] .

In particular, ϕn ∈ Φ1(Xn) for all n ∈ N.

Proof. (i) Let ϕ = (ϕn)n∈N be such that ϕn ∈ Φ1(Xn) for all n ∈ N and ϕn = 0
for all but finitely many n ∈ N. Clearly, ϕ ∈ cesp(X). For all n ∈ N, Pnϕ =
Jnϕn ∈ JnΦ1(Xn) and (4.3) yield Pnϕ ∈ Φ1

(
cesp(X)

)
. From the linearity of

5Here we use the short proof suggested by the referee.
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the space Φ1

(
cesp(X)

)
, it follows that ϕ =

∑∞
n=1 Pnϕ ∈ Φ1

(
cesp(X)

)
. Observe

that this sum has only finitely many non-zero terms.
For the converse, assume that ϕ = (ϕn)n∈N is a finite element in cesp(X).

Then Jnϕn = Pnϕ ∈ Pn

(
Φ1

(
cesp(X)

))
holds for all n ∈ N. Thus, using (4.3)

again, one has ϕn ∈ Φ1(Xn) for all n ∈ N. Next we claim that ϕn = 0
for all but finitely many n ∈ N. To see this, assume by way of contradiction
that ϕnk

�= 0 holds for some increasing sequence of natural numbers (nk)k∈N.
Consider ψ = (ψn)n∈N, where

ψn =
{ 1

‖ϕn‖ |ϕn| if n = nk for some k,

0 otherwise.

Note that Jnk
ψnk

=
(
0 , . . . ,0 ,

|ϕnk |
‖ϕnk‖ ,0 , . . .

)
and consequently

|||Jnk
ψnk

|||pcesp(X) =
∞∑

i=nk

1
ip

and |||Jnk
ψnk

|||ces0(X) =
1
nk

if 1 < p < ∞ and p = 0, respectively. Therefore, if we define tnk
:=( ∑∞

i=nk

1
ip

)1/p for 1 < p < ∞ and tnk
:= 1

nk
for p = 0, then 1

tnk
Jnk

ψnk
∈

B{ϕ}dd = Bcesp(X)∩{ϕ}dd for p = 0 and 1 < p < ∞. According to Theorem 2.4,
there exists a positive z = (zn)n∈N ∈ cesp(X) such that B{ϕ}dd ⊂ [−z, z] ,
which implies that 0 ≤ 1

tnk
ψnk

≤ znk
, and so 1

tnk
≤ ‖znk

‖ for all k ∈ N. To
complete the proof, it is enough to show that the sequence a = (an)n∈N defined
by

an =

{
1

tnk
if n = nk for some k,

0 otherwise,

does not belong to cesp(X) for p = 0 and 1 < p < ∞, which contradicts
z ∈ cesp(X) since cesp is an order ideal in R

N. For p = 0, by the definition of
a, one has ank

= nk which yields (C|a|)nk
≥ 1 for all k ∈ N, i.e., a is not an

element of ces0, whereas C(‖znk
‖) ∈ c0.

For 1 < p < ∞, there exists c > 0 such that tnk
=

( ∑∞
i=nk

1
ip

)1/p ≤ c n
−1/q
k

for each k ∈ N (with 1
p + 1

q = 1). The latter estimation holds for each n ∈ N

because of

1
np

≤ 1
np−1

and
∞∑

i=n+1

1
ip

≤
∞∫

n

dx

xp
=

1
(p − 1)np−1

.

Therefore,
∑∞

i=n
1
ip ≤ 1

np−1 · q, and, if n is replaced by nk, one has

n
1/p
k (C |a|)nk

= n
1/p
k

(
1
nk

nk∑
i=1

ai

)
≥ n

1/p
k

nktnk

≥ n
1/p
k n

1/q
k

cnk
=

1
c

> 0.

Thus,
(
(nk)1/p (C|a|)nk

)
k∈N

does not converge to 0, and so it follows from [10,
Proposition 2.3 (iii)] that a is not an element of cesp(X).
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(ii) Let ϕ = (ϕn)n∈N be a finite element in ces∞(X). Again by Theorem 2.4,
there is a positive z = (zn)n∈N ∈ ces∞(X) such that B{ϕ}dd ⊂ [−z, z] . For
each n ∈ N, put wn = zn

n , and note that wn ∈ X+
n and (nwn)n∈N

∈ ces∞(X).
Let y ∈ B{ϕn}dd . Then, clearly, Jny ∈ {ϕ}dd and ‖Jny‖ = ‖y‖

n ≤ 1
n , from where

Jny ∈ [− z
n , z

n

]
follows for all n ∈ N. Thus, y ∈ [−wn, wn] , i.e., B{ϕn}dd ⊂

[−wn, wn] .
For the converse, observe that

B{ϕ}dd ⊂ {(xn)n∈N ∈ ces∞(X) : xn ∈ nB{ϕn}dd for all n ∈ N}.

Since nB{ϕn}dd is order bounded and the order in ces∞(X) is coordinatewise,
the proof of the theorem is completed by Theorem 2.4. �
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Vol. 120 (2023) Cesàro sequence spaces, their duals, and finite elements 629

[8] Chen, Z.L.: On weak sequential precompactness in Banach lattices. Chinese J.

Contemp. Math. 20(4), 477–486 (1999)

[9] Chen, Z.L., Weber, M.R.: On finite elements in sublattices of Banach lattices.

Math. Nachr. 280(5–6), 485–494 (2007)

[10] Curbera, G.P., Ricker, W.J.: Solid extensions of the Cesàro operator on �p and
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