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On polyharmonic helices in space forms

Volker Branding

Abstract. In this article, we study polyharmonic curves of constant cur-
vature where we mostly focus on the case of curves on the sphere. We
classify polyharmonic curves of constant curvature in three-dimensional
space forms and derive an explicit family of polyharmonic curves on the
sphere. Our results give new insights into the geometric structure of higher
order variational problems.
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1. Introduction and results. Geometric variational problems are a vibrant field
of research with many links to analysis, geometry, and theoretical physics.
One of their most prominent representatives are harmonic maps which are a
subject on which a significant number of results could be achieved by many
mathematicians.

Let us briefly recall the mathematical setup employed in the theory of har-
monic maps. We consider a smooth map φ between two Riemannian manifolds
(M, g) and (N,h) and its associated energy

E1(φ) = E(φ) :=
∫

M

|dφ|2dV. (1.1)

The critical points of (1.1) are characterized by the vanishing of the so-called
tension field which is defined as follows

τ(φ) := Trg ∇̄dφ ∈ Γ(φ∗TN), (1.2)
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where ∇̄ represents the connection on φ∗TN . The solutions of τ(φ) = 0 are
called harmonic maps. The harmonic map equation is a second order semilinear
elliptic partial differential equation for which many powerful tools, such as
the maximum principle, can be used to investigate existence and qualitative
behavior of a given solution.

There are various variants in the mathematics literature that extend the
classical energy functional (1.1) taking into account higher derivatives of the
map φ.

One possibility is given by the following energy functional, usually referred
to as r-energy, where we need to distinguish between the even and the odd
case

E2s(φ) :=
∫

M

| (d∗d) · · · (d∗d)︸ ︷︷ ︸
s−times

φ|2dV, s = 1, . . . , (1.3)

E2s+1(φ) :=
∫

M

|d (d∗d) · · · (d∗d)︸ ︷︷ ︸
s−times

φ|2dV, s = 1, . . . .

The critical points of (1.3) are called polyharmonic maps of order r or simply
r-harmonic maps and were explicitly determined by Wang [29] and in addition
by Maeta [20], who also calculated the second variation of (1.3).

Polyharmonic maps are a semilinear elliptic equation of order 2r making it
a challenging problem to find explicit solutions of the latter. For the explicit
structure of r-harmonic maps, we refer to [20].

Let us mention several recent results obtained for the critical points of (1.3).
Explicit solutions of the Euler–Lagrange equations of (1.3) were constructed in
[25,26]. Hypersurfaces in space forms characterized by critical points of (1.3)
have been investigated in [4,27]. For classification results of the critical points
of (1.3), we refer to [7] and various unique continuation properties were studied
in [8]. The stress-energy tensor of (1.3) has been systematically analyzed in
[5].

Another possibility of obtaining a higher order energy functional for maps
between Riemannian manifolds was suggested by Eells and Sampson in 1964
[15] by considering

EES
r (φ) :=

∫

M

|(d + d∗)rφ|2dV, r = 1, . . . . (1.4)

The critical points of (1.4) are referred to as ES-r-harmonic maps. In gen-
eral, the critical points of (1.3) and (1.4) will be given by a different set of
equations. However, if r = 1, 2, 3 or in the case of a one-dimensional domain,
both functionals (1.3) and (1.4) coincide. For an extensive analysis of (1.4) and
a discussion of the differences between (1.3) and (1.4), we refer to the recent
articles [3,6,8,27].

A drawback of the energy functionals (1.3) and (1.4) is the fact that they
are not coercive which makes it a challenging problem to prove the existence
of critical points. However, there exists another higher order energy functional
which overcomes this problem. In this case, it is assumed that the target
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manifold N is realized as a submanifold of some R
q. For example, in the case

of a spherical target, we can consider smooth maps u : M → S
n ⊂ R

n+1 and
in this case the energy functional for extrinsic polyharmonic maps is given by

Eext
2s (u) :=

∫

M

|Δsu|2dV, s = 1, . . . , (1.5)

Eext
2s+1(u) :=

∫

M

|∇Δsu|2dV, s = 1, . . . .

