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A height bound for abelian schemes with real×Q2 multiplication

Zachary Youell

Abstract. In this paper, we prove a height bound for points on the base
of a family of abelian varieties at which the fibre possesses additional
endomorphisms. This complements a result of André in his book (G-
Functions and Geometry Aspects of Mathematics, E13. Friedrich Vieweg
and Sohn, Braunschweig, 1989) as well a result of Daw and Orr (Ann
Scuol Norm Super Class Sci 39:1, 2021). The work in this paper will be
used to prove a new case of the Zilber-Pink conjecture which will form
part of the author’s PhD thesis.
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1. Introduction. The Zilber-Pink conjecture is a vast open problem in arith-
metic geometry concerning Shimura varieties. To give the statement of the con-
jecture, we first define an atypical subvariety of a Shimura variety ShK(G,X).

Definition 1.1. Let S be a subvariety of ShK(G,X). A subvariety W ⊂ S is
called atypical with respect to S if it is an irreducible component of S ∩T with
T a special subvariety of ShK(G,X) and

dim(W ) > dim(S) + dim(T ) − dim(ShK(G,X)).

We write Atyp(S) for the set of all atypical subvarieties with respect to S.

Conjecture 1.2 (Zilber-Pink conjecture). Let S be a subvariety of ShK(G,X).
Then Atyp(S) is a finite union of atypical subvarieties with respect to S.

The author aims to prove in his thesis that, given appropriate arithmetic
data, one can combine the methods of Daw and Orr from both [2] and [3] to
prove a new case of Conjecture 1.2. These works both employ the Pila-Zannier
method in different ways. In [2], Daw and Orr deal with a “acteur” case as they
call it, while in [3], the case is “on-facteur”. The authors thesis will deal with a
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combination of facteur and non-facteur cases. The purpose of this paper is to
provide a height bound on points on the base of a family of abelian varieties
with quarternionic times CM multiplication. This height bound will be used
to show that the Galois orbits of such points are sufficiently large, providing
the necessary arithmetic data in the authors case.

1.1. Statement of the main theorem. Let V ′ be a smooth connected algebraic
curve over a number field K, and let V denote the complement of a closed
point v0 ∈ V ′(K). Let h denote the Weil height on V ′.

Theorem 1.3. Let f : X → V be an abelian scheme of relative dimension 4
with multiplicative reduction at v0. Let η̄ be a geometric generic point of V .
In addition, assume that we have abelian schemes g1 : A → V of relative
dimension 2 with End(Aη̄)⊗Q = Q(

√
d) a real quadratic field and g2 : E → V

of relative dimension 2 with End(Eη̄) ⊗ Q = Q2 such that X is the fibred
product A ×V E. Then there exist effective constants C1 and C2 such that, for
every v ∈ V with End(Av)⊗Q a rational quarternion algebra non-split over Q

and End(Ev)⊗Q containing a product of the form L×Q with L an imaginary
quadratic field, we have

h(v) ≤ C1[K(v) : K]C2 .

By multiplicative reduction at v0 we mean that the fibre Xv0 of the Néron
model X ′ of X at v0 is a torus.

This complements Theorem 1.3 in Chapter X of [1] and Theorem 8.2 in
[2]. We shall refer to fibres Xv of the desired form in Theorem 1.3 as excep-
tional fibres. André deals only with fibres that are simple abelian varieties of
odd dimension g > 1 over Q and the endomorphism algebra at exceptional fi-
bres is an extension of the generic endomorphism algebra. Daw and Orr allow
their fibres to have even dimension but require that the maximal commutative
subalgebra of the generic endomorphism algebra is a totally real field of odd
degree. Here our fibres have dimension g = 4 and the maximal commutative
subalgebra of EndV (X) ⊗ Q is a product.

1.2. Outline of the paper. In Section 2, we define the generic period matrix
and give a loose idea of G-functions and their importance.

In Section 3, we show that, at all exceptional fibres of the desired type,
we have an additional relation, then we use André’s methods, along with the
work of Masser in [7], to show that these relations are in fact non-trivial.

