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Circumscribed hyperbolic triangles
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Abstract. Some triangles in the hyperbolic plane have a circumscribed
circle, and some do not. In this essay, we discuss hyperbolic polygons
whose vertices lie on a circle, or a horocycle, or a hypercycle.
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1. Introduction. Every triangle in the Euclidean plane has a circumscribed
circle. By contrast, some triangles in the hyperbolic plane do not have a cir-
cumscribed circle: for example, if three points in the unit disc model of the
hyperbolic plane have a circumscribed Euclidean circle of radius greater than
1, then they cannot lie on a hyperbolic circle. In fact, the existence or non-
existence of the circumscribed circle of a triangle lies at the very heart of
the differences between the two geometries for, as Farkas Bolyai (1775–1856)
showed, when taken with Euclid’s other axioms, the parallel axiom holds if and
only if every triangle has a circumscribed circle (see [2, p. 128] and [5, p. 7]).

Although the absence of a circumscribing circle is often mentioned in an
introduction to hyperbolic geometry, very few authors go further and include
the striking fact that a hyperbolic triangle with sides of lengths a, b, and c,
where a ≤ b ≤ c, has a circumscribed circle if and only if

sinh c/2 < sinh a/2 + sinh b/2. (1.1)

As (1.1), and its natural extension to horocycles and hypercycles, does not
seem to be well known, we hope that the simple proof given below, and this
expository, and partly historical, essay will make it more accessible.
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We shall assume that readers are familiar with the extended complex plane
C∞ equipped with the chordal metric χ, where

χ(z, w) =
2|z − w|

√
1 + |z|2√1 + |w|2 ,

and with the two most familiar models of the hyperbolic plane, namely

D = {z ∈ C : |z| < 1}, H = {x + iy ∈ C : y > 0},

with their associated hyperbolic metrics 2|dz|/(1 − |z|2) and |dz|/y, respec-
tively, of curvature −1. We shall use H, with hyperbolic distance ρ, when
either of these models could be used.

A chordal circle in C∞ is a circle in the metric χ, and any three points
in C∞ lie on a unique chordal circle C (which is either a Euclidean circle, or
a Euclidean straight line with ∞ attached). Now let z1, z2, and z3 be three
points in H, and let C be the unique chordal circle through these points. Then
C is a hyperbolic circle when it lies entirely in H, a horocycle when it lies
in H except for a single point at which it is tangent to the boundary of H,
and a hypercycle when it meets the exterior of H. With these available, the
inequality (1.1) is the first part of the following result which appears in [3, p.
118] following a long discussion of right-angled hyperbolic hexagons.

Theorem 1.1. Let T be a hyperbolic triangle with sides of lengths a, b, and c,
where a ≤ b ≤ c. Then the vertices of T lie on a circle, a horocycle, or a
hypercycle, respectively, according as

sinh c/2

⎧
⎪⎨

⎪⎩

< sinh a/2 + sinh b/2;
= sinh a/2 + sinh b/2;
> sinh a/2 + sinh b/2.

(1.2)

Theorem 1.1 was probably known long ago, but its origin seems to have
been lost in the mist of history; indeed, many of the ideas that lead to The-
orem 1.1 first appeared in the works of Farkas Bolyai, Johann Bolyai, and
Lobachevski, and are still in use today. As remarked in [2], some of these ideas
are now forgotten, but here we use them to give a simple and direct proof
of Theorem 1.1. This result refers to the three sides of a triangle, but it can
be used to derive a similar result for two sides and the included angle of a
triangle.

Corollary 1.2. Let T be the hyperbolic triangle with sides of lengths a, b, and
c, where a ≤ b ≤ c, and opposite angles α, β, and γ. Then the vertices of T
lie on a circle, a horocycle, or a hypercycle, respectively, according as

sinh a/2 sinh b/2

⎧
⎪⎨

⎪⎩

< 1 + cosh a/2 cosh b/2 cos γ;
= 1 + cosh a/2 cosh b/2 cos γ;
> 1 + cosh a/2 cosh b/2 cos γ.