For a recent analysis of (1.5) and related background material, we refer to [16].
In this article, we will consider the aforementioned energy functionals (1.3)

and (1.4) in the case of a one-dimensional domain and mostly choose a spherical
target.

The r-energy for a curve γ : I ⊂ R → N (corresponding to both (1.3) and
(1.4) if dim M = 1) is given by

Er(γ) :=
∫

I

|∇r−1
T T |2ds, (1.6)

where T = γ′ is the tangent vector of γ and s represents the parameter of the
curve γ.

The critical points of (1.6) were calculated in [20,29] and are characterized
by the equation

τr(γ) = ∇2r−1
T T +

r−2∑
l=0

(−1)lRN (∇2r−3−l
T T,∇l

T T )T = 0 (1.7)

with RN being the curvature tensor of the manifold N .
Solutions of (1.7) are called polyharmonic curves of order r or shortly r-

harmonic curves. In the case of r = 1 the energy (1.6) reduces to the usual
energy of a curve whose critical points are geodesics. Clearly, every geodesic is
a solution of the equation for r-harmonic curves (1.7), hence we are interested
in finding non-geodesic solutions of (1.7) which we will call proper r-harmonic
curves.

Let us give an overview on the results for r-harmonic curves which have
already been established in the mathematics literature. Much research has
been performed for r = 2 in which case solutions of (1.7) are called biharmonic
curves. Biharmonic curves on surfaces were investigated in [12], for biharmonic
curves on the Euclidean sphere, we refer to [1,10,11]. The Euler-Lagrange
method for biharmonic curves was introduced in [13] and further developed
in [28]. Making use of an algebraic approach proper biharmonic curves on
quadrics were studied in [24], explicit formulas for proper biharmonic curves
in Sasakian space forms have been obtained in [17]. For an extended summary
on biharmonic curves, we refer to [14, Section 4].

If r = 3, the solutions of (1.7) are called triharmonic curves. Some general
results on triharmonic maps have been obtained in [21], triharmonic curves on
surfaces and three dimensional spaces with constant curvature were studied in
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[20]. Recently, triharmonic curves on three-dimensional homogeneous spaces
[23] and on f -Kenmotsu Manifolds [2] have been investigated. While bihar-
monic curves always need to have constant geodesic curvature, it was shown
in [23, Theorem 1.1] that there exist proper triharmonic curves whose geodesic
curvature is non-constant.

Not many results have been established for r-harmonic curves and r ≥ 3 as
this comes with many challenging technical difficulties. As already mentioned
above, a geodesic is always a solution of the equation for r-harmonic curves
(1.7). However, it was shown by Maeta [20] that biharmonic curves are not
triharmonic in general and we thus expect that r-harmonic curves will be
different from q-harmonic curves, whenever q �= r. For the investigation of
r-harmonic curves in Euclidean spaces, we refer to [19, Section 3].

It should also be mentioned that it is possible to produce r-harmonic curves
from geodesics by reparametrizing the domain using a diffeomorphism. To this
end, assume that ϕ(t) is a geodesic, we reparametrize it using a diffeomorphism
μ(s) and consider ψ(s) := (ϕ◦μ)(s). Then a direct calculation shows that ψ(s)
is a proper r-harmonic curve if and only if μ(s) is a polynomial of order r′,
where 2 ≤ r′ ≤ 2r − 1. For more details, see [3, Section 2.1].

Throughout this article, we will use the word helix in order to denote a
curve whose geodesic curvature k and whose torsion τ are constant.

The first main contribution of this article is the following theorem charac-
terizing r-harmonic curves on three-dimensional space forms. Note that in the
following theorem the symbol τ represents the torsion of the curve γ and does
not represent the tension field as defined in (1.2).

