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(1+)-complemented, (1+)-isomorphic copies of L1 in dual
Banach spaces

Dongyang Chen, Tomasz Kania, and Yingbin Ruan

Abstract. The present paper contributes to the ongoing programme of
quantification of isomorphic Banach space theory focusing on the Hagler–
Stegall characterisation of dual spaces containing complemented copies
of L1. As a corollary, we obtain the following quantitative version of the
Hagler–Stegall theorem asserting that for a Banach space X, the following
statements are equivalent:

• X contains almost isometric contains almost isometric copies of
(
⊕∞

n=1 �n
∞)�1 ;

• for all ε > 0, X∗ contains a (1+ε)-complemented, (1+ε)-isomorphic
copy of L1;

• for all ε > 0, X∗ contains a (1+ε)-complemented, (1+ε)-isomorphic
copy of C[0, 1]∗.

Moreover, if X is separable, one may add the following assertion:
• for all ε > 0, there exists a (1 + ε)-quotient map T : X → C(Δ)

so that T ∗[C(Δ)∗] is (1 + ε)-complemented in X∗, where Δ is the
Cantor set
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Keywords. Isomorphic copies of L1, Complemented subspaces, Quotient
maps; Banach spaces.

1. Introduction. In 1968, Pe�lczyński [17] showed that if a Banach space X
contains an isomorphic copy of �1, then the dual space X∗ contains an iso-
morphic copy of L1 and proved that the converse holds as well subject to a
mild technical condition that was later removed by Hagler [7]. More precisely,
the result stated that the isomorphic containment of �1 is equivalent to the
following assertions: X∗ contains a subspace isomorphic to L1, X∗ contains a
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subspace isomorphic to C[0, 1]∗. When X is separable, these are further equiv-
alent to the assertions: X∗ contains a subspace isomorphic to �1([0, 1]), and
C[0, 1] is a quotient of X.

Shortly after, Hagler and Stegall [8] obtained a ‘complemented’ version of
Pe�lczyński’s aforementioned classical work:

Theorem (Hagler–Stegall). Let X be a Banach space. Then the following
assertions are equivalent:
(1) X contains a subspace isomorphic to (

⊕∞
n=1 �n

∞)�1 ;
(2) X∗ contains a complemented subspace isomorphic to L1;
(3) X∗ contains a complemented subspace isomorphic to C[0, 1]∗;
(4) X∗ contains an infinite set K such that K is equivalent to the usual basis

of �1(Γ) for some Γ, [K] is complemented in X∗, and K is dense in itself
in the weak* topology on X∗.

If, in addition, X is separable, then the assertions (1)–(4) are equivalent to
(5) There exists a surjective operator T : X → C[0, 1] such that T ∗[C[0, 1]∗]

is complemented in X∗.
The purpose of this note is to quantify the Hagler–Stegall theorem in the

spirit of a large number of recent results on quantitative versions of various
theorems on and properties of Banach spaces, such as quantitative versions of
Krein’s theorem [6], Gantmacher’s theorem [2], James’ compactness theorem
[5], weak sequential completeness and the Schur property [11,12], the (recipro-
cal) Dunford–Pettis property [10,13], the Banach–Saks property [3], etc. More
broadly speaking, the present paper contributes to the on-going programme of
quantification of Banach space theory.

In the present paper, we quantify the Hagler–Stegall theorem by intro-
ducing the following three quantities denoted by lower-case Greek letters and
defined as infima of certain sets (when the sets happen to be empty, we use
the convention that the corresponding value is ∞).

Hereinafter X and Y will stand for Banach spaces; B(X,Y ) is the space
of (bounded, linear) operators from X to Y . We then introduce the following
quantities:

• αY (X) = inf{d(Y,Z) : Z is a subspace of X}, where d(Y,Z) is the
Banach–Mazur distance between Y and Z.

The quantity αY (X), being directly related to the Banach–Mazur distance,
measures how well Y is from being isomorphically embeddable into X. Obvi-
ously, αY (X) = 1 if and only if X contains almost isometric copies of Y , that
is, for every ε > 0, X contains a subspace (1 + ε)-isomorphic to Y .