Proof. The cosine rule in hyperbolic geometry gives

cosh c = cosh a cosh b − sinh a sinh b cos γ,
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and as cosh x = 1 + 2 sinh2(x/2) and sinhx = 2 sinh(x/2) cosh(x/2), we see
(after a little simplification) that (sinh a/2 + sinh b/2

)2 − sinh2 c/2 is

2 sinh a/2 sinh b/2
[
1 + cosh a/2 cosh b/2 cos γ − sinh a/2 sinh b/2].

The result now follows from Theorem 1.1. �

Theorem 1.1 and Corollary 1.2 also yield the following results.

Corollary 1.3. A hyperbolic right-angled triangle with sides of lengths a, b, and
c, and with γ = π/2, has a circumscribed circle, horocycle, or hypercycle,
respectively, according as sinh a/2 sinh b/2 is less than, equal to, or greater
than 1, respectively.

Corollary 1.4. Let T be an isosceles hyperbolic triangle with sides of lengths a,
a, and c. If a ≥ c (for example, if T is an equilateral triangle), then T has
a circumscribed circle. However, if c > a, then T has a circumscribed circle,
horocycle, or hypercycle, respectively, according as sinh c/2 is less than, equal
to, or greater than 2 sinh a/2, respectively.

2. The background to Theorem 1.1. The hyperbolic distances ρD and ρH in
the models D and H, respectively, are given by the formulae

ρD(z, w) = log
|1 − zw| + |z − w|
|1 − zw| − |z − w| , ρH(z, w) = log

|z − w| + |z − w|
|z − w| − |z − w| .

Despite these explicit formulae, experience shows that the most useful formula
in the vast majority of circumstances is that for sinh 1

2ρ(z, w). Indeed, if H is
any model of the hyperbolic plane in which H is a chordal disc, with hyperbolic
metric λH(z) |dz| of curvature −1, and associated hyperbolic distance ρH(z, w),
then we have the following result.

Theorem 2.1. For any disk model H of the hyperbolic plane,

sinh2 1
2ρH(z, w) = 1

4 |z − w|2λH(z)λH(w). (2.1)

Note that (2.1) gives the formulae

sinh 1
2ρD(z, w) =

|z − w|
√

(1 − |z|2)(1 − |w|2) , (2.2)

sinh 1
2ρH(z, w) =

|z − w|
2
√

Im(z) Im(w)
, (2.3)

in the models D and H. The proof of Theorem 2.1 is easy. First, if f is a Möbius
map of one disc model, say H, onto another, say D, then

ρH(z, w) = ρD
(
f(z), f(w)

)
;

λH(z) = f ′(z)λH
(
f(z)

)
.

Since
(
f(z) − f(w)

)2 = (z − w)2 f ′(z) f ′(w),

we see that both sides of (2.1) are invariant under Möbius maps. It follows that
(2.1) need only be verified in any chosen model of the hyperbolic plane, and
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since the formulae (2.2) and (2.3) are well known to be true, (2.1) follows for
any model. Theorem 2.1 will play a significant role in our proof of Theorem 1.1.

3. Pencils of geodesics and their orthogonal trajectories. The idea of a pencil
of geodesics occurs in the very early publications on hyperbolic geometry, and
the three types of pencils in a model H of the hyperbolic plane are as follows:

• an elliptic pencil is the family of geodesics that pass through a given
point in H;

• a parabolic pencil is the family of geodesics that have a given endpoint
on ∂H;

• a hyperbolic pencil is the family of geodesics that are orthogonal to a
given geodesic in H.

As usual, we say that two geodesics α and β in H (i) meet (intersect, or are
concurrent) if they have a non-empty intersection in H, (ii) are parallel if they
have a common end-point on ∂H, and (iii) are ultra-parallel if they have a
common orthogonal geodesic. Thus any two geodesics in an elliptic pencil are
concurrent, any two geodesics in a parabolic pencil are parallel, and any two
geodesics in a hyperbolic pencil are ultra-parallel.