Theorem 1.1. Let γ : I → N be an r-harmonic curve parametrized by arclength
where N is a three-dimensional space form with constant curvature K. Fur-
thermore, we assume that the geodesic curvature k and the torsion τ of the
curve γ are constant. Then the following relation holds

(k2 + τ2)2 = K
(
(r − 1)k2 + τ2

)
. (1.8)

This result extends a corresponding result for triharmonic curves [23, Theo-
rem 4.4] to arbitrary values of r. Moreover, a similar statement for r-harmonic
curves on surfaces was given in [20, Propositions 5.6, 5.7].

A direct consequence of Theorem 1.1 is the following

Corollary 1.2. Let γ : I → N be an r-harmonic curve parametrized by ar-
clength where N is a three-dimensional space form with constant non-positive
curvature K ≤ 0. Furthermore, we assume that the geodesic curvature k and
the torsion τ of the curve γ are constant. Then γ is a geodesic.

Remark 1.3. (1) The last statement supports the fact that for a target with
negative curvature, polyharmonic maps necessarily have to be harmonic
while in the case of a spherical target there may be additional solutions
besides harmonic maps.

(2) If we consider an r-harmonic helix in the sphere S
n with n sufficiently

large, one can show by rewriting the Euler-Lagrange equation (1.7) in
terms of its Frenet-frame that r-harmonic helices actually lie in S

2r−1.
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Here, we use the terminology helix to denote a curve of which all geodesic
curvatures in its Frenet-frame are constant. As S

2r−1 is totally geodesic
in S

n for n sufficiently large, this supports the fact that the most general
r-harmonic helix of a sphere lies in S

2r−1.

Using the explicit parametrization of helices in S
3, we can get the following

application of Theorem 1.1:

Corollary 1.4. For any r ≥ 3, there exists a family of r-harmonic curves
γ : I → S

3 with constant positive geodesic curvature k and constant positive
torsion τ .

The second main result of this article is the following existence result for
r-harmonic curves on the sphere.

Theorem 1.5. The curve γ : I → S
n given by

γ(s) = cos(
√

rs)e1 + sin(
√

rs)e2 + e3, (1.9)

where ei, i = 1, 2, 3, are mutually perpendicular and satisfy |e1|2 = |e2|2 =
1
r , |e3|2 = r−1

r is a proper r-harmonic curve which is parametrized by arclength.

Remark 1.6. (1) The curves (1.9) are planar and have constant geodesic cur-
vature k2 = r − 1 which is precisely what we expect from (1.8) on the
two-dimensional sphere S

2.
(2) The family of r-harmonic curves obtained in Theorem 1.5 is unstable

in the sense that for such curves the second variation of the r-energy is
negative. A detailed investigation of the stability of r-harmonic curves
γ : I → S

2 for r = 2 was carried out in [22] and for r = 2, 3, 4 in [3,
Section 5].

(3) Since the classification of r-harmonic curves is up to isometries, we can
assume that k > 0 and τ ≥ 0. Let us denote x = k2 and y = τ2, then with
K = 1, that is, the case of a spherical target, will give us the equation
of a conic and we are interested in the intersection of the conic with the
first quadrant. Actually, when r = 2, the conic consists of two parallel
lines given by x + y = 0 and x + y = 1 and the biharmonic curves can be
indexed by the segment (A,B], where A = (0, 1) and B = (1, 0). In the
case that r ≥ 3, the conic is a parabola and its intersection with the first
quadrant is a non-empty and connected segment of a parabola.

(4) It is well-known that a helix in S
3 is a geodesic on the generalized Clifford

torus T = S
1(cos(α)) × S

1(sin(α)), α ∈ (0, π/2). In the case that γ is a
proper biharmonic curve in S

3, it then is a geodesic on the Clifford torus
T = S

1( 1√
2
) × S

1( 1√
2
) ⊂ S

3, see for example [1, Theorem 2.2]. Note that
this torus is special as it is minimal in S

3. However, for an r-harmonic
helix in S

3 with r ≥ 3 arbitrary, but fixed, the situation is different. It
lies on a torus T = S

1(cos(α)) × S
1(sin(α)), which is never the Clifford

torus, and which is different for each member of the family of r-harmonic
helices described in Corollary 1.4 while in the case of biharmonic curves
the torus is always the Clifford torus.



