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The infinite product of contraction semigroups on l1(N) and
l∞(N)
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Abstract. I provide an example of a family of commuting contraction
semigroups (etBn)n∈N defined on l1(N) such that the product semigroup∏∞

n=1 e
tBn exists and has bounded generator. The infinite product of the

corresponding family of adjoint semigroups (etB
∗
n)n∈N defined on l∞(N)

also exists and its generator is bounded. I give explicit formulae for these
generators. The results follow from a general convergence theorem for
such semigroups proved in Arendt et al. (J Funct Anal 160: 524–542,
1998).
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1. Introduction. In 1958, D. Blackwell gave an example of a continuous-time
Markov chain with all states instantaneous. The nature of this chain allows
to perform some explicit or semi-explicit calculations related to it, see e.g.
[4,5,8,10].

In [9], I found an explicit formula for an (unbounded) operator A such
that its closure is the generator of a strongly continuous semigroup of Markov
operators associated with Blackwell’s chain. Based on this article, I give here
two examples of semigroups that fit in the framework of [1, Proposition 2.7].
In order to cite this proposition, which I call Theorem 1.1, a short introduction
is needed. I use the convention that N = {1, 2, 3, . . .}.

Suppose that (Bn)n∈N is a sequence of generators of commuting contraction
semigroups defined on a Banach space (X, || · ||). This means that for any
m,n ∈ N and x ∈ X, the following identity holds

etBnesBmx = esBmetBnx, t, s ≥ 0.
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Furthermore, limt→0+ etBnx = x, ||etBnx|| ≤ ||x|| for every x ∈ X, n ∈ N,
and t ≥ 0. And finally, if n is fixed, then etBn is a semigroup, i.e., e(t+s)Bn =
etBnesBn for all t, s ≥ 0. In general, the generators may not be bounded so
D(Bn) denotes the domain of Bn.

If we have a sequence of semigroups described above, then for any n ≥ 2,
the product

Tn(t)x =
n∏

k=1

etBkx, t ≥ 0,

is also a strongly continuous contraction semigroup on X and its generator is
the closure of An given by

Anx =
n∑

k=1

Bkx, x ∈
n⋂

k=1

D(Bk), (1.1)

see [2, p. 24]. As in [1], we say that the product
∏∞

k=1 etBk exists if T (t)x :=
limn→∞ Tn(t)x converges uniformly on compact subsets of [0,∞) for every
x ∈ X. Then again T (t), t ≥ 0, is a C0 semigroup of contractions on X. The
following theorem was proved in [1].

Theorem 1.1. Let (etBn)n∈N be a commuting family of contraction semigroups
and suppose that

D1 =

{

x ∈
∞⋂

k=1

D(Bk) :
+∞∑

k=1

||Bkx|| < ∞
}

(1.2)

is dense in X. Then the product
∏∞

k=1 etBk exists. Moreover, define A by

Ax = lim
n→+∞

n∑

k=1

Bkx, x ∈ D1.

Then A is closable and its closure is the generator of
∏∞

k=1 etBk .

2. The semigroups. Recall that l1(N) is the Banach space of all absolutely
summable sequences x = (ξi)i∈N. This means that

∑
i∈N

|ξi| < ∞ and ||x||l1(N) =∑
i∈N

|ξi|.
Suppose that αn, βn, n ≥ 1, are positive numbers and denote

S1
n = {1, 2, 3, . . . , 2n−1}, S2

n = {0, 2n−1 + 1, . . . , 2n − 1}.

For example, S1
1 = {1}, S2

1 = {0}, S1
2 = {1, 2}, S2

2 = {0, 3}, etc.
For n ≥ 1, define Bn on l1(N) as follows

Bnx = (ηi)i∈N =

{
−βnξi + αnξi+2n−1 if i mod 2n ∈ S1

n,

−αnξi + βnξi−2n−1 if i mod 2n ∈ S2
n.

(2.1)

It is clear that the Bn’s are linear bounded operators and

||Bnx||l1(N) ≤ 2(αn + βn)||x||l1(N).
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In Lemma 2.1, I prove that the Bn’s commute. It may be verified directly that
∞∑

i=1

ηi = 0 (2.2)

and this property is a consequence of the fact that the Bn’s are isomorphic
images of generators of Markov semigroups, see [9, Corollary 2]. The property
(2.2) is also true for A in Theorem 3.1 since the norm convergence in l1(N)
implies the coordinate-wise convergence.

It is well known (see [3, p. 207]) that the dual space of l1(N) can be identified
with l∞(N), that is, with the space of all bounded sequences. If x = (ξi)i∈N is
an element of l∞(N), then ||x||l∞(N) = supi∈N |ξi|.

Thus Bn induces a linear map B∗
n : l∞(N) → l∞(N) called the adjoint of

Bn, see [6, p. 15.] In our case it is given by

B∗
nx = (ηi)i∈N =

{
βn(−ξi + ξi+2n−1) if i mod 2n ∈ S1

n,

αn(−ξi + ξi−2n−1) if i mod 2n ∈ S2
n.