Pencils of geodesics are intimately connected to circles, horocycles and
hypercycles, for each pencil P has a family O(P) of orthogonal trajectories,
each of which is orthogonal to every geodesic in P. Explicitly,

• if P is the elliptic pencil of geodesics through w, then O(P) is the set of
all circles with centre w;

• if P is the parabolic pencil of geodesics that end at ζ, then O(P) is the
set of all horocycles that are tangent to ∂H at ζ;

• if P is the hyperbolic pencil of geodesics that are orthogonal to the geo-
desic α, then O(P) is the family of all hypercycles that have the same
endpoints as α.

We shall use the term cycle to indicate either a circle, a horocycle, or a hyper-
cycle, and although there are various alternative ways to introduce these three
families of cycles, all that matters here is that each cycle is an orthogonal
trajectory of some pencil of geodesics.

For any points z and w in H, we let [z, w] be the Euclidean, and 〈z, w〉
the hyperbolic, geodesic segments, respectively, each with endpoints z and w.
The orthogonal bisector of 〈z, w〉 is the geodesic, denoted by B(z, w), which
consists of those points that are (hyperbolically) equidistant from z and w,
and these geodesics play a crucial role in our discussion. Instead of starting
with a triangle and asking whether or not the vertices lie on a cycle, we may
start with a cycle and consider its chords. Explicitly, a chord of a cycle C is a
geodesic segment 〈z, w〉, where z and w are on C, and we have the following
result (which goes back to Lobachevski, though not with this terminology).

Lemma 3.1. Let C be a cycle and let B be the set of orthogonal bisectors of the
chords of C. If C is a circle, then B is an elliptic pencil; if C is a horocycle,
then B is a parabolic pencil; if C is a hypercycle, then B is a hyperbolic pencil.
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Proof. If we use the standard invariance arguments, we need only consider the
case when C is either the circle {z : |z| = r} in D, or the horocycle {z : y = 1}
in H, or the hypercycle {tw : t > 0}, where w ∈ H. In each of these cases, we
can take w1 and w2 on C, and then find the orthogonal bisector of 〈w1, w2〉
by requiring that sinh 1

2ρ(z, w1) = sinh 1
2ρ(z, w2), and using (2.2) or (2.3). In

the case when C is the given hypercycle, the orthogonal bisector of the chord
〈w, tw〉, where t > 1, is part of the Euclidean circle |z| =

√
t|w|, and this is

orthogonal to the (vertical) geodesic given by x = 0. �

For alternative proofs, see [4, p. 100] and [5, p. 53]. It is clear that if B is
an elliptic pencil, then the original curve C is a circle whose centre is at the
common point of the geodesics in the elliptic pencil. Given this, it is perhaps
worth remarking that Lobachevski actually defined a horocycle to be a curve
with the property that the set of orthogonal bisectors of its chords forms a
parabolic pencil (informally a circle whose centre is at infinity).

A key consequence of Lemma 3.1 is that we can decide whether a given
cycle C is a circle, a horocycle, or a hypercycle simply by considering the
orthogonal bisectors of just two of its chords (for any two bisectors determine
a unique pencil). In particular, when considering whether or not the three ver-
tices of a triangle lie on a circle, a horocycle, or a hypercycle, we need only
consider the orthogonal bisectors of two of its sides (and this was a key point in
Lobachevski’s arguments). Of course, a consideration of the orthogonal bisec-
tors naturally leads us to consider one half of the chord length or, equivalently,
one half of the length of a side of the triangle.

4. The proof of Theorem 1.1. Throughout, we shall suppose that the hyper-
bolic triangle T has vertices z1, z2, and z3 which are labelled so that

ρ(z1, z3) = max{ρ(z2, z1), ρ(z2, z3)}.

Then Theorem 1.1 can be restated in the form that the zj lie on a circle, a
horocycle, or a hypercycle, respectively, according as

sinh 1
2ρ(z1, z3)

⎧
⎪⎨

⎪⎩

< sinh 1
2ρ(z1, z2) + sinh 1

2ρ(z2, z3);
= sinh 1

2ρ(z1, z2) + sinh 1
2ρ(z2, z3);

> sinh 1
2ρ(z1, z2) + sinh 1

2ρ(z2, z3).

