Duals of Cesàro sequence vector lattices, Cesàro sums of Banach lattices, and their finite elements

Uğur Gönüllü, Faruk Polat, and Martin R. Weber

Abstract

In this paper, we study the ideals of finite elements in special vector lattices of real sequences, first in the duals of Cesàro sequence spaces ces_{p} for $p \in\{0\} \cup[1, \infty)$ and, second, after the Cesàro sum $\operatorname{ces}_{p}(\mathfrak{X})$ of a sequence of Banach spaces is introduced, where $p=\infty$ is also allowed, we characterize their duals and the finite elements in these sums if the summed up spaces are Banach lattices. This is done by means of a remarkable extension of the corresponding result for direct sums.

Mathematics Subject Classification. Primary 46A40, 46B42, 46B45;
Secondary 47B37, 47B65.
Keywords. Duals of Cesàro sequence spaces, Cesàro sum of Banach lattices, Atomic vector lattices, Finite elements in vector lattices.

1. Introduction. In the first part of the paper, guided by Bennett's approach, we consider the dual spaces d_{q} of the Cesàro sequence spaces ces_{p} for $1<$ $p<\infty$ where $1 / q+1 / p=1$. Equipped with the appropriate norm and the coordinatewise order, they are Dedekind complete Banach lattices with order continuous norm. Then of interest are the finite elements in these spaces. In the last years, these classes of finite elements, which were introduced in [15], are studied thoroughly by many authors in different Banach lattices, in particular, in Cesàro sequence spaces by the authors in [11]. The spaces d_{q} do not possess order units and all kinds of finite elements in them coincide with c_{00}. In the second part, similarly to the classical ($c_{0^{-}}, \ell_{p^{-}}$, and $\ell_{\infty^{-}}$) direct sums of Banach lattices in $[18, \S 3.3 .3]$ and $[8,9]$, we introduce the so-called Cesàro sum for a sequence of Banach spaces, study their dual space, and characterize the

[^0]finite elements if the summed up spaces are Banach lattices. In this paper, the Theorem 4.3 essentially extends the corresponding result for direct sums in [9].
2. Preliminaries. The aim of this section is to provide some necessary definitions and facts. For unexplained terminology concerning the vector lattices theory, the reader can consult the books $[2,4,5,13]$.

An element φ in an Archimedean vector lattice E is called finite whenever there exists a so-called majorant $z \in E$ such that for any $x \in E$, there is a number $c_{x}>0$ with the property that $|x| \wedge n|\varphi| \leq c_{x} z$ holds for any $n \in \mathbb{N}$. If z is a finite element, then φ is called totally finite and if $|\varphi|$ itself is a majorant, the element φ is called selfmajorizing. The sets of all finite and totally finite elements of an Archimedean vector lattice E are denoted by $\Phi_{1}(E)$ and $\Phi_{2}(E)$, respectively. All positive selfmajorizing elements are denoted by $S_{+}(E)$ and $\Phi_{3}(E):=S_{+}(E)-S_{+}(E)$. The collections $\Phi_{i}(E)$ are order ideals in E for $i \in\{1,2,3\}$ (see [18, Chapt. 3]).

We need some more notions and facts the details of which can be found in [4, 5,18$]$.
Definition 2.1. (a) An element $u \in E_{+}, u \neq 0$, of a vector lattice E is called an atom whenever $0 \leq x \leq u, 0 \leq y \leq u$, and $x \wedge y=0$ imply that either $x=0$ or $y=0$.
(b) An element $u \in E_{+}, u \neq 0$, of a vector lattice E is called discrete, whenever $0 \leq v \leq u$ implies $v=\lambda u$ for some $\lambda \in \mathbb{R}_{+}$.
(c) A vector lattice E is said to be atomic if for each $x>0$, there exists an atom u such that $0<u \leq x$.
In an Archimedean vector lattice E, a positive element is an atom if and only if it is a discrete element. Also if u is an atom in E, then $\{\lambda u: \lambda \in \mathbb{R}\}$ (the vector space generated by u) is a projection band. Each atom of a vector lattice is a totally finite element. Even more, for two elements a and x, one has

$$
\frac{1}{n}(|x| \wedge n a) \leq a
$$

and if a is an atom, then $|x| \wedge n a=\lambda_{n} a \leq|x|$ follows for some $\lambda_{n} \in \mathbb{R}_{+}$. The Archimedean property implies $r_{a}(|x|)=\sup \left\{\lambda \in \mathbb{R}_{+}: \lambda a \leq|x|\right\}<\infty$ for the atom a, which finally yields $|x| \wedge n a \leq r_{a}(|x|) a$, i.e., the element a is selfmajorizing.

For a normed vector lattice E, denote by Γ_{E} the set of all atoms of E with norm 1. Then Γ_{E} is a subset of $\Phi_{3}(E)$. It consists of pairwise disjoint elements, and forms a linearly independent system. According to [18, Theorem 3.18] and the remark above, we have the following theorem.
Theorem 2.2. Let E be a Banach lattice with order continuous norm. Then
(i) $\Phi_{3}(E)=\Phi_{2}(E)=\Phi_{1}(E)=\operatorname{span}\left(\Gamma_{E}\right)$;
(ii) $\Phi_{1}(E)$ is closed in E if and only if Γ_{E} is a finite set. In particular, $\Phi_{1}(E)=E$ if and only if E is finite dimensional.
The following results will be used in the sequel.

Theorem 2.3 ([18, Proposition 3.44]). If a vector lattice E has an order unit, then $\Phi_{i}(E)=E, i \in\{1,2,3\}$.

Theorem 2.4 ([18, Theorem 3.15]). Let E be a Banach lattice and $\varphi \in E$. Then the following statements are equivalent:
(i) φ is a finite element.
(ii) The closed unit ball $B_{\{\varphi\}^{d d}}$ of $\{\varphi\}^{d d}$ is order bounded in E.
(iii) $\{\varphi\}^{d d}$ has a generalized order unit, i.e., there exists $0 \leq z \in E$ such that for any $x \in\{\varphi\}^{d d}$, there is a real number $\gamma_{x}>0$ with $|x| \leq \gamma_{x} z$.

