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Abstract. We establish an explicit lower bound on the spectral gap of one-
dimensional Schrödinger operators with non-negative bounded potentials
and subject to Neumann boundary conditions. In addition, for a smaller
class of potentials, we provide an improved lower bound which holds on
large intervals.
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1. Introduction. In this paper, one aim is to derive a lower bound on the
spectral gap for (deterministic) Schrödinger operators defined on an interval
of length L > 0, subject to Neumann boundary conditions and with non-
negative potentials in L∞(R). Our bound will be valid for all values of L > 0
and will depend on the underlying potential in an explicit way. In addition to
that, for certain compactly supported and bounded potentials, we shall also
provide an improved lower bound to the spectral gap which holds on large
intervals. As a matter of fact, for the potentials considered, we are able to
prove that the spectral gap cannot close faster than ∼ L−4.

The spectral gap is defined as the distance between the first two eigenval-
ues and constitutes a classical quantity in the spectral theory of operators. For
example, in [1,2,9] and more recently in [3,4], the spectral gap of the Lapla-
cian (subject to certain self-adjoint boundary conditions) on a fixed interval
was compared with the spectral gap of the Laplacian plus some additional
potential on the same interval. It turns out that the spectral gap may increase
or decrease, depending on specific properties of the potential considered; for
example, as shown in [9], the spectral gap for the (Dirichlet or Neumann)
Laplacian always increases given the added potential is convex. Unfortunately,
since a generic potential fails, e.g., to be convex, it seems rather difficult to
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control the spectral gap for a Schrödinger operator on a fixed interval. Sur-
prisingly, as discovered in a recent paper [8], it turns out that the asymptotic
behaviour of the spectral gap can nevertheless be studied for a rather general
class of potentials. A main finding of [8] was that the spectral gap converges
to zero strictly faster than the spectral gap of the free (Dirichlet-) Laplacian
for potentials that decay fast enough at infinity. This holds, in particular,
for bounded potentials of compact support. Furthermore, in [8], the authors
also put forward the conjecture that the spectral gap cannot close faster than
∼ L−3 for bounded compactly supported potentials and this is part of what
motivates the present paper. At this point, let us also refer to [6] where lower
bounds on the spectral gaps between consecutive negative eigenvalues for one-
dimensional Schrödinger operators have been studied.

The paper is organized as follows: In Section 2, we describe the setting.
In Section 3, we derive a Harnack-type inequality which then allows us to
establish an explicit lower bound to the spectral gap that holds for a large
class of potentials. Finally, in Section 4, we restrict ourselves to a smaller class
of potentials and derive an improved lower bound on large intervals.

2. The model. On the interval ΛL = (−L/2,+L/2), we consider the Schrö-
dinger operator

hL = − d2

dx2
+ v

with real, non-negative potentials v ∈ L∞(R) and Neumann boundary con-
ditions at the endpoints x = ±L/2. Standard operator theory tells us that
hL is self-adjoint with purely discrete spectrum. We denote its eigenvalues as
λv

0(L) ≤ λv
1(L) ≤ · · · ; the normalized ground-state eigenfunction shall be de-

noted as ϕv,L
0 ∈ L2(ΛL). We also recall that ϕv,L

0 is a positive function. We
set kv

0(L) :=
√

λv
0(L).

The main object of interest in this paper is the spectral gap

Γv(L) := λv
1(L) − λv

0(L). (2.1)

Since the ground state is non-degenerate [10], one has Γv(L) > 0 for every
value L > 0. Furthermore, for potentials that decay fast enough at infinity
(i.e. at least quadratically), Γv(L) converges to zero like ∼ L−2 as L → ∞;
this holds, in particular, for potentials v of compact support. Note that this
follows from an immediate generalization of [8, Theorem 2.1] to the case of
Neumann boundary conditions.

3. A general lower bound. In a first step, we derive a lower bound to the
infimum of the ground-state eigenfunction as well as a Harnack-type inequality.
This inequality will then be the key ingredient to establish our lower bound
to the spectral gap.