We have three cases to consider, namely when the vertices zj of T lie on a
circle, a horocycle, or a hypercycle.
Case 1: The zj lie on a hyperbolic circle.
As the required result is invariant under hyperbolic isometries, and as the zj
lie on a circle, we may use the model D and assume that the three vertices zj
of T lie on some hyperbolic circle given by |z| = r, where 0 < r < 1. Then,
from (2.2), we have

sinh 1
2ρ(zi, zj) =

|zi − zj |
1 − r2

,

and the inequality |z1 − z3| < |z1 − z2| + |z2 − z3| now shows that

sinh 1
2ρ(z1, z3) < sinh 1

2ρ(z1, z2) + sinh 1
2ρ(z2, z3).
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Case 2: The zj lie on a horocycle.
As the required result is invariant under hyperbolic isometries, and as the zj
lie on a horocycle, we may use the model H and assume that the three vertices
zj of T lie on the horocycle H given by {z : y = 1}. Then, from (2.3), we see
that

sinh 1
2ρ(zi, zj) = 1

2 |zi − zj |,
and this implies that z2 lies between z1 and z3 on H, and that

sinh 1
2ρ(z1, z3) = sinh 1

2ρ(z1, z2) + sinh 1
2ρ(z2, z3).

Case 3: The zj lie on a hypercycle.
As the required result is invariant under hyperbolic isometries, and as the zj lie
on a hypercycle, we may use the model H and assume that the three vertices zj
of T lie on the hypercycle K given by {r exp(iθ) : r > 0}, where 0 < θ < π/2.
We then have the situation illustrated in Fig. 1, where, directly from (2.2), we
have

sinh 1
2ρ(z, w) =

sinh 1
2ρ(i|z|, i|w|)

sin θ
.

It follows from this that z2 lies between z1 and z3 on K, and since

sinh 1
2ρ(i|z1|, i|z3|) = sinh 1

2

(
ρ(i|z1|, i|z2| + ρ(i|z2|, i|z3|)

)

> sinh 1
2ρ(i|z1|, i|z2|) + sinh 1

2ρ(i|z2|, i|z3|),
we see that sinh 1

2ρ(z1, z3) > sinh 1
2ρ(z1, z2) + sinh 1

2ρ(z2, z3). The proof of
Theorem 1.1 is now complete.

5. Right-angled triangles. We have seen that if T is a hyperbolic right-angled
triangle whose shorter sides have lengths 2�1 and 2�2, then T has

(i) a circumscribed circle if and only if sinh �1 sinh �2 < 1;
(ii) a circumscribed horocycle if and only if sinh �1 sinh �2 = 1;
(iii) a circumscribed hypercycle if and only if sinh �1 sinh �2 > 1.
In this section, we examine the classical geometry that underlies this result
and, in particular, we shall show that it follows directly from the classical
angle of parallelism formula and the Lambert quadrilateral that was studied
by (and named after) J.H. Lambert (1728–1777).

Figure 1. The hypercycle K
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Figure 2. The geodesic γ is the bisector B(0, z)

Figure 3. The Lambert quadrilateral: sinh �1 sinh �2 = cos θ

First, we give a visual representation of the orthogonal bisector B(0, z) of
a hyperbolic segment 〈0, z〉 in the model D of the hyperbolic plane: see Fig. 2.

Lemma 5.1. Let z be a non-zero point in the unit disc D, let α be the hyperbolic
geodesic through 0 and z, and let β be the Euclidean chord through z and
orthogonal to α. Then the hyperbolic geodesic γ with the same endpoints as β
is the orthogonal bisector B(0, z).

Proof. The hyperbolic geodesic γ is an arc of a Euclidean circle C that is
orthogonal to the unit cirle ∂D, and it is well known that this implies that 0
and z are inverse points with respect to C. However, the inversion across C
coincides with the hyperbolic reflection across the geodesic γ; thus γ is the set
of points equidistant from 0 and z. �

A Lambert quadrilateral is a hyperbolic quadrilateral with three right-
angles, and one other angle, say θ, where 0 ≤ θ < π/2 (see Fig. 3); if θ = 0,
then the corresponding vertex lies on the boundary of H. It is well known ([1,
p. 156]) that for the Lambert quadrilateral in Fig. 3, we have

sinh �1 sinh �2 = cos θ.