Theorem 2.5 ([18, Theorem 3.28]). Let H be a projection band in a vector lattice E, and P_{H} the band projection from E onto H. Then $P_{H}\left(\Phi_{1}(E)\right)=$ $\Phi_{1}(E) \cap H=\Phi_{1}(H)$.
3. The dual space of ces_{p}. The vector space $\mathbb{R}^{\mathbb{N}}$ which is partially ordered by the coordinatewise order is a Dedekind complete vector lattice, where the lattice operations are given coordinatewise: $x \vee y=\left(\max \left\{x_{1}, y_{1}\right\}, \max \left\{x_{2}, y_{2}\right\}, \ldots\right)$ and $x \wedge y=\left(\min \left\{x_{1}, y_{1}\right\}, \min \left\{x_{2}, y_{2}\right\}, \ldots\right)$. As usual (cf. [4, Chapt. 13]) denote by $\ell_{\infty}, \ell_{p}, c_{0}$, and c_{00} the spaces of bounded, p-summable, null, and finite sequences in $\mathbb{R}^{\mathbb{N}}$, respectively.

The Cesàro operator $\mathcal{C}: \mathbb{R}^{\mathbb{N}} \rightarrow \mathbb{R}^{\mathbb{N}}$ is given by

$$
\mathcal{C} x=\left(\frac{1}{n} \sum_{k=1}^{n} x_{k}\right)_{n \in \mathbb{N}}
$$

for all $x=\left(x_{n}\right)_{n \in \mathbb{N}}$ in $\mathbb{R}^{\mathbb{N}}$. By using Hardy's inequality, for $x \in \ell_{p}(1<p<\infty)$, we have

$$
\|\mathcal{C} x\|_{p} \leq\|\mathcal{C}|x|\|_{p} \leq \frac{p}{p-1}\|x\|_{p}
$$

So, the Cesàro operator $\mathcal{C}: \ell_{p} \rightarrow \ell_{p}$ is linear and continuous with operator norm $\frac{p}{p-1}$. For $1 \leq p \leq \infty$, the Cesàro sequence spaces are defined as

$$
\operatorname{ces}_{p}:=\left\{x \in \mathbb{R}^{\mathbb{N}}: \mathcal{C}|x| \in \ell_{p}\right\}
$$

with the norm $\|x\|_{\text {"es }_{p}}:=\|\mathcal{C}|x|\|_{p}$.
The space ces_{0} is defined as

$$
\operatorname{ces}_{0}:=\left\{x \in \mathbb{R}^{\mathbb{N}}: \mathcal{C}|x| \in c_{0}\right\}
$$

with the norm $\|x\|_{\text {ces }_{0}}:=\|\mathcal{C}|x|\|_{\infty}$.
Actually, ces_{p} and ces_{0} spaces are Banach lattices. These spaces have been thoroughly studied by Leibowitz [14] and Shiue [17]. In particular, they showed that ces_{p} is trivial if $p=1$. Since they are order ideals in $\mathbb{R}^{\mathbb{N}}$, the Dedekind completeness of the latter implies that all these vector lattices are also Dedekind complete.

The characterization problem of the dual space $\operatorname{ces}_{p}^{\prime}$ of the Banach lattice $\left(\operatorname{ces}_{p},\|\cdot\|_{\operatorname{ces}_{p}}\right)$ of Cesàro sequence spaces for $1<p<\infty$, which was offered by the Dutch Mathematical Society as a prijsvrage [1], was solved by Jagers [12]. A second solution, given by Bennet [6], provides a simple explicit isomorphic
identification. To present Bennett's approach, first consider for $0<q<\infty$ the set

$$
d_{q}:=\left\{a=\left(a_{n}\right)_{n \in \mathbb{N}} \in \mathbb{R}^{\mathbb{N}}:\left(\sup _{k \geq n}\left|a_{k}\right|\right)_{n \in \mathbb{N}} \in \ell_{q}\right\}
$$

For $q=0$ and $q=\infty$, the above constructed sequences $\left(\sup _{k \geq n}\left|a_{k}\right|\right)_{n \in \mathbb{N}}$ are supposed to belong to c_{0} and ℓ_{∞}, respectively. A simple calculation shows that $d_{0}=c_{0}$ and $d_{\infty}=\ell_{\infty}$ what is not of interest.

Each sequence $a=\left(a_{n}\right)_{n \in \mathbb{N}} \in \mathbb{R}^{\mathbb{N}}$ produces another sequence $\hat{a}=\left(\hat{a}_{n}\right)_{n \in \mathbb{N}}$ with $\hat{a}_{n}:=\sup _{k \geq n}\left|a_{k}\right|$ called the least decreasing majorant of a. Clearly, $a \in d_{q}$ if and only if $\hat{a} \in \ell_{q}$ if and only if $\hat{a} \in d_{q}$.

Notice that d_{q} is a proper subset of ℓ_{q} for $1 \leq q<\infty$. For example, consider the sequence $a=\left(a_{n}\right)_{n \in \mathbb{N}}$, where

$$
a_{n}= \begin{cases}\frac{1}{2^{k / q}} & \text { if } n=2^{k} \text { for some } k \in \mathbb{N} \\ 0 & \text { otherwise }\end{cases}
$$

For the case $q=1$, there is $a=\left(0, \frac{1}{2^{1}}, 0, \frac{1}{2^{2}}, 0,0,0, \frac{1}{2^{3}}, \ldots\right)$ and $a \in \ell_{1}$ is clear. On the other hand, $\hat{a}=\left(\frac{1}{2^{1}}, \frac{1}{2^{1}}, \frac{1}{2^{2}}, \frac{1}{2^{2}}, \frac{1}{2^{3}}, \frac{1}{2^{3}}, \frac{1}{2^{3}}, \frac{1}{2^{3}}, \frac{1}{2^{4}}, \ldots\right)$, i.e., $\hat{a}_{n}=\frac{1}{2^{m+1}}$ if $n>2$ and satisfies $2^{m}<n \leq 2^{m+1}$, where $m \in \mathbb{N}$. Then it is clear that

$$
\sum_{n=1}^{\infty} \hat{a}_{n}>\sum_{m=1}^{\infty}\left(2^{m} \frac{1}{2^{m+1}}\right)=\sum_{m=1}^{\infty} \frac{1}{2}=\infty \text {, i.e., } \hat{a} \notin \ell_{1} \text { and, hence } a \notin d_{1}
$$

For $q \geq 1$, under the norm

$$
\|a\|_{d_{q}}:=\|\hat{a}\|_{q}=\left(\sum_{n=1}^{\infty} \sup _{k \geq n}\left|a_{k}\right|^{q}\right)^{1 / q}
$$

d_{q} is a Banach space. In particular, $\|a\|_{d_{q}}=\|\hat{a}\|_{q}=\|\hat{a}\|_{d_{q}}$. Therefore, every eventually decreasing, non-negative sequence $a \in \ell_{q}$ is an element of d_{q} because $a_{n}=\hat{a}_{n}$ holds for all sufficiently large n. Hence, c_{00} is a proper subset of d_{q}, and so $c_{00} \varsubsetneqq d_{q} \varsubsetneqq \ell_{q}$.