2. Preliminaries.

2.1. Trivial relations. Following André’s methods in Chapter X of [1], we con-
struct trivial relations on the fibres of our scheme f : X → V . We may assume
that EndV (X) ⊗ Q ∼= End(Xη̄) ⊗ Q. If this is not the case, then replacing K
with a finite extension and V with an étale neighbourhood would achieve this.

Let η be a generic point of V . The relative de Rham cohomology H1
DR(X/V )

is a locally free sheaf. Further we may assume it is a free sheaf, if not we may
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replace V by a Zariski open subset. We write

WDR := Γ(H1
DR(X/V )) ⊗ K(V ) ∼= H1

DR(Xη).

The fibre Xη is isomorphic to Aη × E1,η × E2,η. This isomorphism, together
with the Künneth theorem, establishes

H1
DR(Xη) ∼= H1

DR(Aη) ⊕ H1
DR(E1,η) ⊕ H1

DR(E2,η).

Then the action of our generic endomorphism algebra D := EndV (X) ⊗ Q ∼=
End(Xη)⊗Q ∼= Q(

√
d)×Q×Q, after possibly extending K to include Q(

√
d),

induces a splitting of this space into
⊕4

i=1 WDR
σi

. Here the σi are the morphisms
of algebras D → K(V ) corresponding to the embeddings of each of the simple
factors of D into K.

If we consider some embedding K ↪→ C, then, along with the relative de
Rham cohomology, we have a local system of vector spaces that also splits as

R1f
an
C ∗(Q(

√
d)) =: W =

4⊕

i=1

Wσi
.

Here the sum is over the four algebra morphisms σi : D → C.
Looking at the analytification of our curve V over C, we can include an

open disc Δ centred at v0 in (V ′)an
C

. Then we write Δ∗ for the punctured
open disc centred at v0 and choose some open dense simply-connected set
V ⊂ Δ∗. Writing MV for the field of meromorphic functions on V, the space
WDR

σ ⊗K(V ) MV is ’dual’ to Wσ ⊗
Q(

√
d) MV via the comparison isomorphism

multiplied by (2πi)−1

P 1
X/V : H1

DR(X/V ) ⊗OV
OV an

C
→ R1fan

∗ QXan
C

⊗QV an
C

OV an
C

.

The notion of dual we mean here is that the stalk of WDR
σ ⊗K(V ) MV at a

point v ∈ V is isomorphic to the dual space of the stalk of Wσ ⊗
Q(

√
d)MV at v.

As V is simply-connected, we can trivialise R1f
an
C ∗(Q(

√
d))|V . Then we choose

a frame {γσi,j} for R1f
an
C ∗(Q(

√
d))|V adapted to the splitting W =

⊕4
i=1 Wσi

and, using the freeness of H1
DR(X/V ), a basis {ωσk,l

} for Γ(H1
DR(X/V ))⊗K(V )

inside Γ(H1
DR(X/V )) adapted to the splitting WDR =

⊕4
k=1 WDR

σk
. With this,

we get the following relations:
1

2πi

∫

γσi,j

ωσk,l = 0 for i �= k. (1)

Since the generic fibre Xη is an abelian variety, it comes equipped with a
skew-symmetric form < ·, · >DR on WDR and 2πi < ·, · > on W taking values
in Q(

√
d)(1). Likewise each of the simple factors Aη, E1,η, and E2,η have skew-

symmetric forms < ·, · >DR
Aη

, < ·, · >DR
E1,η

, and < ·, · >DR
E2,η

on their respective de
Rham cohomologies and 2πi < ·, · >Aη

, 2πi < ·, · >E1,η
, and 2πi < ·, · >E2,η

on their respective homology groups.

Proposition 2.1. The forms < ·, · >DR
Aη

and 2πi < ·, · >Aη
split as < ·, · >DR

σ1
⊕

< ·, · >DR
σ2

and 2πi < ·, · >σ1 ⊕2πi < ·, · >σ2 respectively.
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Proof. We prove only the case for the form < ·, · >DR
Aη

as the other case uses
the same argument. Similarly to above, we write WDR for the space H1

DR(Aη).
Then WDR splits as WDR

σ1
⊕WDR

σ2
for the two embeddings σi : Q(

√
d) → K(V ).

