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Groups with many abelian or self-normalizing subgroups
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Abstract. Groups in which every non-abelian subgroup is equal to its nor-
malizer have been recently completely described. This paper investigates
locally soluble groups with restrictions on subgroups which are neither
abelian nor self-normalizing.
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1. Introduction. The structure of groups in which the set of all non-normal
subgroups is small in some sense has been investigated in many papers and in
several different situations. In particular, Romalis and Sesekin [19–21] studied
groups whose non-abelian subgroups are normal. A dual problem has been
considered recently in [7] where a group G is defined as an H-group if any non-
abelian subgroup H of G is self-normalizing (i.e. H is equal to the normalizer
NG(H) of H in G). That paper deals with soluble H-groups while finite non-
soluble H-groups were fully described later in [5]. Clearly, soluble H-groups
are metabelian and it turns out that any finite H-group is either soluble or
simple (see [5, Theorem 2.14]) and also that any infinite locally finite H-group
is soluble (see [5, Theorem 3.4]). The only finite non-abelian simple H-groups
are the alternating group Alt(5) of degree 5 or the projective special linear
group PSL(2, 2n), where 2n − 1 is a prime (see [5, Theorem 2.17]). A soluble
non-nilpotent group G is an H-group if and only if G = 〈x〉 � G′ where x
has order a power of a prime p, the derived subgroup G′ is a periodic abelian
p′-group, and xp belongs to CG(G′) (see [7, Theorem 1.7]). Of course, any
nilpotent group does not have self-normalizing subgroups so that a nilpotent
H-group which is not abelian is a minimal non-abelian group and hence its
structure is well-known.
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In [7], it was also proved that any soluble group whose infinite non-abelian
subgroups are self-normalizing is either a Chernikov group or an H-group.
Here in Sect. 2, we will consider minimal conditions related to H-groups and
the just quoted result will be generalized as follows.

Theorem A1. Let G be a locally soluble group satisfying the minimal condition
on subgroups which are neither abelian nor self-normalizing. Then G is either
a Chernikov group or an H-group.

Theorem A2. Let G be a locally soluble group satisfying the minimal condition
on non-H-subgroups. Then G is either a Chernikov group or an H-group.

Recall that a group G is said to have finite (Prüfer) rank r if every finitely
generated subgroup of G can be generated by r elements and r is the least such
integer. In recent years, the influence on a locally soluble group of the behavior
of the subgroups of infinite rank has been investigated (see for instance [3,4,6,
8,9,12,13]). This point of view will be adopted here in Sect. 3 were the following
results will be obtained.

Theorem B1. Let G be a locally soluble group of infinite rank whose non-
abelian subgroups of infinite rank are self-normalizing. Then G is an H-group.

Theorem B2. Let G be a locally (soluble-by-finite) group of infinite rank whose
subgroups of infinite rank are H-groups. Then G is an H-group.

For notation and basic facts, we refer to [18].

2. Minimal conditions. The first three lemmas deal with a property of H-
groups that we need in what follows. Recall that a group G is said to be locally
graded if every finitely generated non-trivial subgroup of G contains a proper
subgroup of finite index. The class of locally graded groups is quite large and
contains, in particular, all locally (soluble-by-finite) groups.

Lemma 2.1. Let G be a locally graded group whose finitely generated non-
abelian subgroups are self-normalizing. Then G is a locally (abelian-by-finite)
H-group.

Proof. Let E be any finitely generated subgroup of G and assume, by contra-
diction, that E is not abelian-by-finite. Since G is locally graded, E contains a
proper normal subgroup E1 of finite index. Then E1 is finitely generated and
non-abelian, so that E1 = NG(E1); hence E1 = E. This contradiction proves
that E is abelian-by-finite. In particular, G locally satisfies the maximal con-
dition.

Let H be any non-abelian subgroup of G which is not finitely generated
and let g be any element of the normalizer NG(H). Consider any non-abelian
finitely generated subgroup X of H. Then 〈X, g〉 satisfies the maximal con-
dition, so that the subgroup Y = X〈g〉 is a finitely generated non-abelian
subgroup of H〈g〉 = H which is normalized by g. Since NG(Y ) = Y , it follows
that g belongs to Y and so also to H. Thus NG(H) = H. Therefore G is an
H-group. �
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Lemma 2.2. Let G be a locally graded group. If every finitely generated sub-
group of G is an H-group, then G is an H-group.