The coordinatewise order makes the spaces d_{q} into Dedekind complete Banach lattices.

Let $1<p, q<\infty$ and $\frac{1}{p}+\frac{1}{q}=1$. Then there is a lattice isomorphism between $\operatorname{ces}_{p}^{\prime}$ and d_{q} whose duality ${ }^{1}$ with ces_{p} is stated explicitly via

$$
\langle a, x\rangle:=\sum_{n=1}^{\infty} a_{n} x_{n}, \quad x \in \operatorname{ces}_{p}, a \in d_{q} .
$$

Moreover, the identification is even isometric when ces_{p} is endowed with another norm equivalent to $\|\cdot\|_{\operatorname{ces}_{p}}$. For details, see [6] and [7, Lemma 2.2 and Proposition 2.4]. Recently, Curbera and Ricker have proved the identification $\operatorname{ces}_{0}^{\prime}=d_{1}$ with equality of norms [10, Lemma 6.2]. On the other hand, [3, Theorem 1] yields that $\operatorname{ces}_{0}^{\prime \prime}=d_{1}^{\prime}=\operatorname{ces}_{\infty}$ with equality of norms. Jagers [12] proved that ces_{p} is reflexive for $1<p<\infty$. Therefore, by Pettis' theorem

[^1][16, Corollary 1.11.17], d_{q} is reflexive as well, where $1<q<\infty$. According to [4, Corollary 9.23], the norm of d_{q} is order continuous for $1<q<\infty$. However, the norm of $\operatorname{ces}_{\infty}$ is not order continuous (see [11, Corollary 4.2]). Nevertheless, the following Lemma 3.2 shows that the norm of d_{1} is order continuous.

Recently, the Banach lattice d_{q} has been investigated in detail by Bonet and Ricker ([7], see also the references therein).

Lemma 3.1. Let $\left(x^{(n)}\right)_{n \in \mathbb{N}}$ be a positive decreasing sequence and $1 \leq p<\infty$. Then $x^{(n)} \downarrow \mathbf{0}$ in d_{p} if and only if $\hat{x}^{(n)} \downarrow \mathbf{0}$ in d_{p}.
Proof. Let $x^{(n)}=\left(x_{k}^{(n)}\right)_{k \in \mathbb{N}}$. The "if" part is clear from $\left|x_{k}^{(n)}\right| \leq \hat{x}_{k}^{(n)}$ for all $n, k \in \mathbb{N}$. Next, we prove the "only if" part. To this end, let $x^{(n)} \downarrow \mathbf{0}$ in d_{p}. Then $x_{k}^{(n)} \downarrow 0$ in \mathbb{R} for each $k \in \mathbb{N}$ since d_{p} is an ideal in $\mathbb{R}^{\mathbb{N}}$. It suffices to show that $\hat{x}_{k}^{(n)} \downarrow 0$ in \mathbb{R} for each $k \in \mathbb{N}$. Since the sequence $\left(x^{(n)}\right)_{n \in \mathbb{N}}$ is decreasing (to $\mathbf{0}$) in d_{p}, we have $\left(\sup _{i \geq k}\left|x_{i}^{(n)}\right|\right)_{k \in \mathbb{N}} \in \ell_{p}$, i.e., $\left(\hat{x}_{k}^{(n)}\right)_{k \in \mathbb{N}} \in \ell_{p}$ and so $\sum_{k=1}^{\infty}\left|\hat{x}_{k}^{(n)}\right|^{p}<\infty$. Given $\varepsilon>0$, there exists $N \in \mathbb{N}$ such that

$$
\sum_{k=N}^{\infty}\left|\hat{x}_{k}^{(n)}\right|^{p}=\sum_{k=N}^{\infty} \sup _{i \geq k}\left|x_{i}^{(n)}\right|^{p} \leq \sum_{k=N}^{\infty} \sup _{i \geq k}\left|x_{i}^{(1)}\right|^{p}<\varepsilon^{p}
$$

for all $n \in \mathbb{N}$. Moreover, for some $n_{0} \in \mathbb{N}$, one has $0 \leq x_{k}^{(n)} \leq \varepsilon$ for $n \geq n_{0}$ and $k \in\{1, \ldots, N\}$. Therefore, $0 \leq \hat{x}_{k}^{(n)} \leq \varepsilon$ holds for all $n \geq n_{0}$ and $k \in \mathbb{N}$. This completes the proof.

Lemma 3.2. The norm in the Banach lattice d_{p} is order continuous for $1 \leq$ $p<\infty$.

Proof. As mentioned above, the norm in the Banach lattice d_{p} is order continuous for $1<p<\infty$. By [5, Theorem 4.9], to complete the proof for the case $p=1$, we must show that $x_{n} \downarrow \mathbf{0}$ in d_{1} implies $\left\|x_{n}\right\|_{d_{1}} \downarrow 0$. Let $x_{n} \downarrow \mathbf{0}$ in d_{1}. Then it follows from Lemma 3.1 that $\hat{x}_{n} \downarrow \mathbf{0}$ in d_{1}. Also, $\hat{x}_{n} \downarrow \mathbf{0}$ in ℓ_{1} since d_{1} is an ideal in ℓ_{1}. By order continuity of the norm in $\ell_{1},\left\|\hat{x}_{n}\right\|_{1} \downarrow 0$. The proof follows immediately from $\left\|x_{n}\right\|_{d_{1}}=\left\|\hat{x}_{n}\right\|_{1}$.
Remark 3.3. Further on, let e_{n} denote the sequence $(\underbrace{0,0, \ldots, 0}_{n-1}, 1,0,0, \ldots)$.
Note that $\hat{e}_{n}=(\underbrace{1,1, \ldots, 1}_{n}, 0, \ldots)=\sum_{k=1}^{n} e_{k}$ and therefore ${ }^{2}, e_{n}$ is an element of d_{p} for each $n \in \mathbb{N}$ and $1 \leq p<\infty$. It turns out that each e_{n} is an atom in d_{p}. Actually, there are no other atoms in d_{p} except the non-zero multiples of the coordinate sequences e_{n}. Therefore, $\Gamma_{d_{p}}=\left\{n^{-1 / p} e_{n}: n \in \mathbb{N}\right\}$. In particular, d_{p} is an atomic vector lattice.
Theorem 3.4. Let $1 \leq p<\infty$. Then
(i) $\Phi_{3}\left(d_{p}\right)=\Phi_{2}\left(d_{p}\right)=\Phi_{1}\left(d_{p}\right)=c_{00}$,
(ii) the space d_{p} has no order unit.