Then pick forms a1 ∈ WDR
σ1

and a2 ∈ WDR
σ2

. For any α ∈ Q(
√

d), we have

< αa1, a2 >DR=< a1, α
†a2 >DR, (2)

where † represents the Rosati involution. As Q(
√

d) is a real field, it is pointwise
invariant under the Rosati involution. By definition, α acts on WDR

σi
via σi and

Equation (2) becomes

< αa1, a2 >DR =< a1, α
†a2 >DR

< αa1, a2 >DR =< a1, αa2 >DR

σ1(α) < a1, a2 >DR = σ2(α) < a1, a2 >DR .

Choosing α ∈ Q(
√

d) such that σ1(α) �= σ2(α) implies < a1, a2 >DR= 0 for all
a1 ∈ WDR

σ1
and a2 ∈ WDR

σ1
. Hence the space WDR

σ1
is orthogonal to WDR

σ2
with

respect to < ·, · >DR and

< ·, · >DR=< ·, · >DR
σ1

⊕ < ·, · >DR
σ2

.

�

The form < ·, · >DR is dual to the form 2πi < ·, · > via the untwisted
comparison isomorphism Q1

X/V := (2πi)P 1
X/V . In other words, the matrix

representing P 1
X/V satisfies

MDR = (Q1
X/V )t(2πi)−1MBQ1

X/V , (3)

where the matrices MDR and MB represent the form < ·, · >DR and the form
defined on the dual of W respectively (by an abuse of notation, we write P 1

X/V

for both the period isomorphism and the matrix representing it). For further
information on the comparison isomorphism, see Chapter IX of [1]. The matrix
P 1

X/V acts via a right action, hence by ordering our bases {γσi,j} and {ωσk,l}
in a certain way and rescaling where appropriate, we may assume both MDR

and MB are block diagonal with diagonal J =
(

0 −1
1 0

)
. Then, this ordering of

our bases, combined with Relation (1), gives P 1
X/V the following form:

P 1
X/V =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

Ωσ1
1 Ωσ1

2 0 0 0 0 0 0
Nσ1

1 Nσ1
2 0 0 0 0 0 0

0 0 Ωσ2
1 Ωσ2

2 0 0 0 0
0 0 Nσ2

1 Nσ2
2 0 0 0 0

0 0 0 0 Ωσ3
1 Ωσ3

2 0 0
0 0 0 0 Nσ3

1 Nσ3
2 0 0

0 0 0 0 0 0 Ωσ4
1 Ωσ4

2

0 0 0 0 0 0 Nσ4
1 Nσ4

2

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,
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with the notation used being Ωσj

i = 1
2πi

∫
γσj,i

ωσj ,1 and N
σj

i = 1
2πi

∫
γσj,i

ωσj ,2.
Now that MDR and MB are as above, Equation (3) gives the classical “Rie-
mann relations”, which in our case simplify to

Nσi
2 Ωσi

1 − Ωσi
2 Nσi

1 =
1

2πi
. (4)

2.2. Locally invariant periods. As R1f
an
C ∗(Q(

√
d))|Δ∗ is a local system, it arises

from some representation of π1(Δ∗). At each point v ∈ Δ∗, the monodromy
action gives an automorphism on the vector space R1f

an
C ∗(Q(

√
d))(v). We con-

sider the logarithm of this action, which we denote by 2πiN , and write 2πiNv

for the specific action on the vector space R1f
an
C ∗(Q(

√
d))(v). Thanks to Corol-

lary 11.19 in [9], we know that the monodromy action is unipotent and so
2πiN is nilpotent with degree of nilpotency 2 (see [6] for proof). Looking
again at R1f

an
C ∗(Q(

√
d))|Δ∗ , we shall denote by W 1 the maximal subsystem of

R1f
an
C ∗(Q(

√
d))|Δ∗ that is invariant under the monodromy action at each point

v ∈ Δ∗. We note that, like W , this maximal constant subsystem also splits as

W 1 =
4⊕

i=1

W 1
σi

,

and Chapter IX of [1] tells us that each of the W 1
σi

has half the dimension
of Wσi

. In our case, since Wσi
has dimension two, this tells us that W 1

σi
is a

maximal totally isotropic subspace.
The isotropy of W 1

σi
allows us to choose the frame {γσi,j} for R1f

an
C ∗

(Q(
√

d))|Δ∗ in such a way that, for each σi, we have γσi,1 ∈ W 1
σi

. Doing
so may change the values of the non-zero entries of P 1

X/V , but does not change
the form of the matrix P 1

X/V or the relation given in Equation (4).