218 V. Branding Arch. Math.

(5) The last two items strongly suggest that biharmonic curves are special
among all r-harmonic curves.

The statement of Theorem 1.5 is known in the mathematics literature [11,
Proposition 4.4] in the biharmonic case (r = 2).

Similar results for the inclusion map ι : S
n ↪→ S

n+1 were already ob-
tained. It was shown in [25, Theorem 1.1] that the canonical inclusion ι :
S

n(R) ↪→ S
n+1 is a proper critical point of (1.3), which corresponds to a

proper r-harmonic submanifold S
n(R) of S

n+1 if and only if R = 1√
r
. This

result was later generalized to critical points of (1.4) in [3, Theorem 1.1].
Throughout this article, we will use the following notation. By s we will

denote the parameter of the curve γ, the first, second, and third derivative of
γ will be written as T := γ′, γ′′, and γ′′′, respectively. The l-th derivative of γ
with respect to s will be written as γ(l) where l = 4, . . . , 2r.

2. Proofs of the main results. In this section, we provide the proofs of the
main results of this article, which are Theorems 1.1 and 1.5.

In the case of a space form, the Riemann curvature tensor acquires the
simple form

R(X,Y )Z = K(〈Z, Y 〉X − 〈Z,X〉Y ),

where X,Y,Z are vector fields and K the sectional curvature. Then the equa-
tion for polyharmonic curves (1.7) simplifies as follows

τr(γ) = ∇2r−1
T T + K

r−2∑
l=0

(−1)l
(〈T,∇l

T T 〉∇2r−3−l
T T − 〈T,∇2r−3−l

T T 〉∇l
T T

)
= 0

(2.1)

where T = γ′ represents the unit tangent vector of the curve γ.
Now, we assume that the target manifold N is a three-dimensional space

form with a metric of constant curvature K. Moreover, let γ be an arclength
parametrized curve with tangent vector T . We choose the orthonormal Frenet-
frame {T, F2, F3} which satisfies the Frenet-equations

∇T T = kF2, ∇T F2 = −kT + τF3, ∇T F3 = −τF2, (2.2)

where k represents the geodesic curvature of the curve γ and τ its torsion.
Again, note that we use the symbol τ to denote both the torsion of a curve
and the tension field of a map, see (1.2).

Lemma 2.1. Let γ : I → N be a curve parametrized by arclength together with
its Frenet-frame {T, F2, F3}. Furthermore, we assume that k and τ are con-
stant. Then the following formulas hold

∇2l
T T = (−1)lk2(k2 + τ2)l−1T + kτ(−1)l+1(k2 + τ2)l−1F3, (2.3)

∇2l+1
T T = (−1)lk(k2 + τ2)lF2,

where l ≥ 1.
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Proof. Using the Frenet-equations (2.2), we find

∇2
T T = − k2T + kτF3,

∇3
T T = − k(k2 + τ2)F2,

∇4
T T =k2(k2 + τ2)T − kτ(k2 + τ2)F3,

∇5
T T =k(k2 + τ2)2F2,

∇6
T T = − k2(k2 + τ2)2T + kτ(k2 + τ2)2F3,

∇7
T T = − k(k2 + τ2)3F2,

∇8
T T =k2(k2 + τ2)3T − kτ(k2 + τ2)3F3.

The claim then follows by iteration. �

Proof of Theorem 1.1. First, we assume that r is even. Using (2.3) in (2.1),
we find

r−2∑
l=0

(−1)l〈T,∇l
T T 〉∇2r−3−l

T T =

r−2
2∑

l=0

〈T,∇2l
T T 〉∇2r−3−2l

T T

= k(k2 + τ2)r−2F2 + (
r

2
− 1)k3(k2 + τ2)r−3F2,

r−2∑
l=0

(−1)l〈T,∇2r−3−l
T T 〉∇l

T T = −
r−4
2∑

l=0

〈T,∇2r−2l−4
T T 〉∇2l+1

T T

= (1 − r

2
)k3(k2 + τ2)r−3F2.