In particular, if θ = 0, then sinh �1 sinh �2 = 1.
We now return to the case of a right-angled hyperbolic triangle. In Fig. 4,

we have a right-angled triangle T with vertices 0, z1, and z2 (and whose
hypothenuse is not drawn), and the orthogonal bisectors of the sides 〈0, z1〉
and 〈0, z2〉 pass through w1 and w2, respectively, and meet at the point A on
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Figure 4. Midpoints and Euclidean chords

the unit circle. The hyperbolic quadrilateral with vertices 0, w1, A, and w2

is a Lambert quadrilateral, so that sinh ρ(0, w1) sinh ρ(0, w2) = 1. This is the
second case in Theorem 1.1, and a continuity argument then leads to the first
and third cases in that result.

Alternatively, we can use the classical angle of parallelism formula. In the
situation given in Fig. 4, this formula [1, p. 145] gives

sinh ρ(0, w1) tan ϕ = 1 = sinh ρ(0, w2) tan ψ.

Since ϕ + ψ = π/2, we have tan ϕ tan ψ = 1 which gives the same conclusion.
It is also clear from Fig. 4 that we can phrase this result in Euclidean terms
as follows: let the vertices of T be z1, z2, and z3, where z1 is positive, z2 is
purely imaginary, and z3 = 0. Then z1, z2, and z3 are concyclic, or lie on a
horocycle, or lie on a hypercycle, according as |z1|2 + |z2|2 is less than 1, equal
to 1, or greater than 1, respectively.

Similar geometric ideas can be used to illustrate, explain, and prove the
other results given above; however, the geometric proofs are less efficient in
as far as it is often necessary to consider different cases that correspond to
different geometric configurations. Briefly, for a triangle, these proofs depend
on the geometry of the polygon formed by the three bisectors of its sides
and also, if two bisectors are ultra-parallel, the common orthogonal geodesic
to these sides. Such situations involve a study of hyperbolic quadrilaterals,
pentagons, and hexagons, and such an analysis can be found in [3, pp. 86–87].

6. Finite sets of points on a cycle. The arguments used above can also be used
to establish the following necessary (but not sufficient) conditions on any finite
sequence z1, . . . , zn of points to lie on a circle, a horocycle, or a hypercycle.

Theorem 6.1. Suppose that the points z1, . . . , zn, where n ≥ 3, are points in
the hyperbolic plane that lie, in this order, along some chordal circle C.
If C is a circle, then

sinh 1
2ρ(z1, zn) < sinh 1

2ρ(z1, z2) + · · · + sinh 1
2ρ(zn−1, zn).
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Figure 5. Four points not on any cycle

If C is a horocycle, then

sinh 1
2ρ(z1, zn) = sinh 1

2ρ(z1, z2) + · · · + sinh 1
2ρ(zn−1, zn).

If C is a hypercycle, then

sinh 1
2ρ(z1, zn) > sinh 1

2ρ(z1, z2) + · · · + sinh 1
2ρ(zn−1, zn).

It is important to note that while three points in the hyperbolic plane
necessarily lie on some cycle, in general, four or more points will not. Thus
Theorem 6.1 necessarily includes the hypothesis that z1, . . . , zn do lie on some
cycle. Moreover, it is possible for z1, z2, z3, and z4 (for example) to satisfy

sinh 1
2ρ(z1, z4) = sinh 1

2ρ(z1, z2) + sinh 1
2ρ(z2, z3) + sinh 1

2ρ(z3, z4), (6.1)

but not lie on any cycle. Consider, for example, the points zj in Fig. 5. By
Theorem 1.1, we have

sinh 1
2ρ(z1, z4) = sinh 1

2ρ(z1, z2) + sinh 1
2ρ(z2, z4),

sinh 1
2ρ(z2, z4) = sinh 1

2ρ(z2, z3) + sinh 1
2ρ(z3, z4),

thus (6.1) holds.
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