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A note on polydegree (n, 1) rational inner functions, slice
matrices, and singularities

Alan Sola

Abstract. We analyze certain compositions of rational inner functions
in the unit polydisk D

d with polydegree (n, 1), n ∈ N
d−1, and isolated

singularities in T
d. Provided an irreducibility condition is met, such a

composition is shown to be a rational inner function with singularities
in precisely the same location as those of the initial function, and with
quantitatively controlled properties. As an application, we answer a d-
dimensional version of a question posed in Bickel et al. (Am J Math 144:
1115–1157, 2022) in the affirmative.
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1. Introduction.

Background. This note is concerned with certain bounded holomorphic func-
tions on the unit polydisk in C

d,

D
d = {z = (z1, . . . , zd) ∈ C

d : |zj | < 1, j = 1, . . . , d},

called rational inner functions, and their singularities on the d-torus

T
d = {ζ = (ζ1, . . . , ζd) ∈ C

d : |ζj | = 1, j = 1, . . . , d};

here and throughout, d ∈ N. By Fatou’s theorem for polydisks (see e.g. [20,
Chapter 3]), any bounded holomorphic function φ : Dd → C has non-tangential
boundary values φ∗(ζ) = ∠ limDd�z→ζ φ(z) at almost every point ζ ∈ T

d. If
these boundary values satisfy |φ∗(ζ)| = 1 for almost every ζ ∈ T

d, we say that
φ is an inner function.
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Inner functions of the form φ = q/p, where q, p ∈ C[z1, . . . , zd] and p has no
zeros in D

d, are called rational inner functions (RIFs). In one variable, RIFs
are precisely the finite Blaschke products in the unit disk D. Blaschke products
play a central role in function theory, see for instance [11] for an overview of
the very rich theory of these functions. In two and more variables, RIFs form a
concrete class of bounded holomorphic functions that is amenable to detailed
study [20, Chapter 5], and appears naturally in several settings, for instance
in connections with interpolation problems [1].

A classical result of Rudin and Stout (see [20, Chapter 5]) states that any
RIF in D

d admits a representation of the form

φ(z) = eiazm p̃(z)
p(z)

, (1.1)

where a ∈ R, m = (m1, . . . ,md) ∈ N
d, and p̃ is the reflection of a polynomial p

with no zeros in D
d known as a stable polynomial. The reflection polynomial

is defined as

p̃(z) = zn1
1 · · · znd

d p

(
1
z̄1

, . . . ,
1
z̄d

)
.

The vector (n1, . . . , nd) is referred to as the polydegree of p; each nj = degzj
(p)

is the degree of p in the variable zj . In this note, we shall strip out monomial
factors and consider RIFs φ = eiap̃/p; this simplifies formulas and is not ma-
terial for the problem we study.

RIFs as well as more general bounded rational functions in two or more
variables have been considered by a number of authors in recent years, often
in connection with stable polynomials, representation formulas, and operator-
theoretic problems. We cannot give a full overview here, but a sampler of
related work might include papers of Anderson, Dritschel, and Rovnyak [3];
Ball, Sadosky, and Vinnikov [4]; Knese [13–15]; and Kollár [17].

A series of recent papers with Bickel and Pascoe [7–9]; Bickel, Knese, and
Pascoe [10]; and Tully–Doyle [21] deal with aspects of RIF theory that are
particular to dimensions d ≥ 2. Namely, unlike in one dimension, RIFs in
two or more variables can have singularities on the d-torus, arising at points
ζ ∈ T

d where p(ζ) = 0 and p̃(ζ) = 0 without common factors that cancel out.
A d-dimensional example (see [15, Section 5] and [9, Example 2.5]) is given by

φd(z) =
p̃(z)
p(z)

=
d

∏d
k=1 zk − ∑

j∈J zj1 · · · zjd−1

d − ∑d
k=1 zk

(d ≥ 2) (1.2)

which has a single singularity at (1, . . . , 1) ∈ T
d. Here, J = {(j1, . . . , jd−1) ∈

N
d : 1 ≤ j1 < j2 < · · · < jd−1 ≤ d}.

One would like to describe RIF singularities in detail, and there are
different ways of doing this. The papers [7–9], as well as [10], investigate
for which p ≥ 1 the partial derivative of a RIF has ∂φ

∂zd
∈ Lp(Td). Roughly

speaking, the smaller the maximal p for which integrability holds, the stronger
the singularity of φ. For the example (1.2), the maximal integrability index is
p = 1

2 (d+1); see [9] and [10] for comprehensive discussions. The paper [7] and
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the work of Bergqvist [5] also consider other notions of derivative integrability
corresponding to norms of Dirichlet type.