Hence, we may conclude that the equation for an r-harmonic curve (2.1)
implies

0 = k(k2 + τ2)r−3
( − (k2 + τ2)2 + K(k2 + τ2 + (r − 2)k2)

)
F2

yielding the claim in the case that r is even. The case of r being odd can be
treated similarly. �

Proof of Corollary 1.4. An arbitrary helix in S
3 can be parametrized by

γ(s) =
(
cos α cos(as), cos α sin(as), sin α cos(bs), sin α sin(bs)

)
, (2.4)

where α ∈ (0, π/2) and a, b are positive real numbers. We require that
a2 cos2 α+b2 sin2 α = 1 which ensures that |γ′|2 = 1. We choose a > b and find
that the geodesic curvature k and the torsion τ of the curve (2.4) are given
by

k =
√

(a2 − 1)(1 − b2), τ = ab. (2.5)

For more details on the geometry of helices in S
3, we refer to [18, Section 3].

Inserting (2.5) into the general formula relating torsion and curvature of a
polyharmonic curve (1.8), we find after a straightforward calculation

(a2 + b2 − 1)2 = (r − 1)(a2 + b2 − a2b2 − 1) + a2b2. (2.6)
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The system (2.6) describes a particular conic section and one can expect that
there exist many positive a, b ∈ R that satisfy (2.6). In order to find one
particular solution, we set

a = R cos(t), b = R sin(t), R > 1, t ∈ (0, ε).

Inserting into (2.6) then gives

sin(2t) =
2

R2

√
(R2 − 1)(r − R2)

r − 2
,

where we now assume that r ≥ 3 and R2 < r. For R2 being close to r, the
right-hand side of this equation is close to zero such that there exists a t ∈ (0, ε)
solving

t(R) :=
1
2

arcsin

(
2

R2

√
(R2 − 1)(r − R2)

r − 2

)
.

It is straightforward to check that

lim
R2→r

R cos(t(R)) =
√

r, lim
R2→r

R sin(t(R)) = 0

and hence for R2 close enough to r, we get a = R cos(t) > 1 and b = R sin(t) <
1 that solve the system (2.6). Finally, as a > 1, b < 1, one can always find
a number α ∈ (0, π/2) such that the constraint a2 cos2 α + b2 sin2 α = 1 is
satisfied. �

In the following, we will provide the proof of Theorem 1.5. We consider an
ansatz of the form

γ(s) = cos(as)e1 + sin(as)e2 + e3,

where ei, i = 1, 2, 3, are mutually perpendicular, |e1|2 = |e2|2 = α2, |e1|2 +
|e3|2 = 1, and a ∈ R. Note that we do not require the curve to be parametrized
by arclength at this point.

We will use the relation between the r-energy (1.3) and the associated
Lagrangian

Er(γ) =
∫

I

LS
n

r ds =
∫

I

|∇r−1
T T |2ds.

Moreover, we will make use of the inclusion map ι : Sn → R
n+1 and also exploit

the special structure of the Levi-Civita connection ∇ on the sphere

dι(∇T X) = X ′ + 〈X, γ′〉γ,

where X is a vector field on S
n ⊂ R

n+1.
Using these facts, we give an expression of the Lagrangian associated with

the r-energy for arbitrary values of r.

Lemma 2.2. Consider the curve γ : I → S
n given by

γ(s) = cos(as)e1 + sin(as)e2 + e3, (2.7)

where ei, i = 1, 2, 3, are mutually perpendicular, |e1|2 = |e2|2 = α2, |e1|2 +
|e3|2 = 1, and a ∈ R.
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Then, for any l ∈ N, the following formulas hold

dι(∇2l
T T ) = (−1)la2l(1 − α2)lγ′, (2.8)

dι(∇2l+1
T T ) = (−1)la2l(1 − α2)ldι(∇T T ),

where ι : Sn → R
n+1 denotes the embedding of Sn into R

n+1.