• βY (X) = inf{‖A‖‖B‖ : A ∈ B(X,Y ), B ∈ B(Y,X), AB = IY }.
The quantity βY (X) measures how well Y is from being isomorphic to a com-
plemented subspace of X. It is easy to see that βY (X) = 1 if and only if for
every ε > 0, there exists a subspace M of X so that M is (1 + ε)-isomorphic
to Y and (1 + ε)-complemented in X.

• θY (X) = inf{‖A‖‖S‖ : A ∈ B(X,Y ), S ∈ B(X∗, Y ∗), SA∗ = IY ∗}.
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The quantity θY (X) measures how well Y is isomorphic to a quotient of X
and its dual Y ∗ is isomorphic to a complemented subspace of X∗. We see that
θY (X) = 1 if and only if, for every ε > 0, there exists a (1 + ε)-quotient map
T : X → Y so that T ∗[Y ∗] is (1 + ε)-complemented in X∗.

A straightforward argument shows that

βY ∗(X∗) � θY (X) � βY (X). (1.1)

By using the aforementioned three quantities, we quantify the Hagler–
Stegall theorem as follows:

Theorem A. Let X be a Banach space. Then

α(⊕∞
n=1�n∞)l1

(X) = βC[0,1]∗(X∗) = βL1(X
∗).

If, in addition, X is separable, then

θC(Δ)(X) = βL1(X
∗).

The following (1 + ε)-version of the Hagler–Stegall theorem follows from
Theorem A.

Corollary 1.1. Let X be a Banach space. Then the following assertions are
equivalent:
(1) X contains almost isometric copies of (

⊕∞
n=1 �n

∞)l1 ;
(2) X∗ contains a (1 + ε)-complemented subspace that is (1 + ε)-isomorphic

to L1 for every ε > 0;
(3) X∗ contains a (1 + ε)-complemented subspace that is (1 + ε)-isomorphic

to C[0, 1]∗ for every ε > 0.
If, in addition, X is separable, then
(4) for every ε > 0, there exists a (1 + ε)-quotient map T : X → C(Δ) so

that T ∗[C(Δ)∗] is (1 + ε)-complemented in X∗.

2. Preliminaries. Our notation and terminology are standard and mostly in-
line with [1,16]. Throughout the paper, all Banach spaces can be considered
either real or complex. We work with real scalars but the results can be easily
amended to the complex too. By a subspace we understand a closed, linear
subspace and by an operator we understand a bounded, linear map. If X is a
Banach space, we denote by BX the closed unit ball of X, by IX the identity
operator on X, and, for a subset K ⊆ X, by [K] the closed linear span of K.
For a surjective operator T : X → Y , we set

co(T ) = inf{c > 0 : BY ⊆ c · TBX}.

For λ � 1, we say that a surjective operator T : X → Y is a λ-quotient map
if ‖T‖ co(T ) � λ. Quotient maps are 1-quotient maps according to the above
terminology. A norm-one surjective operator T : X → Y is a quotient map if
and only if T is a (1+)-quotient map, that is, a (1+ ε)-quotient map for every
ε > 0.

The Banach–Mazur distance d(X,Y ) between two isomorphic Banach
spaces X and Y is defined by inf ‖T‖‖T−1‖, where the infimum is taken over
all isomorphisms T from X onto Y . As defined by Lindenstrauss and Rosenthal
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[15], for λ � 1, a Banach space X is said to be a L1,λ-space whenever for every
finite-dimensional subspace E of X, there is a finite-dimensional subspace F
of X such that F ⊇ E and d(F, ldim F

1 ) � λ. We say that a Banach space X is
an L1,λ+-space if it is an L1,λ+ε-space for all ε > 0.

Following the notation from [8], we denote

F = {(n, i) : n = 0, 1, . . . , i = 0, 1, . . . , 2n − 1}
and, for (n, i), (m, j) ∈ F , we write (n, i) � (m, j) whenever

• n � m,
• 2n−mj � i � 2n−m(j + 1) − 1.

