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An inequality on polarized endomorphisms

Fei Hu and Tuyen Trung Truong

Abstract. We show that assuming the standard conjectures, for any
smooth projective variety X of dimension n over an algebraically closed
field, there is a constant c > 0 such that for any positive rational number
r and any polarized endomorphism f of X, we have

‖Gr ◦ f‖ ≤ cdeg(Gr ◦ f),

where Gr is a correspondence of X so that for each 0 ≤ i ≤ 2n, its pull-
back action on the i-th Weil cohomology group is the multiplication-by-ri

map. This inequality is known to imply the generalized Weil Riemann hy-
pothesis and is a special case of a more general conjecture by the authors’
work Hu and Truong (A dynamical approach to generalized Weil’s Rie-
mann hypothesis and semisimplicity. arXiv:2102.04405v3, 2021).
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1. Introduction. Let X be a smooth projective variety of dimension n over an
algebraically closed field k of arbitrary characteristic and let HX be a fixed
ample divisor on X. Fix a Weil cohomology theory H•(X) with coefficients
in a field F of characteristic zero (see [8, §1.2]). Let r ∈ Q>0 be a positive
rational number. Let γr be the unique homological correspondence of X, i.e.,

γr ∈ H2n(X × X) �
2n⊕

i=0

Hi(X) ⊗F H2n−i(X) �
2n⊕

i=0

EndF(Hi(X)),

such that its pullback γ∗
r on Hi(X) is the multiplication-by-ri map for each i.

Note that γr commutes with all homological correspondences of X.
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If we assume that the standard conjecture C holds on X, then clearly the
above γr is algebraic and can be represented by a (rational) correspondence
Gr :=

∑2n
i=0 riΔi, i.e., γr = clX×X(Gr) (see [4, Remark 1.8]). Note that the

real vector space Nn(X × X)R of numerical cycle classes of codimension n on
X×X is finite dimensional (see [8, Theorem 3.5]); we thus endow it with a norm
‖·‖. We also fix a degree function deg on Nn(X × X)R with respect to a fixed
ample divisor HX×X := pr∗

1 HX + pr∗
2 HX by setting deg(g) := g · Hn

X×X . The
main result of this note is an inequality concerning the norm and the degree
of the composite correspondence Gr ◦ f of the above Gr and any polarized
endomorphism f (viewed as a correspondence via its graph), assuming the
standard conjectures. More precisely, we have:

Theorem 1. Suppose that the standard conjecture B holds on X and the stan-
dard conjecture of Hodge type holds on X × X. Then for any r ∈ Q>0, the
above homological correspondence γr of X is algebraic and represented by a
(rational) correspondence Gr of X; moreover, there exists a constant c > 0,
depending only on the Betti numbers bi of X, the dimension n of X, and the
choices of norm and degree, but independent of r, so that for any polarized
endomorphism f of X (i.e., f∗HX ∼ qHX for some q ∈ N>0), we have

‖Gr ◦ f‖ ≤ cdeg(Gr ◦ f). (1.1)

Remark 2. In a letter to Weil, Serre [9] sketched an elegant proof of a Kähler
analog of Weil’s Riemann hypothesis, which involves the pullback actions of
polarized endomorphisms on cohomology groups of compact Kähler manifolds.
The positive-characteristic analog of this famous result is still conjectural,
which we call generalized Weil’s Riemann hypothesis and semisimplicity (see
[4, Conjectures 1.4 and 1.5]).

In the 1960s, Bombieri and Grothendieck independently proposed the so-
called standard conjectures, which would yield the above generalized Weil Rie-
mann hypothesis and semisimplicity (see [8] for details). It was Deligne [3] who
ingeniously solved Weil’s Riemann hypothesis. However, his arguments do not
seem to be able to solve the aforementioned generalized Weil Riemann hy-
pothesis. As of today, the standard conjectures (and also the generalized Weil
Riemann hypothesis) are still widely open. For instance, the standard conjec-
ture D is only known in a few cases (including the divisor case and abelian
varieties over finite fields [2]1), and the standard conjecture of Hodge type is
known only for surfaces, abelian fourfolds [1]2, and squares of K3 surfaces [7].