Lemma 3.1. Assume v ∈ L∞(R) and v ≥ 0. Then

inf
x∈ΛL

ϕv,L
0 (x) ≥ e−2L‖v‖L1(ΛL)

√
L

(3.1)



Vol. 119 (2022) Lower bounds on the spectral gap 615

holds for all L > 0. Furthermore, for all L > 0, one has

inf
x∈ΛL

ϕv,L
0 (x) ≥ e−2L‖v‖L1(ΛL) · sup

x∈ΛL

ϕv,L
0 (x). (3.2)

.

Proof. We follow the strategy outlined in [5] and, in particular, the proof of
[5, Theorem 1.2]: The eigenvalue equation for the ground state reads

−(ϕv,L
0 )′′(x) + v(x)ϕv,L

0 (x) = λv
0(L)ϕv,L

0 (x).

One then defines the auxiliary function, for x ∈ ΛL, by

wv
L(x) :=

(ϕv,L
0 )′(x)

ϕv,L
0 (x)

+

x∫

−L
2

qv
L(t) dt

where qv
L(x) := λv

0(L) − v(x). The eigenvalue equation then implies that wv
L is

monotonically decreasing and therefore, for all x ∈ ΛL,

wv
L

(
+

L

2

)
≤ wv

L(x) ≤ wv
L

(
−L

2

)
.

Using the fact that the ϕv,L
0 satisfies Neumann boundary conditions at ±L/2,

one has for all x ∈ ΛL,
+L

2∫

−L
2

qv
L(t) dt ≤ wv

L(x) ≤ 0

and hence
+L

2∫

x

qv
L(t) dt ≤ (ϕv,L

0 )′(x)

ϕv,L
0 (x)

≤ −
x∫

−L
2

qv
L(t) dt.

This immediately gives, for all x ∈ ΛL,
∣∣
∣∣∣
(ϕv,L

0 )′(x)

ϕv,L
0 (x)

∣∣
∣∣∣
≤ ‖qv

L‖L1(ΛL). (3.3)

Since, by the minmax-principle (using 1/
√

L as a test function in the Rayleigh
quotient),

λv
0(L) ≤ ‖v‖L1(ΛL)

L
, (3.4)

one concludes ‖q‖L1(ΛL) ≤ 2‖v‖L1(ΛL).
In a next step, one introduces the function

hv
L(t) := ln

(
ϕv,L

0 (t(x − y) + y)
)

for 0 ≤ t ≤ 1 and x, y ∈ ΛL. This implies

(hv
L)′(t) = (x − y)

(ϕv,L
0 )′ (t(x − y) + y)

ϕv,L
0 (t(x − y) + y)

.
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Then, starting from the identity

ln

(
ϕv,L

0 (x)

ϕv,L
0 (y)

)

= hv
L(1) − hv

L(0) =
∫ 1

0

(hv
L)′(t) dt,

a simple estimate using (3.3) shows that, for x, y ∈ ΛL,

ϕv,L
0 (x)

ϕv,L
0 (y)

≤ e2L‖v‖L1(ΛL) . (3.5)

Eq. (3.5) then immediately implies (3.2). Finally, since ϕv,L
0 has L2-norm one,

one concludes

sup
x∈ΛL

ϕv,L
0 (x) ≥ 1√

L

which implies (3.1). �

Remark 3.2. Eq.(3.1) in Lemma 3.1 is sharp: choosing v ≡ 0 yields the lower
bound 1√

L
. On the other hand, for the zero-potential, the ground state is given

by ϕv=0,L
0 (x) = 1√

L
.

Using [7, Theorem 1.4] in combination with Lemma 3.1 then yields the
following result.

Theorem 3.3 (Lower bound spectral gap I). Assume v ∈ L∞(R) and v ≥ 0.
Then

Γv(L) ≥ e−4L‖v‖L1(ΛL) · π2

L2

holds for all L > 0.

Proof. The strategy is to compare the spectral gap of the operator hL with the
spectral gap of the Neumann Laplacian (i.e., setting v ≡ 0) which is given by
π2/L2. Such a comparison result has been provided in [7, Theorem 1.4]: more
explicitly, taking into account that the normalized ground-state eigenfunction
for the Neumann Laplacian is the constant function 1/

√
L, one has

Γv(L) ≥
(

infx∈ΛL
ϕv,L

0 (x)

supx∈ΛL
ϕv,L

0 (x)

)2

· π2

L2
.