Let Δ = {0, 1}N be the Cantor set endowed with the metric

d((an)∞
n=1, (bn)∞

n=1) =
∞∑

n=1

1
2n

|an − bn| (
(an)n, (bn)n ∈ Δ

)
.

By Miljutin’s theorem [1, Lemma 4.4.7], C[0, 1] is isomorphic (but not isomet-
ric) to C(Δ). It is well-known that C(Δ)∗ and C[0, 1]∗ are linearly isometric,
though.

3. Proof of Theorem A. The present section is devoted to the proof of Theo-
rem A and is conveniently split into more digestible parts.

Proof of Theorem A. We split the proof into a number of steps.

Step 1. βC(Δ)∗(X∗) � α(
⊕∞

n=1 �n∞)�1
(X).

Since Z = (
⊕∞

n=1 �2
n

∞ )�1 embeds isometrically into (
⊕∞

n=1 �n
∞)�1 , it suffices

to prove that αZ(X) � βC(Δ)∗(X∗). For this, let us fix c > αZ(X). Then there
exists a contractive operator R : Z → X that is bounded below by 1/c.

Let us consider a double-indexed family (Δn,i)
∞,2n−1
n=0,i=0 of clopen subsets of

the Cantor set such that
(1) Δ0,0 = Δ, Δn,i = Δn+1,2i ∪ Δn+1,2i+1 ((n, i) ∈ F), and Δn,i ∩ Δn,j = ∅

if i 
= j;
(2) the diameter of Δn,i is 1/2n (0 � i � 2n − 1).

We set gn,i = 1Δn,i
, which is a continuous function, [gn,i]2

n−1
i=0 ⊆ [gn+1,i]2

n+1−1
i=0 ,

(gn,i)2
n−1

i=0 is isometrically equivalent to the unit vector basis of �2
n

∞ (n ∈ N),
and

⋃∞
n=0[gn,i]2

n−1
i=0 is dense in C(Δ). We may then define an operator T : Z →

C(Δ) by the assignment Ten,i = gn,i. For each n, T is an isometry when
restricted to [en,i : 0 � i � 2n − 1]. Clearly, ‖T‖ = 1.

Claim 1. If W is a finite-dimensional Banach space and S : W → C(Δ) is an
operator, then for every ε > 0, there exists an operator Ŝ : W → Z so that
‖Ŝ‖ � (1 + ε)‖S‖ and ‖S − T Ŝ‖ � ε.

Proof of Claim 1. Let us fix an Auerbach basis (wk, w∗
k)N

k=1 for W (dim W =
N). So if w =

∑N
k=1 akwk ∈ W , then for each 1 � j � N , we get

|aj | =

∣
∣
∣
∣
∣

〈

w∗
j ,

N∑

k=1

akwk

〉∣
∣
∣
∣
∣
� ‖w∗

j ‖‖w‖ = ‖w‖.
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It follows that
∑N

k=1 |ak| � N‖w‖. Let δ > 0 be such that δN � ε‖S‖ and
δN � ε. Then, there exist a positive integer n and (fk)N

k=1 in [gn,i]2
n−1

i=0 so
that ‖Swk − fk‖ < δ (k = 1, 2, . . . , N). Let us write fk =

∑2n−1
i=0 tk,ign,i

(k = 1, 2, . . . , N).

Let us define an operator Ŝ : W → Z by

Ŝwk =
2n−1∑

i=0

tk,ien,i.

We claim that Ŝ is the required operator. Indeed, for w =
∑N

k=1 akwk ∈ W ,
we have

‖Ŝw‖ = ‖∑N
k=1 akŜwk‖ = ‖∑N

k=1 akT Ŝwk‖
= ‖∑N

k=1 akfk‖ � ‖∑N
k=1 ak(fk − Swk)‖ + ‖∑N

k=1 akSwk‖
�

∑N
k=1 |ak|‖fk − Swk‖ + ‖S‖‖w‖

� N‖w‖δ + ‖S‖‖w‖
� (1 + ε)‖S‖‖w‖.