Proof. Using the above ansatz, a direct calculation shows

dι(∇T T ) = γ′′ + a2α2γ,

dι(∇2
T T ) = γ′′′ + a2α2γ′

= −a2(1 − α2)γ′,

dι(∇3
T T ) = γ(4) + 〈γ′′′, γ′〉γ + a2α2γ′′ + a4α4γ,

= −a2(1 − α2)(γ′′ + a2α2γ)

= −a2(1 − α2)dι(∇T T ),

dι(∇4
T T ) = a4(1 − α2)2γ′,

dι(∇5
T T ) = a4(1 − α2)2dι(∇T T ).

The claim now easily follows by induction. �

Using (2.8), we are now able to give a recursion formula for the r-energy
of a curve of the form (2.7). Similar recursion formulas for the inclusion map
ι : S

n ↪→ S
n+1 were obtained in [25, Lemma 3.8] in the study of proper r-

harmonic submanifolds and in [3, Proposition 2.10] in the study of proper
ES-r-harmonic submanifolds.

Lemma 2.3. Consider the curve γ : I → S
n given by

γ(s) = cos(as)e1 + sin(as)e2 + e3,

where ei, i = 1, 2, 3, are mutually perpendicular, |e1|2 = |e2|2 = α2, |e1|2 +
|e3|2 = 1, and a ∈ R. Then the Lagrangian associated with the r-energy of γ
is given by

LS
n

r (α) = a2rα2(1 − α2)r−1, (2.9)

where r ≥ 1.

Proof. Using (2.8), a direct calculation yields

|dι(∇2l
T T )|2 = a4l(1 − α2)2l|γ′|2

= α2a4l+2(1 − α2)2l,

|dι(∇2l+1
T T )|2 = a4l(1 − α2)2l|dι(∇T T )|2

= α2a4l+4(1 − α2)2l+1

completing the proof. �

Proof of Theorem 1.5. By making use of the ansatz (2.7), we have reduced the
general r-energy for a curve (1.6) to the simpler form (2.9).
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Thus, we now consider the variation of the Lagrangian associated to (2.9)
with respect to α and find

d

dα
LS

n

r (α) = 2a2rα(1 − α2)r−2(1 − α2r).

The right hand side of this equation vanishes for α = 1 (assuming that r ≥ 3)
corresponding to the case of γ being a geodesic but also for 1 = α2r which is
the case we are interested in.

At this point, we impose that the curve γ is parametrized with respect
to arclength. Employing the ansatz (2.7), we find |γ′|2 = a2α2. Combining
the arclength constraint a2α2 = 1 with the equality obtained from the first
variation formula 1 = α2r, we obtain a2 = r completing the proof. �

Remark 2.4. As the curve (2.7) is a plane curve, we could choose S
2 instead

of Sn in the proof of Theorem 1.5.
In [9, Remark 2.9], it is noted that the composition of a biharmonic and a

totally geodesic map is biharmonic and one should expect that the same also
holds true for r-harmonic maps. Consequently, it should be possible to prove
Theorem 1.5 by only working on S

2 and then using that S2 is totally geodesic
in S

n for n ≥ 3.

Let us also make a short comment on the stability of the family of curves
(1.9) given in Remark 1.6.

Proposition 2.5. Let γ : I → S
n be an r-harmonic curve parametrized by

arclength of the form (1.9). Then the second variation of the r-energy eval-
uated at a critical point is given by

d2

dα2
Er(α)

∣∣
α2r=1

= −4|I|rr
(r − 1

r

)r−2
< 0, (2.10)

where |I| =
∫

I
ds.

Proof. By a direct calculation, we find

d2

dα2
Er(α) = 2|I|a2r(1 − α2)r−3(1 − α2r)(1 + 3α2 − 2α2r)

− 4|I|a2rα2r(1 − α2)r−2.

Evaluating this formula at the critical point α2r = 1, a2 = r completes the
proof. �
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