(2.3)

Moreover

||B∗
nx||l∞(N) ≤ 2max{αn, βn}||x||l∞(N).

Since the Bn’s and the B∗
n’s are continuous, they are the generators of the

following semigroups

etBn =
∞∑

k=0

(tBn)k

k!
, etB∗

n =
∞∑

k=0

(tB∗
n)k

k!
, t ≥ 0.

By a direct computation, we find (see also [8, p.60])

etBnx =

{
pn(t)ξi + (1 − qn(t))ξi+2n−1 if i mod 2n ∈ S1

n,

qn(t)ξi + (1 − pn(t))ξi−2n−1 if i mod 2n ∈ S2
n,

(2.4)

and

etB∗
nx =

{
pn(t)ξi + (1 − pn(t))ξi+2n−1 if i mod 2n ∈ S1

n,

qn(t)ξi + (1 − qn(t))ξi−2n−1 if i mod 2n ∈ S2
n,

(2.5)

where pn(t), qn(t), t ≥ 0, are given by

pn(t) =
αn

αn + βn
+

βn

αn + βn
e−(αn+βn)t,

qn(t) =
βn

αn + βn
+

αn

αn + βn
e−(αn+βn)t.

Notice that 0 < pn(t) ≤ 1, 0 < qn(t) ≤ 1 and as a result

||etBnx||l1(N) ≤ ||x||l1(N), ||etB∗
nx||l∞(N) ≤ ||x||l∞(N)

meaning that etBn , etB∗
n are contractions.

Lemma 2.1. For the Bn’s defined by (2.1) and m,n ∈ N, we have

BnBmx = BmBnx, x ∈ l1(N). (2.6)
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This implies that the B∗
n’s also commute and in consequence

etBmesBnx = esBnetBmx, x ∈ l1(N), (2.7)

and

etB∗
mesB∗

nx = esB∗
netB∗

mx, x ∈ l∞(N),

for all t, s ≥ 0 and m,n ∈ N.

Proof. It is enough to prove (2.6) since the conditions (2.6) and (2.7) are
equivalent if the operators Bn, Bm are bounded, see [7, p. 19.] In addition, the
equality (BnBm)∗ = B∗

mB∗
n implies that the B∗

n’s also commute.
Suppose now that 1 ≤ m < n and denote x = (ξi)i∈N, (ηi)i∈N = Bmx,

(η′
i)i∈N = Bn(ηi)i∈N. Then by definition

ηi =

{
−βmξi + αmξi+2m−1 if i mod 2m ∈ S1

m,

−αmξi + βmξi−2m−1 if i mod 2m ∈ S2
m,

and

η′
i =

{
−βnηi + αnηi+2n−1 if i mod 2n ∈ S1

n,

−αnηi + βnηi−2n−1 if i mod 2n ∈ S2
n.

So (η′
i)i∈N = BnBm(ξi)i∈N is given by

η′
i =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

βnβmξi − βnαmξi+2m−1 − αnβmξi+2n−1 + αnαmξi+2m−1+2n−1

if i mod 2m ∈ S1
m and i mod 2n ∈ S1

n,

βnαmξi − βnβmξi−2m−1 − αnαmξi+2n−1 + αnβmξi−2m−1+2n−1

if i mod 2m ∈ S2
m and i mod 2n ∈ S1

n,

αnβmξi − αnαmξi+2m−1 − βnβmξi−2n−1 + βnαmξi+2m−1−2n−1

if i mod 2m ∈ S1
m and i mod 2n ∈ S2

n,

αnαmξi − αnβmξi−2m−1 − βnαmξi−2n−1 + βnβmξi−2m−1−2n−1

if i mod 2m ∈ S2
m and i mod 2n ∈ S2

n.

From m < n, we have 2m ≤ 2n−1. It can be seen now that the condition
i mod 2n ∈ S1

n does not depend on whether or not i mod 2m ∈ S1
m. Similarly

the condition i mod 2n ∈ S2
n is independent of i mod 2m ∈ S1

m. Thus if we
calculate BmBn(ξi)i∈N, we get the same result as that of BnBm(ξi)i∈N. �

3. Main theorems. Similar calculations to those in the proof of Lemma 2.1 can
be carried out to find formulae for Tn(t) =

∏n
k=1 etBk , n ≥ 2. These formulae

become more and more complicated as n increases. However the generator An

of Tn(t) has a rather simple form. Denote (ηi)i∈N = An(ξi)i∈N. Then from
(1.1), we have that ηi =

∑n
k=1 ζk, where ζk, k = 1, . . . , n, are given by

ζk =

{
−βkξi + αkξi+2k−1 if i mod 2k ∈ S1

k,

−αkξi + βkξi−2k−1 if i mod 2k ∈ S2
k.
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I show in Theorem 3.1 that An still has a manageable form even if n = +∞.
For this, we only need the following condition to be satisfied

∞∑

n=1

max{αn, βn} < ∞, (3.1)

which is equivalent to
∑∞

n=1(αn + βn) < ∞ for positive αn’s and βn’s.
Before stating the first of two main theorems, notice that any natural num-

ber n ≥ 2 can be expressed in a unique way as 2l + m for some l ≥ 0 with
m ∈ {1, 2, . . . , 2l}. For example, 2 = 20 + 20, 7 = 22 + 3, 8 = 22 + 22, etc.