[^2]Proof. (i) Since d_{p} is a Banach lattice with order continuous norm, it follows from Remark 3.3 and Theorem 2.2 that

$$
\Phi_{3}\left(d_{p}\right)=\Phi_{2}\left(d_{p}\right)=\Phi_{1}\left(d_{p}\right)=\operatorname{span}\left(\Gamma_{d_{p}}\right)=\operatorname{span}\left\{e_{n}: n \in \mathbb{N}\right\}=c_{00}
$$

(ii) If d_{p} had an order unit, then $\Phi_{1}\left(d_{p}\right)=d_{p}$ by Theorem 2.3. Due to part (i), there would be $d_{p}=c_{00}$, a contradiction since c_{00} is a proper subspace of d_{p}.
4. Finite elements in Cesàro sums of Banach lattices. Denote by \mathfrak{X} a sequence $\left(X_{n},\|\cdot\|_{n}\right)_{n \in \mathbb{N}}$ of Banach spaces and let $p \in\{0\} \cup[1, \infty]$. Then, similar to the construction of directed sums ${ }^{3}$ of Banach lattices in [18, §3.3.3], we define the p-Cesàro sums and d_{p}-sums of $\mathfrak{X}=\left(X_{n}\right)_{n \in \mathbb{N}}$ as follows

$$
\begin{aligned}
\operatorname{ces}_{p}(\mathfrak{X}) & :=\left\{x=\left(x_{n}\right)_{n \in \mathbb{N}}: x_{n} \in X_{n},\left(\left\|x_{n}\right\|_{n}\right)_{n \in \mathbb{N}} \in \operatorname{ces}_{p}\right\}, \\
d_{p}(\mathfrak{X}) & :=\left\{x=\left(x_{n}\right)_{n \in \mathbb{N}}: x_{n} \in X_{n},\left(\left\|x_{n}\right\|_{n}\right)_{n \in \mathbb{N}} \in d_{p}\right\} .
\end{aligned}
$$

Further on, in order to simplify the notation, we write $\|\cdot\|$ instead of $\|\cdot\|_{n}$ and $\mathbf{0}$ for the zero vector in X_{n} for each $n \in \mathbb{N}$. Under the coordinatewise algebraic operations, these sets are vector spaces. With the norms defined by

$$
\|x\|_{\operatorname{ces}_{p}}(\mathfrak{X})=\left\|\left(\left\|x_{n}\right\|\right)_{n \in \mathbb{N}}\right\|_{\operatorname{ces}_{p}} \text { and } \quad\|y\|_{d_{p}(\mathfrak{X})}=\left\|\left(\left\|y_{n}\right\|\right)_{n \in \mathbb{N}}\right\|_{d_{p}}
$$

for $x \in \operatorname{ces}_{p}(\mathfrak{X})$ and $y \in d_{p}(\mathfrak{X})$, respectively, the $\operatorname{spaces}^{\operatorname{ces}_{p}(\mathfrak{X})}$ and $d_{p}(\mathfrak{X})$ are Banach spaces as well.

Note that the equality ${ }^{4}$ ces $_{1}=\{\mathbf{0}\}$ implies that $\operatorname{ces}_{1}(\mathfrak{X})$ is trivial.
For $p=0$ and $1<p \leq \infty$, define the map $J_{j}: X_{j} \rightarrow \operatorname{ces}_{p}(\mathfrak{X})$ by

$$
J_{j} x=\left(x_{n}\right)_{n \in \mathbb{N}}=(\mathbf{0}, \ldots, \mathbf{0}, \underbrace{x}_{j \text {-th term }}, \mathbf{0}, \ldots)= \begin{cases}\mathbf{0}, & n \neq j, \\ x, & n=j,\end{cases}
$$

for $x \in X_{j}$ and $j \in \mathbb{N}$, which is an isomorphism into the space $\operatorname{ces}_{p}(\mathfrak{X})$. After some calculation, one obtains

$$
\left\|J_{j} x\right\|_{\operatorname{ces}_{p}(\mathfrak{X})}=\left\{\begin{array}{ll}
\|x\|\left(\sum_{i=j}^{\infty} \frac{1}{i^{p}}\right)^{1 / p}, & 1<p<\infty, \\
\frac{1}{j}\|x\|, & p=0 \text { or } \infty,
\end{array} \quad \text { for } x \in X_{j} .\right.
$$

Let $x=\left(x_{n}\right)_{n \in \mathbb{N}} \in \operatorname{ces}_{p}(\mathfrak{X})$ and $p \in\{0\} \cup(1, \infty)$. Observe that

$$
\left\|\left\|x-\sum_{n=1}^{N-1} J_{n} x_{n}\right\|_{\operatorname{ces}_{p}}^{p}=\sum_{n=N}^{\infty}\left(\frac{1}{n} \sum_{k=N}^{n}\left\|x_{k}\right\|\right)^{p} \leq \sum_{n=N}^{\infty}\left(\frac{1}{n} \sum_{k=1}^{n}\left\|x_{k}\right\|\right)^{p} \rightarrow 0\right.
$$

if $N \rightarrow \infty$ and

$$
\left\|\left\|x-\sum_{n=1}^{N-1} J_{n} x_{n}\right\|\right\|_{\operatorname{ces}_{0}}=\sup _{n \geq N}\left\{\frac{1}{n} \sum_{k=N}^{n}\left\|x_{k}\right\|\right\} \leq \sup _{n \geq N}\left\{\frac{1}{n} \sum_{k=1}^{n}\left\|x_{k}\right\|\right\} \underset{N \rightarrow \infty}{\longrightarrow} 0
$$

which imply $x=\sum_{n=1}^{\infty} J_{n} x_{n}$.