Overview of results. The purpose of this short note is to present some straight-
forward observations regarding d-variable RIFs of polydegree (n, 1), n =
(n1, . . . , nd−1) ∈ N

d−1, and their singularities. This restricted class of func-
tions is often singled as more amenable to analysis, see for instance [6,9,13]. If
ζ̂ = (ζ1, . . . ζd−1) ∈ T

d−1 is kept fixed and φ = p̃/p is a RIF in D
d, the resulting

one-variable function φζ̂(zd) is either a Möbius transformation mapping the
unit disk onto itself, or else is a unimodular constant. By encoding this fact
in a 2 × 2 matrix-valued function of ζ̂, and expressing the determinant of this
matrix in terms of ζ̂-polynomials extracted from p and p̃, we are able to read
off certain geometric characteristics of such φ.

This allows us to exhibit d-variable RIFs with prescribed singularity types,
and hence derivative integrability properties, while keeping the zd-degree of
the resulting functions equal to 1. As a specific application, we are able to
answer a stronger version of [9, Question 3] in the affirmative.

2. Preliminaries.

Polydegree (n, 1) RIFs and their singularities. Let p be an irreducible stable
polynomial in D

d, the latter meaning that Z(p) = {z ∈ C
d : p(z) = 0} does not

intersect D
d. We assume throughout that p has polydegree (n, 1) where n =

(n1, . . . , nd−1) ∈ N
d−1 and that p is atoral, which in this context means that

p and p̃ share no common factor, see [9, Section 1.2]. Then we can decompose
p as a sum

p(z) = p1(z1, . . . , zd−1) + zd p2(z1, . . . , zd−1) (2.1)

where p1(ẑ) and p2(ẑ) are in C[z1, . . . , zd−1], and similarly

p̃(z) = p̃2(ẑ) + zd p̃1(ẑ), p̃1, p̃2 ∈ C[z1, . . . , zd−1]. (2.2)

As we are interested in singular RIFs φ = p̃/p, we assume there exists at
least one ζ ∈ T

d such that p(ζ) = 0. A result of Pascoe [18, Corollary 1.7]
shows that if we assume p is irreducible, then any zero of p on T

d gives rise
to a singularity of φ. We restrict attention to the class of such p for which we
have the additional property that Z(p)∩T

d is finite; we call the corresponding
φ = p̃/p finite-singularity RIFs.

Definition 1. Suppose φ = eiap̃/p is a finite-singularity RIF in D
d with a sin-

gularity at �1d = (1, . . . , 1) ∈ T
d. We say p∗ ≥ 1 is a local zd-derivative integra-

bility index of φ if

p∗ = sup
p≥1

{
p :

∂φ

∂zd
∈ Lp

loc(T
d)

}
,

where each Lp
loc(T

d) is a standard local Lebesgue space of measurable functions
f on the d-torus such that |f |p is locally integrable near �1d.

The global zd-derivative integrability index of φ is the maximum of all the
local zd-derivative integrability indices of the finite-singularity RIF φ.
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Because of the argument principle, ∂φ
∂zd

is integrable for any RIF so the
assumption that p ≥ 1 is justified; see [5,7] for details. In a similar way, we
can define zj-derivative indices. To keep this note as elementary as possible,
we focus on the zd-derivative integrability index of a (n, 1) RIF.

It is not a straight-forward task to determine local or global zj-derivative
indices of a d-variable RIF. Two-dimensional RIFs are much better understood
than their general d-dimensional counterparts: for instance, the z1 and z2-
derivative indices of a RIF coincide when d = 2, but this is false when d ≥ 3,
and their values are determined by a geometric characteristic of p at its zeros.
See [7] and [10] for comprehensive presentations of the two-variable theory.

As is explained in [9], the zd-derivative integrability of a polydegree (n, 1)
RIF φ is controlled by the rate at which the zero set of p̃ approaches T

d from
inside the polydisk. To make this statement precise, we return to the one-
variable function φζ̂ and note that the Lp norm of the derivative of a Möbius
transformation is proportional to the distance to T of the point ψ0 ∈ D for
which φζ̂(ψ

0) = 0; see [8, Lemma 4.2]. Solving p̃(ζ̂ , ψ0) = 0 yields ψ0(ζ̂) =
−p̃2(ζ̂)/p̃1(ζ̂), where p̃1, p̃2 are the polynomials from (2.2).