The result then readily follows with Lemma 3.1. �

Remark 3.4. Theorem 3.3 establishes a lower bound which is (for non-zero po-
tentials) at least exponentially small in the interval length. Hence, this bound
is still far away from a lower bound as established, for example, in [8, Propo-
sition 2.9] for a symmetric step-potential. In this case, the lower bound reads
αL−3 for some constant α > 0 and all L > 0 large enough. However, due to the
fact that a Harnack-type inequality has been used in the proof of Theorem 3.3,
an exponential factor seems expectable.

Also, for the zero-potential v ≡ 0, the lower bound in Theorem 3.3 is sharp.
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4. An improved bound for certain potentials. In this section, we shall study
a smaller class of potentials for which we are going to derive another lower
bound to the spectral gap which holds on large intervals. More explicitly, we
shall make the following additional assumptions on the non-negative potential
v ∈ L∞(R):

i) v(x) �= 0 ⇔ x ∈ (−b,+b) for some 0 < b < ∞,
ii) v(x) = v(−x) (symmetry),
iii) v is strictly monotonically increasing on [−b,−ε] for some 0 < ε < b and

such that infx∈[−ε,0] v(x) > γ for some γ > 0 (alternatively, it is enough
to assume infx∈[−b,0] v(x) > γ for some γ > 0),

iv) b2‖v‖L∞(R) < 1/2 (smallness condition).
In a first result, we derive a lower bound to Γv(L) which only depends on the
asymptotic behaviour of kv

0(L). The important aspect here is that asymptotic
behaviour of the gap is reduced to studying the asymptotic behaviour of the
ground state eigenvalue which is usually more accessible.

Lemma 4.1. Consider hL with a potential v ∈ L∞(R), v ≥ 0, that also fulfils
conditions i)-iv). Then

Γv(L) ≥ (1 − 2b2‖v‖L∞(R))2 · π2

L2
· cos2 (kv

0(L)(L/2 − b))

holds for all L > 0 large enough.

Proof. First note that, for L large enough, the assumptions on the potential
guarantee that ϕv,L

0 attains its maximum at the boundary of (−L/2,+L/2) and
the minimum at x = 0: To see this, we first note that ϕv,L

0 ∈ C1(ΛL) since hL

is self-adjoint on a domain contained in H2(ΛL) which itself is a consequence
of v being bounded. Furthermore, assumption ii) implies that the ground state
is a symmetric function and hence its derivative vanishes at x = 0. Also, the
eigenvalue equation −(ϕv,L

0 )′′(x) + v(x)ϕv,L
0 (x) = λv

0(L)ϕv,L
0 (x) together with

the fact that λv
0(L) → 0 as L → ∞ (see (3.4) or the remark below (2.1)) and iii)

imply that the second derivative of ϕv,L
0 changes sign exactly once in (−L/2, 0)

for all L large enough. Since (ϕv,L
0 )′(−L/2) = 0 and (ϕv,L

0 )′′ is negative in a
neighbourhood around x = −L/2, the maximum is assumed at x = −L/2
and the minimum at x = 0. In addition, we conclude that (ϕv,L

0 )′(x) ≤ 0 for
x ∈ [−L/2, 0].

Now, taking assumption i) into account, the restriction of the ground state
eigenfunction ϕv,L

0 to (−L/2,−b) is given by

(ϕv,L
0 |(−L/2,−b))(x) = A cos(kv

0(L)(x + L/2))

with A = ϕv,L
0 (−L/2) = supx∈ΛL

ϕv,L
0 (x) > 0. On the other hand, using the

eigenvalue equation and the symmetry of v with respect to x = 0 (assumption
ii)), we obtain

(ϕv,L
0 )′(x) =

0∫

x

(λv
0(L) − v(x))ϕv,L

0 (x) dx, x ∈ [−b, 0], (4.1)
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and this yields, for x ∈ [−b, 0],

|(ϕv,L
0 )′(x)| ≤ b‖λv

0(L) − v‖L∞(R) · sup
x∈[−b,0)

ϕv,L
0 (x)