Definition 2.2. A locally invariant period is one of the form
1

2πi

∫

γ

ω,

with γ ∈ W 1.

2.3. G-functions. For a place v of a field K, we write Kv for the completion
of K with respect to v and let iv : K ↪→ Kv denote the associated embedding.

Definition 2.3. Let F be a fixed number field. A G-function over F is a formal
power series of the form

f(z) :=
∑

n≥0

anzn, an ∈ F,

satisfying the following properties:
(1) f is the solution to a linear differential equation with coefficients that are

polynomials in z over F ,
(2) there exists a sequence of natural numbers {dn}n∈N that grows at most

geometrically such that dnam ∈ OF for m = 0, . . . , n,
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(3) for every infinite place v of F , the series
∑

n≥0 iv(an)zn ∈ Fv[[z]] defines
an analytic function around zero.

Theorem 2.4. Consider the periods to be functions on the disc Δ. Let x be
a local parameter at v0 for V ′ as in André [1]. Then there exists a basis of
sections for H1

DR(X/V ) over V such that the Taylor expansions in x of the
locally invariant relative periods are G-functions.
Proof. See Chapter IX, Section 4 of [1]. �

The next two sections show that at exceptional fibres we can construct a
non-trivial global relation between the locally invariant periods. Then using
the following theorem of Bombieri together with Theorem 2.4, this proves
Theorem 1.3.
Theorem 2.5 (Theorem E from [1], Introduction). Let Υδ denote the set of
points ξ ∈ Q̄ where there exists some global non-trivial relation of degree δ at
ξ between given G-functions y1, . . . , yμ. Then Υδ has bounded height (at most
a power of δ + 1).
3. Relations at a fixed Archimedean place.

3.1. Additional relations. Let ν be an infinite place of the field K. To this
place, we may associate an embedding ιν : K ↪→ C. We fix this embedding and
construct additional relations present only at exceptional fibres. The method
for doing this varies from that of André in [1]. As our exceptional fibre is a
semi-simple abelian variety, we construct an additional relation at two of its
simple factors. The fact that we have two additional relations allows us to
eliminate any factor of 2πi, yielding a relation with coefficients in Q̄.

3.2. Additonal relation for the abelian surface. Let Xv be an exceptional fibre.
This gives a fibre Av from g1 : A → V with a non-split rational quarternion
algebra B as its endomorphism algebra. The algebra B not only contains
Q(

√
d) but also, by [2, Lemma 8.7], an imaginary quadratic field Q(

√−c),
stable under the Rosati involution on B. We denote by E and Ê the fields
Q(

√
d) and Q(

√−c) respectively and let F denote their compositum. We let
K̂ denote the compositum of K(v) and F . We construct an additional non-
trivial relation at Av with the desired property via André’s method on the
scheme g1 : A → V .

We set up the problem in the same way as for our larger abelian scheme.
We again let V ′ be a smooth connected algebraic curve over a number field K,
with V denoting the complement of the closed point v0 ∈ V ′. Then g1 : A → V
is an abelian scheme of relative dimension 2 with multiplicative reduction at
v0 and End(Aη) ⊗ Q = E. Once again η̄ is a geometric generic point of V .
This setup, after possibly extending K to include E, allows us to construct a
relative period matrix P 1

A/V as we did before. This matrix has the form

P 1
A/V =

⎛

⎜
⎜
⎝

Ωσ1
1 Ωσ1

2 0 0
Nσ1

1 Nσ1
2 0 0

0 0 Ωσ2
1 Ωσ2

2

0 0 Nσ2
1 Nσ2

2

⎞

⎟
⎟
⎠ .



Vol. 120 (2023) A height bound for abelian schemes 387

Lemma 3.1. There exists a linear or quadratic relation with coefficients in
K̂(2πi), among the values at v of the locally invariant entries of the period
matrix P 1

A/V .

We write Wv for the space R1g
an
1,C∗(E)(v) ∼= H1(Aan

v,C, E) that splits as
Wσ1,v ⊕ Wσ2,v, where the σi : E → C are algebra morphisms. The space Wv

also has a subspace arising from the maximal constant subsystem W1 of the
local system that we shall call W1

v , which also splits as

W1
v = W1

σ1
⊕ W1

σ2
.