Remark 3. The authors of this note conjectured the inequality (1.1) in a more
general setting of correspondences (see [4, Conjecture Gr]), whose validity
implies the generalized Weil Riemann hypothesis (see [4, Theorem 1.9 and
Remark 1.10(1)]). See also the authors’ related works [5,6,10]. We have also
shown that the inequality (1.1) indeed holds for (all effective correspondences

1Indeed, Clozel [2] showed that for abelian varieties over finite fields Fpn , there are infinitely

many primes � �= p such that the standard conjecture D holds for �-adic étale cohomology.
2In fact, Ancona [1] proved a (weaker) numerical version of the standard conjecture of Hodge
type for abelian fourfolds.
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of) abelian varieties. It has then been argued in [4] that this inequality could
be viewed as an alternative way towards the generalized Weil Riemann hy-
pothesis, compared to the standard conjectures. Our Theorem 1 confirms that
this is indeed the case: for polarized endomorphisms, our inequality (1.1) fol-
lows from the standard conjectures. We thus wonder if a general version of
the inequality (1.1) for effective correspondences is also a consequence of the
standard conjectures.

2. Proof of Theorem 1. Recall that X denotes a smooth projective variety of
dimension n over an algebraically closed field k of arbitrary characteristic and
HX is a fixed ample divisor on X. We also fix a Weil cohomology theory H•(X)
with a coefficient field F of characteristic zero (see [8, §1.2]). In particular,
we have a cup product ∪, Poincaré duality, the Künneth formula, the cycle
class map clX , the Lefschetz trace formula, the weak Lefschetz theorem, and
the hard Lefschetz theorem. Examples of classical Weil cohomology theories
include:

• de Rham cohomology H•
dR(X(C),C) if k ⊆ C,

• étale cohomology H•
ét(X,Q�) with � �= char(k) if k is arbitrary,

• crystalline cohomology H•
crys(X/W (k))⊗K, where K is the field of frac-

tions of the Witt ring W (k).

For the fixed ample divisor HX on X and for 0 ≤ i ≤ 2n − 2, we let

L : Hi(X) → Hi+2(X),

α → clX(HX) ∪ α,
(2.1)

be the Lefschetz operator.
By the hard Lefschetz theorem, for any 0 ≤ i ≤ n, the (n − i)-th iterate

Ln−i of the Lefschetz operator L is an isomorphism

Ln−i : Hi(X) ∼−−→ H2n−i(X).

However, Ln−i+1 : Hi(X) → H2n−i+2(X) may have a nontrivial kernel. De-
note by P i(X) the set of cohomology classes α ∈ Hi(X), called primitive,
satisfying Ln−i+1(α) = 0, namely,

P i(X) := Ker(Ln−i+1 : Hi(X) → H2n−i+2(X)) ⊆ Hi(X). (2.2)

This gives us the following primitive decomposition (a.k.a. Lefschetz decom-
position):

Hi(X) =
⊕

j≥i0

LjP i−2j(X), (2.3)

where i0 := max(i − n, 0).

Definition 4 (cf. [8, §1.4]). For any α ∈ Hi(X), we write

α =
∑

j≥i0

Lj(αj), αj ∈ P i−2j(X). (2.4)
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Then we define an operator ∗ as follows:

∗ : Hi(X) → H2n−i(X),

α → ∗α :=
∑

j≥i0

(−1)
(i−2j)(i−2j+1)

2 Ln−i+j(αj). (2.5)

It is easy to check that ∗2 = id. The standard conjecture B(X) predicts that
the above homological correspondence ∗ is algebraic (cf. [8, Proposition 2.3]).

For any homological correspondence g of X, denote by g′ its adjoint with
respect to the following nondegenerate bilinear form

Hi(X) × Hi(X) −→ F,

(α, β) → 〈α, β〉 := α ∪ ∗β.
(2.6)

In other words, we have g′ = ∗ ◦ gT ◦ ∗ by definition, where gT denotes the
canonical transpose of g by interchanging the coordinates.

For any 0 ≤ k ≤ n, let Ak(X) ⊆ H2k(X) denote the Q-vector space
of cohomology classes generated by algebraic cycles of codimension k on X
under the cycle class map clX , i.e.,

Ak(X) := Im(clX : Zk(X)Q −→ H2k(X)).

The standard conjecture of Hodge type predicts that, when restricted to
Ak(X), the bilinear form (2.6) is positive definite for all k ≤ n/2 (see [8, §3]
for details).

Lemma 5. Let πi ∈ Hi(X) ⊗ H2n−i(X) be the i-th Künneth component of the
diagonal class, which corresponds to the projection operator H•(X) → Hi(X)
via the pullback. Then for any polarized endomorphism f of X (i.e., f∗HX ∼
qHX for some q ∈ N>0), we have

(πi ◦ f) ◦ (πi ◦ f)′ = qiπi

as homological correspondences.