= b‖λv
0(L) − v‖L∞(R) · A cos (kv

0(L)(L/2 − b))

≤ 2Ab‖v‖L∞(R) · cos (kv
0(L)(L/2 − b))

for all L > 0 large enough. Hence,

inf
x∈ΛL

ϕv,L
0 (x) ≥ (1 − 2b2‖v‖L∞(R)) · A cos (kv

0(L)(L/2 − b))

which is a useful bound assuming iv).
Finally, as in the proof of Theorem 3.3, [7, Theorem 1.4] yields (taking into

account that the ground state eigenfunction of the Neumann Laplacian with
zero potential is the constant function 1/

√
L)

Γv(L) ≥
(

infx∈ΛL
ϕv,L

0 (x)

supx∈ΛL
ϕv,L

0 (x)

)2

· π2

L2
,

and hence the statement follows readily. �

In a next step, we need to investigate the asymptotic behaviour of kv
0(L)

as L → ∞.

Proposition 4.2. Consider hL with a potential v ∈ L∞(R), v ≥ 0, that also
fulfils conditions i)-iv). Then

lim
L→∞

∣∣∣∣
π

2
− kv

0(L)L
(

1
2

− b

L

)∣∣∣∣ = 0. (4.2)

Furthermore, there exists a constant δ > 0 such that
δ

L
≤

(
π

2
− kv

0(L)L
(

1
2

− b

L

))
(4.3)

for all L > 0 large enough.

Proof. For the proof, we introduce the characteristic function 1A(·) of a mea-
surable set A ⊂ R. The idea is to compare kv

0(L) with the square root of the
lowest eigenvalue for the Laplacian with a step-potential ṽ(x) := ṽ ·1[−c,+c](x)
with suitable ṽ, c > 0. The square root of such an eigenvalue shall be denoted
by k̃0(L) (for notational simplicity, we do not state the dependence of k̃0(L)
on ṽ and c explicitly in the following).

As shown in the appendix, the quantitation condition (meaning the re-
lation determining k̃0(L)) for the step-potential ṽ with Neumann boundary
conditions and large enough L > 0 reads

M0(L)
ω̃0(L)

tanh(M0(L)l2(L)) = tan(ω̃0(L)l1(L)) (4.4)

where ω̃0(L) := k̃0(L)L, M0(L) :=
√

L2ṽ − ω̃2
0(L), l1(L) := 1

2− c
L , and l2(L) :=

c
L .

Now, to prove (4.2), we pick two step potentials, one with c := ε and ṽ := γ

and the other one with c := b and ṽ := ‖v‖L∞(R). Let k̃
(1)
0 (L) denote the square
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root of the lowest eigenvalue for the first step-potential and k̃
(2)
0 (L) the square

root of the lowest eigenvalue for the second step-potential. Consequently, by
an operator-bracketing, we have

k̃
(1)
0 (L)L ≤ kv

0(L)L ≤ k̃
(2)
0 (L)L

and the statement readily follows from the fact that both, the left-hand as
well as the right-hand side, converge to π as L → ∞. This, on the other hand,
follows from the quantization condition (4.4).

On the other hand, in order to prove (4.3), we again choose the step-
potential with c := b and ṽ = ‖v‖L∞(R). Hence, k̃

(2)
0 (L) ≥ kv

0(L) and it is
therefore enough to prove (4.3) with k̃

(2)
0 (L) instead; note there that, by (4.4),

π

2
− k̃

(2)
0 (L)L

(
1
2

− b

L

)
> 0.

Now, for ω̃0(L)l1(L) < π/2 close enough to π/2 (hence for L > 0 large enough),
one obtains

tan(ω̃0(L)l1(L)) ≥ 1
2 cos(ω̃0(L)l1(L))

≥ 1
2(−ω̃0(L)l1(L) + π/2)

.

(4.5)

Furthermore, setting A(L) := M0(L)l1(L) tanh(M0(L)l2(L)), (4.4) and (4.5)
imply

ω̃0(L)l1(L) ≤ πA(L)
(1 + 2A(L))

=
π

2(1 + 1
2A(L) )

(4.6)

for L large enough. This now yields, for some constant δ > 0 and all L large
enough,

(π

2
− ω̃0(L)l1(L)

)
≥ π

2

(
1

2A(L)(1 + 1
2A(L) )

)

≥ π

8A(L)

≥ δ

L
.