Therefore, we set

ρφ(ζ̂) = 1 − |ψ0(ζ̂)|2 =
|p̃1(ζ̂)|2 − |p̃2(ζ̂)|2

|p̃1(ζ̂)|2 .

Note that since φ is assumed to be a finite-singularity RIF, the polynomial
p̃1 has no zeros in T

d−1; otherwise Z(p̃) ∩ T
d would contain a vertical line

[9, Section 3], which is impossible since zeros of p̃ on T
d are also zeros of p.

Hence the vanishing of ρφ near a singularity is determined by the vanishing of
its numerator. As a consequence of this discussion and [9, Theorem 2.1], we
obtain the following criterion.

Theorem 1. Suppose φ is a finite-singularity RIF with polydegree (n, 1) and a
singularity at �1d = (1, . . . , 1) ∈ T

d. Then ∂φ
∂zd

∈ Lp
loc(T

d) at �1d if and only if∫
U

[
|p̃1(ζ̂)|2 − |p̃2(ζ̂)|2

]1−p

dm(ζ̂) < ∞,

where U ⊂ T
d−1 is any sufficiently small open set in T

d−1 containing �1d−1.

Polydegree (n, 1) rational inner functions and 2×2 matrices. Suppose φ = p̃/p

is a finite-singularity RIF of polydegree (n, 1), and consider, for ζ̂ ∈ T
d−1 fixed,

the one-variable function

φζ̂(zd) = φ(ζ̂, zd).

Then φζ̂(zd) is a rational function in D, which attains unimodular boundary
values at every point ζd ∈ T by a theorem of Knese [16, Theorem C]. Hence φζ̂

is either a Möbius transformation of the unit disk, or else φζ̂(zd) is constant,
and equal to some element of T. The former obtains generically, but the latter
possibility certainly occurs on some exceptional sets, as can be checked by
considering φd(1, . . . , 1, ζd), where φd is the function in (1.2).
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This discussion together with (2.1), (2.2) guides the next definition.

Definition 2. The slice matrix of φ is the function Mφ : Td−1 → M2,2(C) given
by

Mφ(ζ̂) =
(

p̃1(ζ̂) p̃2(ζ̂)
p2(ζ̂) p1(ζ̂)

)
.

The slice determinant of φ is the function Pφ : Td−1 → C given by

Pφ(ζ̂) = det Mφ(ζ̂).

Formally, the numerator and the denominator of φζ̂(zd) can be read off
from Mφ(ζ̂)(zd, 1)T . The slice determinant allows us to detect singularities of
φ as well as their finer properties.

Lemma 2. The function φξ̂ is constant if and only if Pφ(ξ̂) = 0, and this
happens if and only if (ξ̂, η) is a singularity of φ for some value of η ∈ T.
Moreover, ∂φ

∂zd
∈ Lp

loc(T
d) at (ξ̂, η) if and only if

∫
Bε(ξ̂)

|Pφ(ζ̂)|1−pdm(ζ̂) < ∞
for sufficiently small ε > 0.

Proof. The first assertion is a direct consequence of the facts that, for a, b, c, d
complex, m(z) = (az+b)/(cz+d) furnishes a non-trivial Möbius transformation
of the Riemann sphere if and only if ad − bc 	= 0; and if ad − bc = 0, then m
is constant. See [12] for a comprehensive treatment of Möbius transformations
and their connections with matrix groups.

The second assertion is a consequence of the results in [6, Section 3.2], see
in particular [6, Lemma 3.3].

The third assertion essentially amounts to a computation. Namely,

det Mφ(ζ̂) = p̃1(ζ̂)p1(ζ̂) − p̃2(ζ̂)p2(ζ̂).

Observing that ζj = 1/ζ̄j , j = 1, . . . , d − 1, and examining the definition of
reflection polynomials, the expression on the right-hand side can be rewritten
(in standard multi-index notation) as

ζ̂np̄1(ζ̂)p1(ζ̂) − ζ̂np̄2(ζ̂)p2(ζ̂) = ζ̂n
(
|p̃1(ζ̂)|2 − |p̃2(ζ̂)|2

)
.

The result now follows after taking moduli and appealing to Theorem 1. �

3. Compositions and local properties of singularities. Given an (n, 1) finite-
singularity RIF, we define the following sequence of functions. See [21] for a
fuller study of dynamical properties of mappings, especially skew-products,
whose components are RIFs.