[^3]Proposition 4.1. Let $\mathfrak{X}=\left(X_{n}\right)_{n \in \mathbb{N}}$ be a sequence of Banach spaces, $\mathfrak{X}^{\prime}=$ $\left(X_{n}^{\prime}\right)_{n \in \mathbb{N}}$ the sequence of their dual spaces, and $1<p, q<\infty$ with $\frac{1}{p}+\frac{1}{q}=1$. Then the mapping $x^{\prime}=\left(x_{n}^{\prime}\right)_{n \in \mathbb{N}} \mapsto f_{x^{\prime}}$ from $d_{q}\left(\mathfrak{X}^{\prime}\right)$ to $\operatorname{ces}_{p}^{\prime}(\mathfrak{X})$ defined by

$$
f_{x^{\prime}}(x):=\sum_{n=1}^{\infty}\left\langle x_{n}^{\prime}, x_{n}\right\rangle, \quad x=\left(x_{n}\right)_{n \in \mathbb{N}} \in \operatorname{ces}_{p}(\mathfrak{X})
$$

is a linear isomorphism from $d_{q}\left(\mathfrak{X}^{\prime}\right)$ onto $\operatorname{ces}_{p}^{\prime}(\mathfrak{X})$ and satisfies

$$
\begin{equation*}
\frac{1}{q}\left\|x^{\prime}\right\|_{d_{q}\left(\mathfrak{X}^{\prime}\right)} \leq\left\|f_{x^{\prime}}\right\| \leq(p-1)^{1 / p}\left\|x^{\prime}\right\|_{d_{q}\left(\mathfrak{X}^{\prime}\right)} \quad \text { for all } x^{\prime} \in d_{q}\left(\mathfrak{X}^{\prime}\right) . \tag{4.1}
\end{equation*}
$$

Similarly, we have $\operatorname{ces}_{0}^{\prime}(\mathfrak{X})=d_{1}\left(\mathfrak{X}^{\prime}\right)$ with equality of the norms, i.e., $\left\|f_{x^{\prime}}\right\|=$ $\left\|\mid x^{\prime}\right\|_{d_{1}\left(\mathfrak{X}^{\prime}\right)}$.

Proof. We first demonstrate that the mapping $x^{\prime} \mapsto f_{x^{\prime}}$ is well defined. Fix $x^{\prime}=\left(x_{n}^{\prime}\right)_{n \in \mathbb{N}} \in d_{q}\left(\mathfrak{X}^{\prime}\right)$. Then for each $x=\left(x_{n}\right)_{n \in \mathbb{N}} \in \operatorname{ces}_{p}(\mathfrak{X})$, we have $\left|\left\langle x_{n}^{\prime}, x_{n}\right\rangle\right| \leq\left\|x_{n}^{\prime}\right\|\left\|x_{n}\right\|$ for any $n \in \mathbb{N}$ and so by referring to the estimation established after the proof of [6 , Theorem 12.3], we get

$$
\sum_{n=1}^{\infty}\left|\left\langle x_{n}^{\prime}, x_{n}\right\rangle\right| \leq \sum_{n=1}^{\infty}\left\|x_{n}^{\prime}\right\|\left\|x_{n}\right\| \leq(p-1)^{1 / p}\| \| x^{\prime}\| \|_{d_{q}\left(\mathfrak{X}^{\prime}\right)}\|x\|_{\operatorname{ces}_{p}(\mathfrak{X})}
$$

Thus, the formula $f_{x^{\prime}}(x)=\sum_{n=1}^{\infty}\left\langle x_{n}^{\prime}, x_{n}\right\rangle$ defines a continuous linear functional on $\operatorname{ces}_{p}(\mathfrak{X})$ satisfying the relations

$$
\begin{equation*}
\left\|f_{x^{\prime}}\right\| \leq(p-1)^{1 / p}\left\|x^{\prime}\right\|_{d_{q}\left(\mathfrak{X}^{\prime}\right)} \quad \text { for all } x^{\prime} \in d_{q}\left(\mathfrak{X}^{\prime}\right) \tag{4.2}
\end{equation*}
$$

Clearly, the mapping $x^{\prime} \mapsto f_{x^{\prime}}$ is a linear operator.
Now, let $f \in \operatorname{ces}_{p}^{\prime}(\mathfrak{X})$. Define for any $n \in \mathbb{N}$, the linear functionals $x_{n}^{\prime}: X_{n} \rightarrow$ \mathbb{R} by $\left\langle x_{n}^{\prime}, x_{n}\right\rangle=f\left(J_{n} x_{n}\right)$. Then $x_{n}^{\prime} \in X_{n}^{\prime}$ and, moreover, $f(x)=\sum_{n=1}^{\infty}\left\langle x_{n}^{\prime}, x_{n}\right\rangle$ holds for all $x=\left(x_{n}\right)_{n \in \mathbb{N}} \in \operatorname{ces}_{p}(\mathfrak{X})$ since $x=\sum_{n=1}^{\infty} J_{n} x_{n}$ is true in $\operatorname{ces}_{p}(\mathfrak{X})$ (as was mentioned just before the proposition). Fix $\alpha>1$. For each n, pick some $y_{n} \in X_{n}$ with $\left\|y_{n}\right\|=1$ and $\left\|x_{n}^{\prime}\right\| \leq \alpha\left\langle x_{n}^{\prime}, y_{n}\right\rangle$. Observe that for each k, we have

$$
\begin{aligned}
\sum_{n=1}^{k}\left\|x_{n}^{\prime}\right\|\left\|x_{n}\right\| & \leq \sum_{n=1}^{k} \alpha\left\langle x_{n}^{\prime}, y_{n}\right\rangle\left\|x_{n}\right\|=\alpha f\left(\sum_{n=1}^{k} J_{n}\left(\left\|x_{n}\right\| y_{n}\right)\right) \\
& \leq \alpha\|f\|\left\|\sum_{n=1}^{k} J_{n}\left(\left\|x_{n}\right\| y_{n}\right)\right\|\left\|_{\operatorname{ces}_{p}(\mathfrak{X})} \leq \alpha\right\| f\| \| x \|_{\operatorname{ces}_{p}(\mathfrak{X})} .
\end{aligned}
$$

Taking the limits as $k \rightarrow \infty$ and $\alpha \downarrow 1$, we see that

$$
\sum_{n=1}^{\infty}\left\|x_{n}^{\prime}\right\|\left\|x_{n}\right\| \leq\|f\|\|x\|_{\operatorname{ces}_{p}(\mathfrak{X})}
$$