Furthermore,

‖Sw − T Ŝw‖ = ‖∑N
k=1 ak(Swk − ∑2n−1

i=0 tk,ign,i)‖
= ‖∑N

k=1 ak(Swk − fk)‖
� δN‖w‖
� ε‖w‖.

Let ε > 0. Since C(Δ) has the metric approximation property (see, e.g., [4]
for the definition), there exists a net (Tα)α of finite-rank operators on C(Δ)
such that

• lim supα ‖Tα‖ � 1 + ε,
• dim Tα(C(Δ)) → ∞,
• Tα → IC(Δ) strongly.

For each α, we may apply Claim 1 to the inclusion map Iα : Tα[C(Δ)] → C(Δ)
in order to get an operator Îα : Tα[C(Δ)] → Z such that

• ‖Îα‖ � 1 + ε,
• ‖Iα − T Îα‖ � (1 + dim Tα[C(Δ)])−2.

Hence, for f ∈ C(Δ), we get

‖T ÎαTαf − f‖ � ‖T ÎαTαf − IαTαf‖ + ‖Tαf − f‖
� ‖T Îα − Iα‖‖Tα‖‖f‖ + ‖Tαf − f‖ → 0.

Let S be a σ(B(Z∗, C(Δ)∗), Z∗⊗̂πC(Δ))-cluster point of the net ((ÎαTα)∗)α.
We show that ST ∗ = IC(Δ)∗ . Indeed, we choose a subnet ((Îα′Tα′)∗)α′ of
((ÎαTα)∗)α so that (Îα′Tα′)∗ → S in the σ(B(Z∗, C(Δ)∗), Z∗⊗̂πC(Δ))-topology.
Then, for f ∈ C(Δ) and μ ∈ C(Δ)∗, we get 〈(Îα′Tα′)∗T ∗μ, f〉 → 〈ST ∗μ, f〉.
On the other hand, we have

〈(Îα′Tα′)∗T ∗μ, f〉 = 〈μ, TIα′Tα′f〉 → 〈μ, f〉.
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Therefore, 〈ST ∗μ, f〉 = 〈μ, f〉.
Claim 2. There exists an operator T̃ : C(Δ)∗ → X∗ so that R∗T̃ = T ∗ and
‖T̃‖ � c(1 + ε).

The proof of the claim is a variation of the Lindenstrauss’ compactness
argument (see [9, Proposition 1] and [14, Lemma 2]). Since certain amendments
are required, we present the full reasoning.

Proof of Claim 2. We use the fact that C(Δ)∗ is isometric to L1(μ) for some
infinite measure μ, and as such, it is an L1,1+-space. Let Λ be the collection
of all finite-dimensional subspaces of C(Δ)∗. Then, for each γ ∈ Λ, there exist
Eγ ∈ Λ with γ ⊆ Eγ together with an isomorphism Uγ : �

dim Eγ

1 → Eγ so that
‖Uγ‖‖U−1

γ ‖ � 1 + ε. Let Sγ : Z → E∗
γ be an operator such that S∗

γ = T ∗|Eγ

(γ ∈ Λ). By the 1-injectivity of �
dim Eγ∞ , there is an operator Rγ : X → �

dim Eγ∞
so that RγR = U∗

γ Sγ and ‖Rγ‖ � ‖U∗
γ Sγ‖‖R−1‖ � ‖Uγ‖‖T‖‖R−1‖. Let

Tγ = R∗
γU−1

γ : Eγ → X∗. Then R∗Tγ = T ∗|Eγ
and ‖Tγ‖ � c(1 + ε)‖T‖. For

each γ, we define a non-linear, discontinuous function from C(Δ)∗ to X∗ by

T̃γf =
{

Tγf, f ∈ Eγ ,
0, otherwise.

Then (T̃γ)γ is a net in the compact space
∏

f∈C(Δ)∗
c(1 + ε)‖T‖‖f‖BX∗ ,

and as such, it has a cluster point T̃ . Standard arguments show that T̃ is
linear, R∗T̃ = T ∗, and ‖T̃‖ � c(1 + ε)‖T‖ = c(1 + ε).