Definition 3. Let φ = p̃/p be a finite-singularity RIF of polydegree (n, 1). Then
φ2 : Dd → C is defined as

φ2(z) = (φζ̂ ◦ φζ̂)(zd), (ẑ, zd) ∈ D
d.

For any N ∈ N with N ≥ 3, φN is defined inductively as φζ̂ ◦ φN−1

ζ̂
.
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The functions φN are clearly rational and holomorphic in D
d. As can be seen

from (2.1) and (2.2), the zj-degree of φN is at most N ·nj for j = 1, . . . , d− 1,
and degzd

(φN ) ≤ 1. If φN has maximum possible polydegree given the initial
polydegree of φ, we say that φN has full polydegree. One complication that
can arise is that the numerator and the denominator of the composite function
may initially share a common factor. We always assume any such factors are
cancelled, in which case the polydegree of φN is reduced. In this case, we say
φN experiences a polydegree drop.

Lemma 3. Suppose φN = p̃N/pN is as in Definition 3 and does not experi-
ence a polydegree drop. Then φN is a finite-singularity RIF with the same
singularities as φ.

Proof. Since φ maps T
d onto T, Knese’s theorem implies that each (φN )∗ is

unimodular. Hence φN is inner.
Next, for ζ̂ ∈ T

d−1, computing the slice matrix of φN
ζ̂

amounts to taking

the matrix power MN
φ (ζ̂) = Mφ(ζ̂) · · · Mφ(ζ̂), see [12]. The assumption that

φN has full polydegree implies there are no common factors in the matrices
that would be cancelled in φN . Then, by multiplicativity of determinants,
det MN

φ (ζ̂) vanishes if and only if detMφ(ζ̂) does. Thus, the ζ̂-coordinates of
the singularities of φN are the same as those of φ. Since φN has degree 1 in
zd, and since φ has a singularity on the line {ζ̂} × T, each such ζ̂ determines
a unique η ∈ T such that (ζ̂, η) ∈ T

d is a singularity of φN . �

The following example illustrates that common factors may be introduced
or removed if φ is rotated by a factor eia, a ∈ R, or in other words, if p̃ is
replaced by eiap̃. Doing this only affects Pφ up to a unimodular factor.

Example 4. Consider φ = −(2z1z2 − z1 − z2)/(2 − z1 − z2). As is shown by
induction in [21, Example 1], each φN , N = 1, 2, 3, . . ., has bidegree (1, 1).

Next, consider φ = (2z1z2 − z1 − z2)/(2 − z1 − z2). Then

ψ = φ2 =
4z21z2 − z21 − 3z1z2 − z1 + z2

4 − 3z1 − z2 − z1z2 + z21
is a RIF that often features as a second example of a singular RIF on the bidisk;
see for instance [2,7,8]. In particular, while ∂φ

∂z2
∈ Lp(T2) if and only if p < 3/2,

it was shown by direct computation in [7, Example 2] that ∂ψ
∂z2

∈ Lp(T2) if
and only if p < 5/4. We now give a conceptual explanation for this finding.

Theorem 5. Suppose φ = p̃/p is a finite-singularity RIF of polydegree (n, 1),
with a singularity at �1d, and suppose the local zd-derivative integrability index
of φ at �1d is equal to p∗ = 1 + q∗, where q∗ ≥ 0.

If N ∈ N and φN has full polydegree, then the RIF φN = p̃N/pN has local
zd-derivative integrability index equal to 1 + q∗/N at �1d.

Proof. By Lemma 3, φN is a RIF with the same singularities as φ, and in
particular, φN has a singularity at �1d. Since p̃N and pN have no common
factors that can be cancelled, the slice matrix of φN is equal to MN

φ , the
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N -fold power of the slice matrix of φ. Hence the order of vanishing of the
slice determinant of φN is equal to N times the order of vanishing of the slice
determinant of φ. In other words, ∂φ

∂zd
∈ Lp(Td) precisely when∫

U

(|p̃1(ζ̂)|2 − |p̃2(ζ̂)|2)N(1−p)dm(ζ̂)

is finite for U ⊃ �1d−1 sufficiently small. By our assumption on φ, this holds if
N(1 − p) > −q∗ and fails when N(1 − p) < −q∗, and the result follows. �

When d = 2 and φ has a singularity at (eiη1 , eiη2), it can be shown that
1 − |ψ0(eiθ1)|2 � (θ1 − η1)2K for some K ∈ N. The number 2K is called the
z2-contact order of φ at (eiη1 , eiη2); see [7,8] for definitions and proofs. The
assumption that φ has finitely many singularities becomes superfluous in two
variables by Bézout’s theorem, and we obtain the following.