If $\left(\left\|x_{n}^{\prime}\right\|\right)_{n \in \mathbb{N}} \in d_{q}$, i.e., $x^{\prime} \in d_{q}\left(\mathfrak{X}^{\prime}\right)$, then from [6, Corollary 12.17], it follows that $f=f_{x^{\prime}}$ and $\left\|x^{\prime}\right\|_{d_{q}\left(\mathfrak{X}^{\prime}\right)} \leq q\left\|f_{x^{\prime}}\right\|$. Therefore, this together with (4.2) implies (4.1) and $x^{\prime} \mapsto f_{x^{\prime}}$ is a linear isomorphism from $d_{q}\left(\mathfrak{X}^{\prime}\right)$ onto $\operatorname{ces}_{p}^{\prime}(\mathfrak{X})$. It
remains to show that the relation $\left(\left\|x_{n}^{\prime}\right\|\right)_{n \in \mathbb{N}} \in d_{q}$ holds 5 : Define the functional $\lambda: \operatorname{ces}_{p} \rightarrow \mathbb{R}$ by $\lambda\left(\left(a_{n}\right)_{n \in \mathbb{N}}\right)=\sum_{n=1}^{\infty}\left\|x_{n}^{\prime}\right\| a_{n}$. By the above inequality, we have

$$
\begin{aligned}
\left|\lambda\left(\left(a_{n}\right)_{n \in \mathbb{N}}\right)\right| & \leq \sum_{n=1}^{\infty}\left\|x_{n}^{\prime}\right\|\left|a_{n}\right|=\sum_{n=1}^{\infty}\left\|x_{n}^{\prime}\right\|\left\|\frac{a_{n}}{\left\|x_{n}\right\|} x_{n}\right\| \\
& \leq\|f\|\| \|\left(\frac{a_{n}}{\left\|x_{n}\right\|} x_{n}\right)_{n \in \mathbb{N}}\| \|_{\operatorname{ces}_{p}(\mathfrak{X})}=\|f\|\left\|\left(a_{n}\right)_{n \in \mathbb{N}}\right\|_{\operatorname{ces}_{p}} .
\end{aligned}
$$

Therefore, $\lambda \in\left(\operatorname{ces}_{p}\right)^{\prime}$, i.e., $\left(\left\|x_{n}^{\prime}\right\|\right)_{n \in \mathbb{N}} \in d_{q}$.
By the same method and [10, Lemma 6.2], one can show $\operatorname{ces}_{0}^{\prime}(\mathfrak{X})=d_{1}\left(\mathfrak{X}^{\prime}\right)$ even with equality of norms.

Remark 4.2. If $\operatorname{ces}_{p}(\mathfrak{X})$ is endowed with a special norm equivalent to $\|\cdot\|_{\operatorname{ces}_{p}}$, then by using [6, Theorem 4.5 and Corollary 12.17], it can be established that the mapping defined in Proposition 4.1 is an isometry.

Turn now to the case that each X_{n} is a Banach lattice. Then with the coordinatewise defined lattice operations, the spaces $\operatorname{ces}_{p}(\mathfrak{X})$ and $d_{p}(\mathfrak{X})$ are even Banach lattices, J_{j} is a lattice isomorphism from X_{j} to $\operatorname{ces}_{p}(\mathfrak{X})$, and for any $j \in \mathbb{N}$, the set $J_{j} X_{j}$ is a projection band in $\operatorname{ces}_{p}(\mathfrak{X})$. The latter implies $\Phi_{1}\left(J_{j} X_{j}\right)=J_{j} \Phi_{1}\left(X_{j}\right)$. Denote by $P_{j}: \operatorname{ces}_{p}(\mathfrak{X}) \rightarrow J_{j} X_{j}$ the band projection from $\operatorname{ces}_{p}(\mathfrak{X})$ onto $J_{j} X_{j}$, where $P_{j}\left(\left(x_{n}\right)_{n \in \mathbb{N}}\right)=J_{j} x_{j}$. By Theorem 2.5 and in view of the just mentioned behaviour of $J_{j} \Phi_{1}\left(X_{j}\right)$, there hold the equalities

$$
\begin{equation*}
P_{j}\left(\Phi_{1}\left(\operatorname{ces}_{p}(\mathfrak{X})\right)\right)=\Phi_{1}\left(\operatorname{ces}_{p}(\mathfrak{X})\right) \cap J_{j} X_{j}=\Phi_{1}\left(J_{j} X_{j}\right)=J_{j} \Phi_{1}\left(X_{j}\right) \tag{4.3}
\end{equation*}
$$

The mapping $x^{\prime} \mapsto f_{x^{\prime}}$ defined in Proposition 4.1 is now an onto lattice isomorphism since both the map and its inverse are positive operators.

As the characterization of the finite elements in the Banach lattices ces_{p}, where $1<p \leq \infty$ or $p=0$, we get a quite direct generalization of the results for the classical cases $X_{n}=c_{0}, \ell_{p}$, and ℓ_{∞}, see [18, Theorem 3.33].

Theorem 4.3. The following statements hold:
(i) For $p=0$ and $1<p<\infty$, the element $\varphi=\left(\varphi_{n}\right)_{n \in \mathbb{N}}$ is finite in $\operatorname{ces}_{p}(\mathfrak{X})$ if and only if $\varphi_{n} \in \Phi_{1}\left(X_{n}\right)$ for all $n \in \mathbb{N}$ and $\varphi_{n}=\mathbf{0}$ for all but finitely many $n \in \mathbb{N}$.
(ii) The element $\varphi=\left(\varphi_{n}\right)_{n \in \mathbb{N}}$ is finite in $\operatorname{ces}_{\infty}(\mathfrak{X})$ if and only if there exist $w_{n} \in X_{n}^{+}$such that $\left(n\left\|w_{n}\right\|\right)_{n \in \mathbb{N}} \in \operatorname{ces}_{\infty}$ and

$$
B_{\left\{\varphi_{n}\right\}^{d d}} \subset\left[-w_{n}, w_{n}\right] .
$$

In particular, $\varphi_{n} \in \Phi_{1}\left(X_{n}\right)$ for all $n \in \mathbb{N}$.
Proof. (i) Let $\varphi=\left(\varphi_{n}\right)_{n \in \mathbb{N}}$ be such that $\varphi_{n} \in \Phi_{1}\left(X_{n}\right)$ for all $n \in \mathbb{N}$ and $\varphi_{n}=\mathbf{0}$ for all but finitely many $n \in \mathbb{N}$. Clearly, $\varphi \in \operatorname{ces}_{p}(\mathfrak{X})$. For all $n \in \mathbb{N}, P_{n} \varphi=$ $J_{n} \varphi_{n} \in J_{n} \Phi_{1}\left(X_{n}\right)$ and (4.3) yield $P_{n} \varphi \in \Phi_{1}\left(\operatorname{ces}_{p}(\mathfrak{X})\right)$. From the linearity of

[^4]the space $\Phi_{1}\left(\operatorname{ces}_{p}(\mathfrak{X})\right)$, it follows that $\varphi=\sum_{n=1}^{\infty} P_{n} \varphi \in \Phi_{1}\left(\operatorname{ces}_{p}(\mathfrak{X})\right)$. Observe that this sum has only finitely many non-zero terms.