As with our main case, we may replace V with an open neighbourhood
to ensure that the relative de Rham cohomology H1

DR(A/V ) is free and in
particular

WDR := Γ(H1
DR(A/V )) ⊗ K(V ) ∼= H1

DR(Aη),

where η is a generic point of V . This splits as

WDR = WDR
σ1

⊕ WDR
σ2

.

We have another splitting of both Wv and WDR
v ,

Wv ⊗E F = Ŵσ̂1 ⊕ Ŵσ̂2 ,

WDR
v ⊗K(v) K̂ = ŴDR

σ̂1
⊕ ŴDR

σ̂2
,

where σ̂1,2 denote the embeddings of Ê into C instead. Then, if

Ŵσ̂2 ∩ [W1
v ⊗E F ] �= {0},

as in Case 2 of Construction 2.4.1 from [1], we can choose a non-zero cycle γ
that belongs to this space. By Relation (1) (after replacing σi with σ̂i), for any
ω̂ ∈ ŴDR

σ̂1
, we have

∫

γ

ω̂ = 0. (5)

Writing ω̂ in terms of our basis for WDR
v and γ in terms of our basis for W1

v

gives us a linear relation of locally invariant periods.
If the intersection Ŵσ̂2 ∩ [W1

v ⊗E F ] is trivial, then the situation is similar
to what André calls Case 3.

Before showing how to construct an additional relation in this case, we first
establish that the splittings of Wv into Wσ1 ⊕ Wσ2 and Ŵσ̂1 ⊕ Ŵσ̂2 are not
identical.

Proposition 3.2. We have Wσi,v ⊗E F �= Ŵσ̂j
for any pair i, j.

Proof. We know Wv is a four dimensional E-vector space and that it inherits
an action of Ê from the action of B on Av. Let us extend scalars so that we work
with the space Wv⊗EF , then this space splits as both Wσ1,v⊗EF ⊕Wσ2,v⊗EF

and Ŵσ̂1 ⊗Ê F ⊕ Ŵσ̂2 ⊗Ê F . Then the action of B is a representation ρ : B →
GL(Wv), and we may represent the action of elements of Ê ⊂ B by matrices
with entries in E. To study the action of this representation, we need only
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look at the action of j =
√−c ∈ Ê on Wv ⊗E F , where we view j as an

endomorphism via ρ. We know that the action of ρ(j) splits Wv ⊗E F into two
eigenspaces Ŵσ̂1 ⊗Ê F and Ŵσ̂2 ⊗Ê F , with eigenvalues j and −j respectively.
Pick w ∈ Ŵσ̂1 ⊗Ê F , then by definition,

ρ(j)w = jw,

where on the right j is acting by standard scalar multiplication. Now we can
take an element σ ∈ Gal(Q̄/Q) that acts trivially on E with σ(j) = −j. Then

σ(ρ(j)w) = σ(jw),

which is equivalent to

σ(ρ(j))σ(w) = σ(j)σ(w)

= −jσ(w).

But the matrix representing ρ(j) has entries in E, therefore σ(ρ(j)) = ρ(j),
ρ(j)σ(w) = −jσ(w), and σ(w) ∈ Ŵσ̂2 . Thus for σ ∈ Gal(Q/Q) as above, we
have that

σ(Wσ1,v ⊗E F ) = Wσ1,v ⊗E F, σ(Ŵσ̂1 ⊗Ê F ) = Ŵσ̂2 ⊗Ê F.

Hence Wσi,v ⊗E F �= Ŵσ̂j
⊗Ê F for any pair i, j. �

As we saw earlier, there is a symplectic form 2πi < ·, · > on Wv.

Lemma 3.3. The subspaces Ŵσ̂2 ⊗ F and W1
v ⊗ F ⊂ Wv ⊗ F are both La-

grangian.