Corollary 6. Suppose φ = p̃/p is a bidegree (n1, 1) RIF in D
2 with s singu-

larities having associated contact orders {2K1, . . . , 2Ks}, and suppose φN =
p̃N/pN has full polydegree. Then φN has s singularities with contact orders
{2NK1, . . . , 2NKs}.
4. Applications.

Finding extraneous zeros of two-variable RIF denominators. In [19], Pascoe
presents a way of constructing two-variable RIFs with at least one singularity
where the local contact order can be prescribed to take any value 2K, K ∈ N.
(Strictly speaking, the construction is given in the setting of the bi-upper half-
plane, but it can readily be transferred to the bidisk by means of conjugation
by a suitable Möbius map. See [8, Section 7].) In particular, any positive even
integer is the contact order of some RIF in D

2.
However, Pascoe’s construction may produce additional singularities in φ

and, to the author’s knowledge, does not appear to give any immediate in-
formation about their location or nature. In principle, this can be addressed
by finding all zeros of the two-variable denominator p, and then using the
techniques in [8,10] to determine the associated contact orders. By examining
the matrix-valued function ζ1 → Mφ(ζ1), we can detect any such extrane-
ous singularities and determine their contact orders in a fairly simple way.
First, we compute Pφ(ζ1) = det Mφ(ζ1) and find the zeros {ζ11 , . . . , ζs

1} of the
one-variable polynomial Pφ that are located on the unit circle. Plugging these
values into p, we find the point ζ2 ∈ T at which the polynomial p(ζj

1 , z2) van-
ishes as a function of z2. Finally, the order of vanishing of Pφ gives us the
z2-contact order of φ at each singularity. By [8, Section 4], this is equal to the
z1-contact order of φ as well, allowing us to read off the derivative integrability
of φ at each singularity.

Example 7 ([8, Example 7.4]). Consider the two-variable RIF

φ(z1, z2) =
4z31z2 + z31 − z21 + 3z1 + 1

4 + z2 − z1z2 + 3z21z2 + z31z2
,
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which is obtained from Pascoe’s method. His construction guarantees that φ
has a singularity at (−1,−1) with contact order equal to 4. The slice matrix
associated with φ is

Mφ(ζ1) =
(

4ζ31 ζ31 − ζ21 + 3ζ1 + 1
ζ31 + 3ζ21 − ζ1 + 1 4

)

and has determinant

Pφ(ζ1) = det Mφ(ζ1) = −(ζ1 − 1)2(ζ1 + 1)4.

We immediately discern that φ has an additional singularity at (1,−1), with
contact order equal to 2, as was checked in an ad hoc way in [8].

Further derivative integrability cutoffs of d-variable RIFs. In [9], a glueing
construction from [8, Section 7] was adapted to three variables and was used
to exhibit a three-variable RIF with a single isolated singularity and worse
derivative integrability properties than the three-variable instance of (1.2).
The motivation for this was to demonstrate that bad derivative integrability
in higher dimensions does not necessarily require a large singularity set. The
drawback of that example is that the RIF so constructed has tridegree (2, 2, 2),
which in turn causes the verification of its claimed derivative integrability
cutoff to involve lengthy computations. Thus, [9, Question 3] asked whether
there exist tridegree (n1, n2, 1) RIFs manifesting the same phenomenon. The
example below answers this in the affirmative, in all dimensions d ≥ 3.

Example 8. For d ≥ 2 fixed and N ∈ N, we consider the RIF in (1.2) and its
associated compositions RIFs φN

d = p̃d,N/pd,N , all of degree 1 in zd. Reading
off the slice matrix of φd from (1.2), we check that Mφd

(�1)N has non-zero
entries. This means there are no common factors vanishing at �1 to cancel in
φN

d , and we can proceed as in Theorem 5.
In [9, Example 2.5], it was shown that near �1d−1 ∈ T

d−1,

1 − |ψ0(eiθ1 , . . . , eiθd−1)|2 �
d−1∑
k=1

θ2k,

and hence

[|p̃1(eiθ1 , . . . , eiθd−1)|2 − |p̃2(eiθ1 , . . . , eiθd−1)|2]N �
(

d−1∑
k=1

θ2k

)N

.