For the converse, assume that $\varphi=\left(\varphi_{n}\right)_{n \in \mathbb{N}}$ is a finite element in $\operatorname{ces}_{p}(\mathfrak{X})$. Then $J_{n} \varphi_{n}=P_{n} \varphi \in P_{n}\left(\Phi_{1}\left(\operatorname{ces}_{p}(\mathfrak{X})\right)\right)$ holds for all $n \in \mathbb{N}$. Thus, using (4.3) again, one has $\varphi_{n} \in \Phi_{1}\left(X_{n}\right)$ for all $n \in \mathbb{N}$. Next we claim that $\varphi_{n}=\mathbf{0}$ for all but finitely many $n \in \mathbb{N}$. To see this, assume by way of contradiction that $\varphi_{n_{k}} \neq \mathbf{0}$ holds for some increasing sequence of natural numbers $\left(n_{k}\right)_{k \in \mathbb{N}}$. Consider $\psi=\left(\psi_{n}\right)_{n \in \mathbb{N}}$, where

$$
\psi_{n}= \begin{cases}\frac{1}{\left\|\varphi_{n}\right\|}\left|\varphi_{n}\right| & \text { if } n=n_{k} \text { for some } k \\ \mathbf{0} & \text { otherwise }\end{cases}
$$

Note that $J_{n_{k}} \psi_{n_{k}}=\left(\mathbf{0}, \ldots, \mathbf{0}, \frac{\left|\varphi_{n_{k}}\right|}{\left\|\varphi_{n_{k}}\right\|}, \mathbf{0}, \ldots\right)$ and consequently

$$
\left\|\mid J_{n_{k}} \psi_{n_{k}}\right\|_{\operatorname{ces}_{p}(\mathfrak{X})}^{p}=\sum_{i=n_{k}}^{\infty} \frac{1}{i^{p}} \quad \text { and } \quad\left\|J_{n_{k}} \psi_{n_{k}}\right\|_{\operatorname{ces}_{0}(\mathfrak{X})}=\frac{1}{n_{k}}
$$

if $1<p<\infty$ and $p=0$, respectively. Therefore, if we define $t_{n_{k}}:=$ $\left(\sum_{i=n_{k}}^{\infty} \frac{1}{i^{p}}\right)^{1 / p}$ for $1<p<\infty$ and $t_{n_{k}}:=\frac{1}{n_{k}}$ for $p=0$, then $\frac{1}{t_{n_{k}}} J_{n_{k}} \psi_{n_{k}} \in$ $B_{\{\varphi\}^{d d}}=B_{\operatorname{ces}_{p}(\mathfrak{X})} \cap\{\varphi\}^{d d}$ for $p=0$ and $1<p<\infty$. According to Theorem 2.4, there exists a positive $z=\left(z_{n}\right)_{n \in \mathbb{N}} \in \operatorname{ces}_{p}(\mathfrak{X})$ such that $B_{\{\varphi\}^{d d}} \subset[-z, z]$, which implies that $0 \leq \frac{1}{t_{n_{k}}} \psi_{n_{k}} \leq z_{n_{k}}$, and so $\frac{1}{t_{n_{k}}} \leq\left\|z_{n_{k}}\right\|$ for all $k \in \mathbb{N}$. To complete the proof, it is enough to show that the sequence $a=\left(a_{n}\right)_{n \in \mathbb{N}}$ defined by

$$
a_{n}= \begin{cases}\frac{1}{t_{n_{k}}} & \text { if } n=n_{k} \text { for some } k \\ 0 & \text { otherwise }\end{cases}
$$

does not belong to $\operatorname{ces}_{p}(\mathfrak{X})$ for $p=0$ and $1<p<\infty$, which contradicts $z \in \operatorname{ces}_{p}(\mathfrak{X})$ since ces_{p} is an order ideal in $\mathbb{R}^{\mathbb{N}}$. For $p=0$, by the definition of a, one has $a_{n_{k}}=n_{k}$ which yields $(\mathcal{C}|a|)_{n_{k}} \geq 1$ for all $k \in \mathbb{N}$, i.e., a is not an element of ces_{0}, whereas $\mathcal{C}\left(\left\|z_{n_{k}}\right\|\right) \in c_{0}$.

For $1<p<\infty$, there exists $c>0$ such that $t_{n_{k}}=\left(\sum_{i=n_{k}}^{\infty} \frac{1}{i^{p}}\right)^{1 / p} \leq c n_{k}^{-1 / q}$ for each $k \in \mathbb{N}$ (with $\frac{1}{p}+\frac{1}{q}=1$). The latter estimation holds for each $n \in \mathbb{N}$ because of

$$
\frac{1}{n^{p}} \leq \frac{1}{n^{p-1}} \quad \text { and } \quad \sum_{i=n+1}^{\infty} \frac{1}{i^{p}} \leq \int_{n}^{\infty} \frac{d x}{x^{p}}=\frac{1}{(p-1) n^{p-1}}
$$

Therefore, $\sum_{i=n}^{\infty} \frac{1}{i^{p}} \leq \frac{1}{n^{p-1}} \cdot q$, and, if n is replaced by n_{k}, one has

$$
n_{k}^{1 / p}(\mathcal{C}|a|)_{n_{k}}=n_{k}^{1 / p}\left(\frac{1}{n_{k}} \sum_{i=1}^{n_{k}} a_{i}\right) \geq \frac{n_{k}^{1 / p}}{n_{k} t_{n_{k}}} \geq \frac{n_{k}^{1 / p} n_{k}^{1 / q}}{c n_{k}}=\frac{1}{c}>0
$$