�

Combining Lemma 4.1 and Proposition 4.2 then yields the following state-
ment.

Theorem 4.3 (Lower bound spectral gap II). Consider hL with a potential
v ∈ L∞(R), v ≥ 0, that also fulfils conditions i)-iv). Then there exists a
constant β > 0 such that

Γv(L) ≥ β

L4
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for all L > 0 large enough.

Proof. We establish a lower bound to

cos2 (kv
0(L)(L/2 − b)) = sin2

(π

2
+ kv

0(L)(L/2 − b)
)

for large L > 0. Since | sin(x)| ≥ | − 1
2x + π

2 | in a small neighbourhood around
x = π, Proposition 4.2 yields

∣∣∣sin
(π

2
+ kv

0(L)(L/2 − b)
)∣∣∣ ≥

∣∣∣∣−
1
2

(π

2
+ kv

0(L)(L/2 − b)
)

+
π

2

∣∣∣∣

=
∣
∣∣∣
1
2

(
π − π

2
− kv

0(L)(L/2 − b)
)∣
∣∣∣

for all large enough L > 0. Taking the square, we get, for L large enough,

sin2
(π

2
+ kv

0(L)(L/2 − b)
)

≥ 1
4

(
π

2
− kv

0(L)L
(

1
2

− b

L

))2

.

The statement then follows with Proposition 4.2 and Lemma 4.1. �

Appendix. In this appendix, we shall derive relation (4.4). Recall that 1A(·)
denotes the characteristic function of a measurable set A ⊂ R. We first remark
that the Schrödinger operator

hL = − d2

dx2
+ ṽ · 1[−c,+c](x)

with ṽ, c > 0 and defined on L2(ΛL) is unitarily equivalent to the operator
L−2h̃L with

h̃L = − d2

dx2
+ L2ṽ · 1[−c/L,+c/L](x) (A.1)

defined on L2(Λ1) (for a proof, we refer to [8, Proposition 2.4]). Hence, given
ω̃0(L) denotes the square root of the lowest eigenvalue of h̃L, one has ω̃0(L) =
k̃0(L)L where k̃0(L) is the square root of the lowest eigenvalue of hL. Further-
more, we set M0(L) :=

√
L2ṽ − ω̃2

0(L), l1(L) := 1
2 − c

L , and l2(L) := c
L .

Equation (4.4) now follows from suitable matching conditions when con-
structing the ground state eigenfunction of h̃L (for large L > 0). More explic-
itly, we identify the interval (−1/2,−c/L) with I1 := (0, l1(L)) and the interval
(−c/L, 0) with I2 := (0, l2(L)). Note that, since the ground state eigenfunction
of hL and h̃L are symmetric with respect to x = 0, it is sufficient to construct
the ground state on (−L/2, 0) or (−1/2, 0), respectively.

On the interval I1, the potential is zero and hence we make the ansatz

ϕ̃1,L(x) := A cos(ω̃0(L)x)

for some non-zero A ∈ R. On I2, the potential is constant equal to L2ṽ and
this yields, for L > 0 large enough (i.e. one requires that L2ṽ − ω̃2

0(L) > 0),
the ansatz

ϕ̃2,L(x) := B sinh(M0(L)x) + C cosh(M0(L)x)



Vol. 119 (2022) Lower bounds on the spectral gap 621

for some non-zero B,C ∈ R to be determined. Since the ground state eigen-
function is symmetric and differentiable, we obtain the matching conditions

ϕ̃1,L(l1(L)) = ϕ̃2,L(0),

ϕ̃′
1,L(l1(L)) = ϕ̃′

2,L(0),

ϕ̃′
2,L(l2(L)) = 0.

The first condition implies

cos(ω̃0(L)l1(L)) =
C

A
,

the second condition gives

sin(ω̃0(L)l1(L)) = −BM0(L)
Aω̃0(L)

,

and the third condition yields

tanh(M0(L)l2(L)) = −B

C
.

Combining them, we eventually arrive at (4.4).
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