Proof. First take W1
v ⊗F . Since E ⊂ F , it has a decomposition into W1

σ1
⊗F ⊕

W1
σ2

⊗F . Both of these subspaces are maximal isotropic subspaces of Wσi
⊗F

respectively (since they are both one dimensional). We can then use that Wσ1

is symplectic with orthogonal complement Wσ2 to establish that for any two
vectors v, w ∈ W1

v ⊗ F , we have

2πi < v,w >= 2πi < w, v >= 0,

and so W1
v ⊗ F is isotropic.

For Ŵσ̂2 ⊗ F , we recall that Ê ⊂ F is an imaginary quadractic field stable
under the Rosati involution on B, our quarternion algebra over Q. If we pick
a ∈ Ê with a totally imaginary (so that the complex conjugate ā = −a) and
non-zero vectors v, w ∈ Ŵσ̂2 ⊗ F , then

σ̂2(a)(2πi < v,w >) = 2πi < σ̂2(a)v, w >

= 2πi < −a · v, w >

= 2πi < v,−āw >

= 2πi < v, a · w >

= 2πi < v,−σ̂2(a)w >

= −σ̂2(a)(2πi < v,w >),

here we have assumed that σ̂1 : Ê → C acts as the identity and that the
Rosati involution restricts to complex conjugation on Ê. This implies that
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2πi < v,w >= 0, hence, Ŵσ̂2 is isotropic as well. As both subspaces have half
the dimension of Wv ⊗ F and are isotropic, this makes both Lagrangian. �

Now that we have two Lagrangian subspaces we can construct an additional
relation when Ŵσ̂2 ∩ [W1

v ⊗E F ] is trivial.
Using Lemma 1.4.35 of [8], Lemma 3.3, and the assumption that Ŵσ̂2 ∩

[W1
v ⊗E F ] = {0}, we may write

Wv ⊗ F = W1
v ⊗ F ⊕ Ŵσ̂2 ⊗ F

with a symplectic basis {γσ1,1 , γσ2,1 , α, β} for Wv with respect to < ·, · >.
This basis is chosen such that γσ1,1 , γσ2,1 ∈ W1

v ⊗ F and α, β ∈ Ŵσ̂2 ⊗ F .
Then, because Ê is an imaginary quadratic field and stable under the Rosati
involution, we may write {ωσ̂1,1, ωσ̂1,2, ωσ̂2,1, ωσ̂2,2} for a symplectic basis for
WDR

v ⊗ F with respect to the form < ·, · >DR as both ŴDR
σ̂1

and ŴDR
σ̂2

are
Lagrangian by similar arguments to Lemma 3.3.

Now consider the “Period Matrix” P defined as

P :=
1

2πi

⎛

⎜
⎜
⎜
⎝

∫
γσ1,1

ωσ̂1,1

∫
γσ2,1

ωσ̂1,1

∫
α

ωσ̂1,1

∫
β

ωσ̂1,1∫
γσ1,1

ωσ̂1,2

∫
γσ2,1

ωσ̂1,2

∫
α

ωσ̂1,2

∫
β

ωσ̂1,2∫
γσ1,1

ωσ̂2,1

∫
γσ2,1

ωσ̂2,1

∫
α

ωσ̂2,1

∫
β

ωσ̂2,1∫
γσ1,1

ωσ̂2,2

∫
γσ2,1

ωσ̂2,2

∫
α

ωσ̂2,2

∫
β

ωσ̂2,2

⎞

⎟
⎟
⎟
⎠

.

For simplicity, we shall name the four quadrants of this matrix,

P =
(

Ω1 Ω2

N1 N2

)

.

Since α, β ∈ Ŵσ̂2 ⊗ F , we have

Ω2 = 0 (6)

by Relation (1) (again replacing σi with σ̂i). As the bases above have been
chosen to be symplectic, both 2πi < ·, · > and < ·, · >DR are represented by(

0 −I
I 0

)
. Since both bases are symplectic and the two forms are dual, we have

that P multiplies the matrix representing the symplectic form by (2πi)−1, the
justification of this is the same as that of Equation (3). Thus we can establish
additional relations between its entries via

P
(

0 −I
I 0

)
P t =

1
2πi

(
0 −I
I 0

)
.