Finally, we get SR∗T̃ = ST ∗ = IC(Δ)∗ and hence

βC(Δ)∗(X∗) � ‖T̃‖‖SR∗‖ � c(1 + ε)3.

Letting ε → 0, we get βC(Δ)∗(X∗) � c. As c is arbitrary, we get Step 1.
Step 2. βL1(X

∗) � βC[0,1]∗(X∗).
It is well known that L1 is isometric to a 1-complemented subspace of

C[0, 1]∗ (see, e.g., [1, p. 85]), which implies Step 2.
Step 3. α(

⊕∞
n=1 �n∞)�1

(X) � βL1(X
∗).

Let c > βL1(X
∗). Then there exist operators A : L1 → X∗, B : X∗ → L1

so that BA = IL1 , ‖A‖ = 1, and ‖B‖ < c. Let 0 < ε < 1 and εn = ε/22n+3

(n = 0, 1, . . .).
By [8, Lemma 3], we get (fn,i)(n,i)∈F in L∞ and (xn,i)(n,i)∈F in X satisfying

(1) ‖fn,i‖1 = 1 and fn,i � 0 everywhere for all (n, i) ∈ F ;
(2) for each n and i 
= j, fn,i(t) and fn,j(t) cannot be both non-zero for the

same t ∈ [0, 1];
(3)

〈Afn,i, xm,j〉 =
{

1, (n, i) � (m, j),
0, otherwise;
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(4) max0�i�2n−1 |ti| � ‖∑2n−1
i=0 tixn,i‖ � c(1 + εn)max0�i�2n−1 |ti|

(n = 0, 1, . . .; t0, . . . , t2n−1 ∈ R).

We may now define recursively a sequence (Wn,i)(n,i)∈F of non-empty
weak*-closed subsets of BX∗ as follows:

• W0,0 = {x∗ ∈ BX∗ : |〈x∗, x0,0〉 − 1| � ε0},
• W1,0 = W0,0 ∩ {x∗ ∈ BX∗ : |〈x∗, x1,0〉 − 1| � ε1, |〈x∗, x1,1〉| � ε1},
• W1,1 = W0,0 ∩ {x∗ ∈ BX∗ : |〈x∗, x1,1〉 − 1| � ε1, |〈x∗, x1,0〉| � ε1},
• W2,0 = W1,0 ∩ {x∗ ∈ BX∗ : |〈x∗, x2,0〉 − 1| � ε2, |〈x∗, x2,j〉| � ε2, j =

1, 2, 3},
• W2,1 = W1,0 ∩ {x∗ ∈ BX∗ : |〈x∗, x2,1〉 − 1| � ε2, |〈x∗, x2,j〉| � ε2, j =

0, 2, 3},
• W2,2 = W1,1 ∩ {x∗ ∈ BX∗ : |〈x∗, x2,2〉 − 1| � ε2, |〈x∗, x2,j〉| � ε2, j =

0, 1, 3},
• W2,3 = W1,1 ∩ {x∗ ∈ BX∗ : |〈x∗, x2,3〉 − 1| � ε2, |〈x∗, x2,j〉| � ε2, j =

0, 1, 2},

and so on. By (3), each Wn,i is non-empty. By the choice of εn, the sets
Wn,i,Wn,j are disjoint as long as i 
= j. Let

K =
∞⋂

n=0

(
2n−1⋃

i=0

Wn,i) and Kn,i = Wn,i ∩ K
(
(n, i) ∈ F)

.

By (3), Afn,i ∈ Wm,j if (n, i) � (m, j), which implies that each Kn,i is
non-empty. By the construction of the sequence (Wn,i), we see that K0,0 =
K,Kn+1,2i ∪ Kn+1,2i+1 = Kn,i, and Kn,i ∩ Kn,j = ∅ if i 
= j.

Let us define an operator T : X → C(K) by 〈Tx, x∗〉 = 〈x∗, x〉 (x ∈
X,x∗ ∈ K). Then |〈Txn,i, x

∗〉 − 1| � εn if x∗ ∈ Kn,i, and |〈Txn,i, x
∗〉| � εn

if x∗ ∈ ⋃
j �=i Kn,j . Set gn,i = 1Kn,i

, which is continuous as Kn,i is clopen.