Theorem 3.1. Assume that αn, βn, n ≥ 1, are positive numbers satisfying
(3.1). Then the infinite product T (t), t ≥ 0, of semigroups given by (2.4)
exists. Let A be the generator of T (t) and denote (ηi)i∈N = Ax, where x =
(ξi)i∈N ∈ l1(N). Then

η1 =
∞∑

k=1

(−βkξ1 + αkξ1+2k−1), (3.2)

and if i = 2l + m for l ≥ 0 with m ∈ {1, 2, . . . , 2l}, we have

ηi =
l+1∑

k=1

ζk +
∞∑

k=l+2

(−βkξi + αkξi+2k−1), (3.3)

where ζk, k = 1, . . . , l + 1, are given by

ζk =

{
−βkξi + αkξi+2k−1 if i mod 2k ∈ S1

k,

−αkξi + βkξi−2k−1 if i mod 2k ∈ S2
k.

Proof. We use Theorem 1.1. In our case, D1 = l1(N) because
+∞∑

k=1

||Bkx||l1(N) ≤ 2||x||l1(N)
∞∑

k=1

(αk + βk) < ∞

for every x ∈ l1(N). The norm convergence in l1(N) implies the coordinate-wise
convergence, hence components of Ax are limits of components of Anx, where
An =

∑n
k=1 Bkx. Thus (3.2) and (3.3) follow and

||A|| ≤ 2
∞∑

k=1

(αk + βk).

This completes the proof. �

Any x ∈ l1(N) can be written as
∑

i∈N
ξiei, where {ei}i∈N is the standard

Schauder basis in l1(N), i.e., ei = (. . . , 0, 1, 0, . . .) with 1 in the i-th coordinate.
From Theorem 3.1, we have for example

Ae1 = (ηi)i∈N =

⎧
⎪⎨

⎪⎩

−∑∞
k=1 βk, i = 1,

βk, for i = 1 + 2k−1 and k ≥ 1,

0, otherwise.
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and

Ae2 = (ηi)i∈N =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

α1, i = 1,

−α1 − ∑∞
k=2 βk, i = 2,

βk, for i = 2 + 2k−1 and k ≥ 2,

0, otherwise.

Theorem 3.2. Assume that αn, βn, n ≥ 1, are positive numbers satisfying
(3.1). Then the infinite product T ∗(t), t ≥ 0, of semigroups given by (2.5)
exists. Let A∗ be the generator of T ∗(t) and denote (ηi)i∈N = A∗x, where
x = (ξi)i∈N ∈ l∞(N). Then

η1 =
∞∑

k=1

βk(−ξ1 + ξ1+2k−1), (3.4)

and if i = 2l + m for l ≥ 0 with m ∈ {1, 2, . . . , 2l}, we have

ηi =
l+1∑

k=1

ζk +
∞∑

k=l+2

βk(−ξi + ξi+2k−1) (3.5)

where ζk, k = 1, . . . , l + 1, are given by

ζk =

{
βk(−ξi + ξi+2k−1) if i mod 2k ∈ S1

k,

αk(−ξi + ξi−2k−1) if i mod 2k ∈ S2
k.

Proof. The proof is analogous to that of Theorem 3.1. For every x ∈ l∞(N),
we have

+∞∑

k=1

||B∗
kx||l∞(N) ≤ 2||x||l∞(N)

∞∑

k=1

max{αk, βk} < ∞.

So D1 = l∞(N) and the operator A∗ is bounded. The norm convergence in
l∞(N) implies the coordinate-wise convergence, thus components of A∗x are
limits of A∗

nx, where A∗
n =

∑n
k=1 B∗

kx and

||A∗|| ≤ 2
∞∑

k=1

max{αk, βk}.

This completes the proof. �

4. Remarks. I proved in [9] that if αn, βn, n ≥ 1, are positive numbers sat-
isfying the following conditions (introduced by D. Blackwell in [4] to secure
the existence of a Markov process with countably many states all of which are
instantaneous)

∞∑

n=1

βn

αn + βn
< ∞,

∞∑

n=1

βn = ∞, (4.1)

then the infinite product T (t), t ≥ 0, of semigroups given by (2.4) exists and
is composed of Markov operators associated with Blackwell’s chain. However
then the generator of T (t) is unbounded and is the closure of A given by
(3.2)–(3.3). In this case, A is defined on a dense subset D(A) of l1(N) and
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interestingly ei /∈ D(A) for every i ∈ N. To see it, suppose that i = 2l + m for
some l ≥ 0 with m ∈ {1, 2, . . . , 2l}. Then by (2.1) and (4.1),

+∞∑

k=1

||Bkei||l1(N) ≥ lim
n→+∞

n∑

k=l+2

βk = +∞.

As a result, any x = (ξi)i∈N with a finite number of non-zero components does
not belong to D(A).
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