This, combined with (6), gives the following two relations:

N t
1Ω1 − Ωt

1N1 = 0, (7)

N t
2Ω1 =

1
2πi

I. (8)

Using the fact that we can also write

Wv ⊗ F = Ŵσ̂1 ⊗ F ⊕ Ŵσ̂2 ⊗ F,
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we observe that γσj ,1 can be written as v + ajα + bjβ with v ∈ Ŵσ̂1 ⊗ F . This
observation allows us to express N1 in terms of the entries of N2. Observe

N1 =
(

a1N
11
2 + b1N

12
2 a2N

11
2 + b2N

12
2

a1N
21
2 + b1N

22
2 a2N

21
2 + b2N

22
2

)

= N2T,

where T =
( a1 a2

b1 b2

) ∈ M2(F ) and N ij
2 denotes the entry of N2 in the ith

row and jth column. Here, all terms involving cycles from Ŵσ̂1 automatically
become zero as we are integrating forms from ŴDR

σ̂2
over them.

Thanks to Proposition 3.2, we know that

Wσ1 ⊗ F �⊂ Ŵσ̂1 ⊗ F,

to establish that T �= 0. Now, if we re-examine Equation (8), we may use that
N t

1 = T tN t
2 to obtain

T tN t
2Ω1 =

1
2πi

T t, (9)

N t
1Ω1 =

1
2πi

T t. (10)

Now we are guaranteed at least one (possibly more) inhomogenous quadratic
relation between our locally invariant periods with coefficients in the field
F (2πi) because T �= 0 implies that Equation (9) is not just 0 = 0.

3.3. Additional relation on CM elliptic curve. The field L in our exceptional
endomorphism algebra B × L × Q arises due to the elliptic curve E1 having
complex multiplication. To construct a relation in this case, we use a result
proved by Masser in [7].

For an elliptic curve E, we denote a basis for H1(E(C),Q) by {γ1, γ2}.
Likewise we denote a basis for H1

DR(E(C),Q) by {ω1, ω2}. Then the periods
τi and pseudo-periods ηi of the elliptic curve are given by

τi =
1

2πi

∫

γi

ω1, ηi =
1

2πi

∫

γi

ω2,

we note that this definition has an extra factor of 1/2πi compared to the one
given in [7] to bring it in line with Definition 2.2. While this is not the relative
case, by writing γi = γσ3,i(v) and ωj = ωσ3,j(v), we can think of τ1 and η1 to
be the so called “locally invariant” periods between which we wish to find an
additional relation.

Theorem 3.4 (Theorem III from [7]). Let E be an elliptic curve defined over
Q̄. Let U be the Q̄-linear span of the set {1, π, τ1, τ2, η1, η2}. If E has complex
multiplication, then dimQ̄U = 4.

Masser gives two relations to reduce the dimension to 4 when the curve
E has complex multiplication. Let E be defined by the equation y2 = 4x3 −
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g2x − g3. Then the first relation is τ2 = ατ1, where α has minimal polynomial
ax2 + bx + c over Z. The second relation is

a2αη2 − acη1 + γτ1 = 0,

where γ ∈ Q(g2, g3, α). Combining both, along with the relation given in Equa-
tion 4, gives us a relation in terms of the “locally invariant” periods

− γ

a2α
τ2
1 + (

c

aα
− α)τ1η1 =

1
2πi

. (11)

The numbers g2, g3, and α all belong to the field K̂ due to choices we have
made. So the left hand side of this relation is defined over K̂. Any fibre of
(E × E) which has an endomorphism algebra containing L × Q is isomorphic
to the product of a CM elliptic curve with another elliptic curve so we may
apply Theorem 3.4 to obtain a relation of the form found in Equation (11). We
note that Case 3 in Chapter X of [1] may also be used to construct a relation
of the form found in Equation (11).

3.4. Relation on an exceptional fibre. At the exceptional fibre Xv, we now
have a relation between the periods on Av and on one of the elliptic factors.
The relation on the abelian surface can be expressed as F1 = t/2πi for some
algebraic number t and F1 is a linear or quadratic combination of periods.
Likewise the relation on the elliptic curve can be expressed as F2 = 1/2πi with
F2 of the same form as the left hand side of Equation (11). After rescaling F2

by t, we gain a relation for the infinite place ν of K, the relation is

F1 − tF2 = 0. (12)

4. Relation at all Archimedean places. To construct a relation at every
Archimedean place of the field K, we follow [1], Chapter X, Section 3. Let
ν be an infinite place of K and ι : K ↪→ C the corresponding complex em-
bedding. Following Section 2 above, we obtain a period matrix and the locally
invariant part of this matrix, after making the same choice of local parameter
as we did in Theorem 2.4, yields a matrix of G-functions. These G-functions
are Taylor expansions in the local parameter x around v0 via the embedding
ι : K ↪→ C. We write y1, . . . , y8 ∈ K[[x]] for these G-functions over K and the
third point of Definition 2.3 guarantees ι(yi) is also an analytic function (here
ι acts coefficient wise).