Then ‖Txn,i − gn,i‖ � εn. Moreover, [gn,i]2
n−1

i=0 ⊆ [gn+1,i]2
n+1−1

i=0 , (gn,i)2
n−1

i=0 is
isometrically equivalent to the unit vector basis of �2

n

∞ for all n, and

[gn,i : (n, i) ∈ F ] =
∞⋃

n=0

[gn,i]2
n−1

i=0

is isometric to C(Δ). Let Z be a subspace of C(Δ) isometric to (
⊕∞

n=1 �n
∞)�1

and let (zn,j)
∞,n−1
n=1,j=0 be a basis of Z isometrically equivalent to the unit vector

basis of (
⊕∞

n=1 �n
∞)�1 . Fix n � 1. Then there exist m > n and unit vectors

hn,j ∈ [gm,i]2
m−1

i=0 so that ‖zn,j −hn,j‖ � ε/2n+3 (j = 0, 1, . . . , n−1). We write
hn,j =

∑2m−1
i=0 ai,jgm,i and define yn,j =

∑2m−1
i=0 ai,jxm,i ∈ X.

Claim 3. For all (tn,j)
∞,n−1
n=1,j=0 ∈ (

⊕∞
n=1 �n

∞)�1 , we have

(1 − ε

2
)

∞∑

n=1

max
0�j�n−1

|tn,j | � ‖
∞∑

n=1

n−1∑

j=0

tn,jyn,j‖ � c(1 + ε)2
∞∑

n=1

max
0�j�n−1

|tn,j |.
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Indeed, by (4), we get
∥
∥
∥
∥
∥
∥

n−1∑

j=0

tn,jyn,j

∥
∥
∥
∥
∥
∥

=

∥
∥
∥
∥
∥
∥

2m−1∑

i=0

⎛

⎝
n−1∑

j=0

ai,jtn,j

⎞

⎠ xm,i

∥
∥
∥
∥
∥
∥

� c(1 + εm) max
0�i�2m−1

∣
∣
∣
∣
∣
∣

n−1∑

j=0

ai,jtn,j

∣
∣
∣
∣
∣
∣

= c(1 + εm)‖
n−1∑

j=0

tn,jhn,j‖

� c(1 + εm)

⎛

⎝

∥
∥
∥
∥
∥
∥

n−1∑

j=0

tn,jzn,j

∥
∥
∥
∥
∥
∥

+
n−1∑

j=0

tn,j(hn,j − zn,j)‖
⎞

⎠

� c(1 + εm)
(

max
0�j�n−1

|tn,j | + nε/2n+3 max
0�j�n−1

|tn,j |
)

� c(1 + ε)2 max
0�j�n−1

|tn,j |.
Consequently,

∥
∥
∥
∥
∥
∥

∞∑

n=1

n−1∑

j=0

tn,jyn,j

∥
∥
∥
∥
∥
∥

�
∞∑

n=1

∥
∥
∥
∥
∥
∥

n−1∑

j=0

tn,jyn,j

∥
∥
∥
∥
∥
∥

� c(1 + ε)2
∞∑

n=1

max
0�j�n−1

|tn,j |.

On the other hand, by the choice of m and hn,j , we arrive at

‖Tyn,j − zn,j‖ � ‖Tyn,j − hn,j‖ + ‖hn,j − zn,j‖

=

∥
∥
∥
∥
∥

2m−1∑

i=0

ai,j(Txm,i − gm,i)

∥
∥
∥
∥
∥

+ ε/2n+3

� εm2m max
0�i�2m−1

|ai,j | + ε/2n+3

� ε/2n+3 + ε/2n+3 = ε/2n+2.