Then ∂φd,N

∂zd
∈ Lp(Td) if and only if

∫

Bε(	0)

(
d−1∑
k=1

θ2k

)N(1−p)

dm
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converges for small ε > 0. In d − 1-dimensional polar coordinates, this corre-
sponds to the convergence of

1∫
0

r2N(1−p)rd−2dr =

1∫
0

r2N+d−2−2Npdr.

This integral is finite if and only if −1 < 2N + d − 2 − 2Np, and hence we
obtain the zd-derivative integrability cutoffs

p∗(d,N) = 1 +
d − 1
2N

. (4.1)

This extends the work in [9, Example 2.5], where it was shown that p∗(d, 1) =
1 + (d − 1)/2 = (d + 1)/2. Next, since p∗(2, N) = 1 + 1/(2N), we observe that
any contact order is realized by a RIF with a unique singularity at (1, 1) ∈ T

2.
Finally, the fact that p∗(3, 2) = 3/2 shows that φ3,2, with denominator

p3,2(z) = 9 − 6z1 − 6z2 − 3z3 + z21 + z22 + 3z1z2 + 2z1z3 + 2z2z3 − 3z1z2z3,

provides an example of a RIF giving a positive answer to [9, Question 3].
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via Hilbert space methods. Math. Ann. 352, 581–624 (2012)

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


180 A. Sola Arch. Math.

[3] Anderson, J.M., Dritschel, M.A., Rovnyak, J.: Schwarz-Pick inequalities for the

Schur-Agler class on the polydisk and the unit ball. Comput. Methods Funct.

Theory 8, 339–361 (2008)

[4] Ball, J.A., Sadosky, C., Vinnikov, V.: Scattering systems with several evolutions

and multidimensional input/state/output systems. Integral Equations Operator

Theory 52, 323–393 (2005)

[5] Bergqvist, L.: Rational inner functions and their Dirichlet-type norms. Comput.

Methods Funct. Theory, to appear. https://doi.org/10.1007/s40315-022-00465-1

[6] Bickel, K., Cima, J.A., Sola, A. A.: Clark measures for rational inner functions.

Michigan Math. J., to appear. https://doi.org/10.1307/mmj/20216046

[7] Bickel, K., Pascoe, J.E., Sola, A.: Derivatives of rational inner functions: geom-

etry of singularities and integrability at the boundary. Proc. Lond. Math. Soc.

116, 281–329 (2018)

[8] Bickel, K., Pascoe, J.E., Sola, A.: Level curve portraits of rational inner func-

tions. Ann. Sc. Norm. Sup. Pisa Cl. Sc. (5) 21, 451–494 (2020)

[9] Bickel, K., Pascoe, J.E., Sola, A.: Singularities of rational inner functions in

higher dimensions. Amer J. Math. 144, 1115–1157 (2022)

[10] Bickel, K., Knese, G., Pascoe, J.E., Sola, A.: Local theory of stable polynomials

and bounded rational functions of several variables. arXiv:2109.07507 (2021)

[11] Garcia, S.R., Mashreghi, J., Ross, W.T.: Finite Blaschke Products and Their

Connections. Springer, Cham (2018)

[12] Jones, G.A., Singerman, D.: Complex Functions. An Algebraic and Geometric

Viewpoint. Cambridge University Press, Cambridge (1987)

[13] Knese, G.: Schur-Agler rational inner functions on the tridisk. Proc. Amer. Math.

Soc. 139, 4063–4072 (2011)

[14] Knese, G.: Rational inner functions in the Schur-Agler class of the polydisk.

Publ. Mat. 55, 343–357 (2011)

[15] Knese, G.: Stable symmetric polynomials and the Schur-Agler class. Illinois J.

Math. 55, 1603–1620 (2011)

[16] Knese, G.: Integrability and regularity of rational functions. Proc. Lond. Math.

Soc. 111, 1261–1306 (2015)

[17] Kollár, J.: Bounded meromorphic functions on the 2-disc. arXiv:2202.04043

(2022)

[18] Pascoe, J.E.: A wedge-of-the-edge theorem: analytic continuation of Pick func-

tions. Bull. London Math. Soc. 49, 926–925 (2017)

[19] Pascoe, J.E.: An inductive Julia-Carathéodory theorem for Pick functions in two
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