Proof. Note that for any α ∈ Hi(X) with the above primitive decomposition
(2.4),

f∗α =
∑

j≥i0

Lj(qjf∗αj) with f∗αj ∈ P i−2j(X)
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is the primitive decomposition of f∗α. It follows that

((πi ◦ f) ◦ (πi ◦ f)′)∗(α) = ∗ ◦ (πi ◦ f)∗ ◦ ∗ ◦ (πi ◦ f)∗(α)

= ∗ ◦ (πi ◦ f)∗ ◦ ∗ ◦ f∗α

= ∗ ◦ π∗
2n−i ◦ f∗

∑

j≥i0

(−1)
(i−2j)(i−2j+1)

2 Ln−i+j(qjf∗αj)

= ∗
∑

j≥i0

(−1)
(i−2j)(i−2j+1)

2 f∗(clX(Hn−i+j
X ) ∪ qjf∗αj)

= ∗
∑

j≥i0

(−1)
(i−2j)(i−2j+1)

2 f∗ clX(Hn−i+j
X ) ∪ qjαj

= ∗
∑

j≥i0

(−1)
(i−2j)(i−2j+1)

2 qi−j clX(Hn−i+j
X ) ∪ qjαj

= ∗
∑

j≥i0

(−1)
(i−2j)(i−2j+1)

2 qiLn−i+j(αj)

= qi ∗2 α

= qiα,

where π∗
i and (πi)∗ = π∗

2n−i are projections to Hi(X) and H2n−i(X), respec-
tively, the third equality follows from the definition of the ∗ operator, the fifth
one follows from the projection formula, and the last one follows from the fact
that ∗2 = id. This yields the lemma. �

Proof of Theorem 1. Since the standard conjecture B(X) implies the standard
conjecture C(X), the algebraicity of γr follows by taking Gr :=

∑2n
i=0 riΔi,

where Δi ∈ Zn(X × X)Q represents the i-th Künneth component πi of the di-
agonal class. Also, by assumption, the bilinear form (2.6) is a Weil form; see [8,
Theorem 3.11]. In particular, if we let fi denote the composite correspondence
Δi ◦ f , then the square root of

Tr((fi ◦ f ′
i)

∗|H•(X)) = Tr((fi ◦ f ′
i)

∗|Hi(X)) ∈ Q>0

gives us a norm ‖·‖ of f∗|Hi(X). On the other hand, it follows from Lemma 5
that

Tr((fi ◦ f ′
i)

∗|Hi(X)) = qibi,

where bi := dimF Hi(X) is the i-th Betti number of X. Putting together, we
thus obtain that

∥∥f∗|Hi(X)

∥∥ = b
1/2
i qi/2.

Now, we let gr denote Gr ◦ f . By assumption, the standard conjecture D
holds on X × X (see [8, Corollaries 3.9, 2.5, and 2.2]). Hence the cycle class
map induces an injective map

Nn(X × X) ⊗Z F ↪−→ H2n(X × X);

see [8, Proposition 3.6]. It thus follows that

‖gr‖ � ‖ clX×X(gr)‖,
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where the right-hand side denotes a norm on H2n(X×X) � ⊕2n
i=0 EndF(Hi(X)),

equivalent to

max
0≤i≤2n

∥∥g∗
r |Hi(X)

∥∥.

Note that the above equivalence part depends on the choices of norms. Also,
by the definitions of Gr and f , we have that g∗

r |Hi(X) = rif∗|Hi(X) and

deg(gr) = gr · Hn
X×X =

n∑

k=0

(
n

k

)
gr · pr∗

1 Hn−k
X · pr∗

2 Hk
X .

For simplicity, we denote

degk(gr) := gr · pr∗
1 Hn−k

X · pr∗
2 Hk

X = g∗
rHk

X · Hn−k
X = r2kqkHn

X .

If i = 2k is even, then we have that
∥∥g∗

r |Hi(X)

∥∥ = r2k
∥∥f∗|H2k(X)

∥∥ = r2k b
1/2
2k qk = b

1/2
2k degk(gr)/Hn

X .

When i = 2k + 1 is odd, similarly, one also has that
∥∥g∗

r |Hi(X)

∥∥ = r2k+1
∥∥f∗|H2k+1(X)

∥∥

= r2k+1 b
1/2
2k+1 q(2k+1)/2

≤ b
1/2
2k+1(r

2kqk + r2k+2qk+1)/2

≤ b
1/2
2k+1 max{r2kqk, r2k+2qk+1}

= b
1/2
2k+1 max{degk(gr),degk+1(gr)}/Hn

X .

So overall, there is a constant c > 0 depending only on the Betti numbers bi of
X, the dimension n of X, and the choices of norm and degree, but independent
of f and r, such that

‖gr‖ ≤ c max
0≤k≤n

degk(gr) ≤ cdeg(gr).

We thus proved Theorem 1. �
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