This implies that
∥
∥
∥
∥
∥
∥

∞∑

n=1

n−1∑

j=0

tn,jyn,j

∥
∥
∥
∥
∥
∥

�

∥
∥
∥
∥
∥
∥

∞∑

n=1

n−1∑

j=0

tn,jTyn,j

∥
∥
∥
∥
∥
∥

�

∥
∥
∥
∥
∥
∥

∞∑

n=1

n−1∑

j=0

tn,jzn,j

∥
∥
∥
∥
∥
∥

−
∥
∥
∥
∥
∥
∥

∞∑

n=1

n−1∑

j=0

tn,j(Tyn,j − zn,j)

∥
∥
∥
∥
∥
∥

�
∞∑

n=1

max
0�j�n−1

|tn,j | −
∞∑

n=1

n max
0�j�n−1

|tn,j | ε

2n+2

�
(
1 − ε

2

) ∞∑

n=1

max
0�j�n−1

|tn,j |.
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Finally, by Claim 3, we get

α(
⊕∞

n=1 �n∞)�1
(X) � c(1 + ε)2/

(
1 − ε

2

)
.

Letting ε → 0 yields α(
⊕∞

n=1 �n∞)�1
(X) � c. Since c was arbitrary, the proof of

Step 3 is completed.
Step 4. βL1(X

∗) � θC(Δ)(X).
This step follows from (1.1) together with Step 2. We are now ready to

establish the final step of the proof.
Step 5. Suppose that X is separable. Then θC(Δ)(X) � βL1(X

∗).
Let c > βL1(X

∗). Then there exist operators A : L1 → X∗, B : X∗ → L1 so
that BA = IL1 , ‖A‖ = 1, and ‖B‖ < c.

Let (fn,i)(n,i)∈F be a family of functions in L∞, (xn,i)(n,i)∈F in X, and
(Wn,i)(n,i)∈F associated to εn = 1/22n+2 (n = 0, 1, . . .) as described in Step 3.
Since X is separable, we may assume that the d-diameter of Wn,i � 2−n for
each i, where d is a metric giving the relative σ(X∗,X)-topology on BX∗ . Let

K =
∞⋂

n=0

(
2n−1⋃

i=0

Wn,i

)

and Kn,i = Wn,i ∩ K
(
(n, i) ∈ F)

.

Then K is a compact, totally disconnected metric space without isolated
points, hence homeomorphic to Δ. Moreover, K0,0 = K,Kn+1,2i∪Kn+1,2i+1 =
Kn,i, and Kn,i ∩ Kn,j = ∅ if i 
= j. Hence K =

⋃2n−1
i=0 Kn,i for all n. As

seen in Step 3, the operator T : X → C(K), defined by 〈Tx, x∗〉 = 〈x∗, x〉
(x ∈ X,x∗ ∈ K), satisfies ‖Txn,i − gn,i‖ � εn, where gn,i = 1Kn,i

∈ C(K).
An argument analogous to Step 1 yields that, if W is a finite-dimensional

Banach space and S : W → C(K) is an operator, then, for every ε > 0, there
exists an operator Ŝ : W → X so that ‖Ŝ‖ � c(1 + ε)‖S‖ and ‖S − T Ŝ‖ � ε.

Fix ε > 0. By an argument analogous to the one from Step 1, we get an
operator S : X∗ → C(K)∗ with ‖S‖ � c(1 + ε)2 so that ST ∗ = IC(K)∗ . This
means that

θC(Δ)(X) = θC(K)(X) � c(1 + ε)2.

Letting ε → 0, we arrive at θC(Δ)(X) � c. As c is arbitrary, the proof is
complete. �
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[6] Fabian, M., Hájek, P., Montesinos, V., Zizler, V.: A quantitative version of

Krein’s theorem. Rev. Mat. Iberoamer. 21, 237–248 (2005)

[7] Hagler, J.: Some more Banach spaces which contain l1. Studia Math. 46, 35–42

(1973)

[8] Hagler, J., Stegall, C.: Banach spaces whose duals contain complemented sub-

spaces isomorphic to C[0, 1]∗. J. Funct. Anal. 13, 233–251 (1973)

[9] Johnson, W.B.: A complementary universal conjugate Banach space and its

relation to the approximation problem. Israel J. Math. 13(3–4), 301–310 (1972)
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