Lemma 4.1. For any other complex embedding ι′ : K → C, the complex Taylor
series ι′(y1), . . . , ι′(y8) (where ι′ acts coefficient wise) are again expansions in
x of the locally invariant entries of a period matrix attatched to the same basis
of local sections of H1

DR(X/V ) and some local frame in (R1f
an
C via ι′)∗(Q).

Proof. See Chapter X, Section 3 of [1]. �

For each infinite place ν of K̂, apply the construction of Section 3 above
to the exceptional fibre Xv ×K̂ ιν(K̂). By Lemma 4.1, we obtain a linear or
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quadratic polynomial relation qν(y1, . . . , y8) over K̂ such that, for ξ = x(v),
qν(y1, . . . , y8)(ξ) = 0 holds ν-adically if

|ξ|ν < Rν(y1, . . . , y8),

where Rν denotes the ν-adic radius of convergence.
We define a polynomial

q =
∏

qν , (13)

where the product is taken over all infinite places ν of K̂ such that |ξ|ν <
Rν(y1, . . . , y8). The polynomial q is then a homogeneous polynomial with co-
efficients in K̂ of degree at most 2[K̂ : Q]. We now show that this is a non-trivial
relation of G-functions.

4.1. Non-triviality of the relation. The proof of this is once again very similar
to the one that André gives, as it boils down to checking that the relations
we constructed in 3.1 cannot be generated from the relations (2.3.1), (2.3.2)
or (2.3.3) in Chapter X of [1]. We note that in [1], the generic endomorphism
algebra is a totally real field of odd degree. Here it is E×Q2, but in Subsection
2.1, we established that the same relations are present in our case, namely
Equation (4) and the non-diagonal blocks of the period matrix being zero.
Further to this, we note that the sublemma of Tankeev in Chapter X of [1] does
not cover our case, but does hold for the simple factors of a non-exceptional
fibre Xv, then the generic special Mumford-Tate group is ResE/QSp2,E ×Sp2

2,Q,
or Sp4

2,E after extending scalars to E. Then the results in the last two sections
of [4] ensure that the ideal vanishing on the coefficients of the period matrix
is the same as the one given by André in [1].

Let the ideal Θ be as in André [1, Lemma 3.3] and V (Θ) the vanishing locus
of this ideal in A16 (where we think of the coordinates as Ωσi

1 ,Ωσi
2 , Nσi

1 , and
Nσi

2 for 1 ≤ i ≤ 4). In [1], André states that showing non-triviality is equivalent
to showing that the variety given by our relation is a proper subvariety of the
image of V (Θ) after projecting onto the space spanned by the locally invariant
periods (Ωσi

1 and Nσi
1 for each i). In André’s work, the projection of V (Θ)

onto this space is defined by the relation saying (Nσi
1 )tΩσi

1 is symmetric for
each i. However in our case, this relation is trivial as each of Nσi

1 and Ωσi
1 are

just complex numbers and hence commute with one another, so the projection
of V (Θ) onto the locally invariant subspace is just the whole of the subspace.
Hence the ideal defined by the relation given in Equation (13) defines a proper
subvariety of this space and the relation is non-trivial.

4.2. The relation is global. The proof of globality of the relation is unchanged
from Lemma 3.4 that André gives in [1]. The key condition is that End Xv �↪→
M4(Q), this holds in our case. The maximal commutative subalgebra of End Xv

is five dimensional over Q and is isomorphic to E×L×Q, which has no nilpotent
elements. By [5], the maximal commutative subalgebra of M4(Q) has dimen-
sion five over Q but has nilpotent elements, hence there is no isomorphism
between the two and End Xv does not embed into M4(Q).
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