Thus, $\left(\left(n_{k}\right)^{1 / p}(\mathcal{C}|a|)_{n_{k}}\right)_{k \in \mathbb{N}}$ does not converge to 0 , and so it follows from [10, Proposition 2.3 (iii)] that a is not an element of $\operatorname{ces}_{p}(\mathfrak{X})$.
(ii) Let $\varphi=\left(\varphi_{n}\right)_{n \in \mathbb{N}}$ be a finite element in $\operatorname{ces}_{\infty}(\mathfrak{X})$. Again by Theorem 2.4, there is a positive $z=\left(z_{n}\right)_{n \in \mathbb{N}} \in \operatorname{ces}_{\infty}(\mathfrak{X})$ such that $B_{\{\varphi\}^{d d}} \subset[-z, z]$. For each $n \in \mathbb{N}$, put $w_{n}=\frac{z_{n}}{n}$, and note that $w_{n} \in X_{n}^{+}$and $\left(n w_{n}\right)_{n \in \mathbb{N}} \in \operatorname{ces}_{\infty}(\mathfrak{X})$. Let $y \in B_{\left\{\varphi_{n}\right\}^{d d}}$. Then, clearly, $J_{n} y \in\{\varphi\}^{d d}$ and $\left\|J_{n} y\right\|=\frac{\|y\|}{n} \leq \frac{1}{n}$, from where $J_{n} y \in\left[-\frac{z}{n}, \frac{z}{n}\right]$ follows for all $n \in \mathbb{N}$. Thus, $y \in\left[-w_{n}, w_{n}\right]$, i.e., $B_{\left\{\varphi_{n}\right\}^{d d}} \subset$ $\left[-w_{n}, w_{n}\right]$.

For the converse, observe that

$$
B_{\{\varphi\}^{d d}} \subset\left\{\left(x_{n}\right)_{n \in \mathbb{N}} \in \operatorname{ces}_{\infty}(\mathfrak{X}): x_{n} \in n B_{\left\{\varphi_{n}\right\}^{d d}} \text { for all } n \in \mathbb{N}\right\} .
$$

Since $n B_{\left\{\varphi_{n}\right\}^{d d}}$ is order bounded and the order in $\operatorname{ces}_{\infty}(\mathfrak{X})$ is coordinatewise, the proof of the theorem is completed by Theorem 2.4.

Acknowledgements. The authors are grateful to the referee for his comments and remarks, which enabled improving the presentation of the article and helped bringing some results into a more concise form.

Funding Information Open Access funding enabled and organized by Projekt DEAL.

Open Access. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons. org/licenses/by/4.0/.

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

[1] Programma van de jaarlijkse prijsvragen. Nieuw Arch. Wisk. (1) 3, 70-76 (1971)
[2] Abramovich, Y.A., Aliprantis, C.D.: An Invitation to Operator Theory. American Mathematical Society, Providence (2002)
[3] Alexiewicz, A.: On Cauchy's condensation theorem. Studia Math. 16, 80-85 (1957)
[4] Aliprantis, C.D., Border, K.C.: Infinite Dimensional Analysis, 3rd edn. Springer, Berlin (2006)
[5] Aliprantis, C.D., Burkinshaw, O.: Positive Operators. Springer, Dordrecht (2006)
[6] Bennett, G.: Factorizing the classical inequalities. Mem. Amer. Math. Soc. 120(576), viii+130 pp. (1996)
[7] Bonet, J., Ricker, W.J.: Operators acting in the dual spaces of discrete Cesàro spaces. Monatsh. Math. 191, 487-512 (2020)
[8] Chen, Z.L.: On weak sequential precompactness in Banach lattices. Chinese J. Contemp. Math. 20(4), 477-486 (1999)
[9] Chen, Z.L., Weber, M.R.: On finite elements in sublattices of Banach lattices. Math. Nachr. 280(5-6), 485-494 (2007)
[10] Curbera, G.P., Ricker, W.J.: Solid extensions of the Cesàro operator on ℓ_{p} and c_{0}. Integral Equations Operator Theory 80(1), 61-77 (2014)
[11] Gönüllü, U., Polat, F., Weber, M.R.: Cesàro vector lattices and their ideals of finite elements. To appear in: Positivity
[12] Jagers, A.A.: A note on Cesàro sequence spaces. Nieuw Arch. Wisk (3) 22, 113124 (1974)
[13] Kusraev, A.G.: Dominated Operators. Kluwer Academic, Dordrecht (2000)
[14] Leibowitz, G.M.: A note on Cesàro sequence spaces. Tamkang J. Math. 2, 151157 (1971)
[15] Makarov, B.M., Weber, M.R.: Über die Realisierung von Vektorverbänden. I (Russian). Math. Nachr. 60, 281-296 (1974)
[16] Megginson, R.E.: An Introduction to Banach space Theory. Springer, Berlin (1998)
[17] Shiue, J.S.: On the Cesàro sequence spaces. Tamkang J. Math. 1, 19-25 (1970)
[18] Weber, M.R.: Finite Elements in Vector Lattices. De Gruyter, Berlin (2014)

UĞUR GönÜLLÜ
Department of Mathematics and Computer Science
Faculty of Science and Letters
İstanbul Kültür University
34156 Bakırköy İstanbul
Turkey
e-mail: u.gonullu@iku.edu.tr
Faruk Polat
Department of Mathematics, Faculty of Science
Çankırı Karatekin University
18100 Çankırı
Turkey
e-mail: farukpolat@karatekin.edu.tr
Martin R. Weber
Fakultät Mathematik, Institut für Analysis
Technische Universität Dresden
01062 Dresden
Germany
e-mail: martin.weber@tu-dresden.de

Revised: 16 January 2023
Accepted: 2 February 2023

[^0]: Faruk Polat was supported for a 1-year stay in 2022 at the Technische Universität Dresden by the Scientific and Technological Research Council of Turkey (TUBITAK) in the context of the 2219-Post Doctoral Fellowship Program.

[^1]: ${ }^{1}$ This will be denoted by $\operatorname{ces}_{p}^{\prime}=d_{q}$.

[^2]: ${ }^{2}$ One has $\left\|e_{n}\right\|_{d_{p}}=\left\|\hat{e}_{n}\right\|_{p}=\left(\sum_{k=1}^{n} 1^{p}\right)^{1 / p}=n^{1 / p}$.

[^3]: ${ }^{3}$ For simplicity, we restrict our investigation to $\mathbb{N}-$ as a countable index set.
 ${ }^{4}$ See $[14,17]$.

[^4]: ${ }^{5}$ Here we use the short proof suggested by the referee.