Proof. Let H be any finitely generated subgroup of G and let g ∈ NG(H)�H.
Then the finitely generated subgroup K = 〈H, g〉 is an H-group and g belongs
to NK(H) �H. Thus H is abelian. Therefore all finitely generated subgroups
of G are either abelian or self-normalizing, hence application of Lemma 2.1
proves that G is an H-group. �

Lemma 2.3. Let G be a locally graded H-group. Then G is either finite or
metabelian.

Proof. The group G is locally (abelian-by-finite) by Lemma 2.1. If G is pe-
riodic, then G is locally finite and so it is either finite or metabelian (see [5,
Theorem 3.4]). Hence assume that G is not periodic. In order to prove that G
is abelian, it can be assumed that G is finitely generated. Then G contains a
normal abelian subgroup A of finite index; in particular, A is not periodic. If
g ∈ G, then A 〈g〉 is a soluble non-periodic H-group and hence it is abelian (see
[5, Theorem 3.2] or [7, Lemma 1.2]). Therefore A ≤ Z(G), so that G/Z(G) is
finite. Thus G′ is finite (see [18, Part 1, Theorem 4.12]) and so G is abelian
(see [7, Lemma 1.2]). �

Lemma 2.4. Let G be a nilpotent group satisfying the minimal condition on
subgroups which are neither abelian nor self-normalizing. Then G is either
abelian or a Chernikov group.

Proof. Since a nilpotent group has no self-normalizing subgroups, G satisfies
the minimal condition on non-abelian subgroups and hence G is either abelian
or a Chernikov group (see [2]). �

Lemma 2.5. Let G be a group satisfying the minimal condition on subgroups
which are neither abelian nor self-normalizing. Then either G is abelian or
G/G′ is periodic.

Proof. Let x be any element of G such that the coset xG′ has infinite order.
Since G has the minimal condition on subgroups which are neither abelian
nor self-normalizing, from the consideration of the infinite descending chain of
G-invariant subgroups

〈
x2, G′〉 >

〈
x4, G′〉 > · · · >

〈
x2n , G′

〉
> · · · ,

it follows that there exists h ∈ N such that 〈x2h , G′〉 is abelian. Similarly also
〈x3k , G′〉 is abelian for some k ∈ N. Therefore Fitting’s theorem yields that

〈x,G′〉 = 〈x2h , G′〉〈x3k , G′〉
is nilpotent. It follows that if x1G

′, . . . , xtG
′ are elements of infinite order of

G/G′, the subgroup 〈x1, G
′〉 · · · 〈xt, G

′〉 is nilpotent by Fitting’s theorem and
hence even abelian by Lemma 2.4. Therefore, if G/G′ is not periodic and I is
the set of all elements x of G such that the coset xG′ has infinite order, the
group G = 〈〈x,G′〉 : x ∈ I〉 itself is abelian. �
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Lemma 2.6. Let G = 〈x,A〉 where A is a non-periodic finitely generated abelian
normal subgroup whose index in G is a power of a prime. If G satisfies the
minimal condition on subgroups which are neither abelian nor self-normalizing,
then G is abelian.

Proof. Consider first the case in which 〈x〉 ∩ A = {1}. Assume further that
A is torsion-free, and let the index of A in G be a power of the prime p. If
〈x〉Apn

= 〈x〉Apn+1
for some positive integer n, then

Apn

= 〈x〉Apn+1 ∩ Apn

= Apn+1
(〈x〉 ∩ Apn

) = Apn+1

and this is not possible since A is a free abelian group of finite rank. Thus
〈x〉Apn �= 〈x〉Apn+1

for every positive integer n. On the other hand, G/Apn

is
a finite p-group, so that it is nilpotent and this implies that 〈x〉Apn

is a sub-
normal subgroup of G for any positive integer n. Therefore the consideration
of the descending chain

〈x〉Ap > 〈x〉Ap2
> · · · > 〈x〉Apn

> · · ·
and the minimal condition on subgroups which are neither abelian nor self-
normalizing gives that 〈x〉Apn

is abelian for some positive integer n. Hence
G =

(〈x〉Apn)
A is nilpotent. Therefore application of Lemma 2.4 gives that G

is abelian when A is torsion-free. If A is not torsion-free and T is the subgroup
consisting of all elements of finite order of A, the previous argument gives that
G/T is abelian. Therefore G′ is periodic and, since G is not periodic, it follows
from Lemma 2.5 that G is abelian.

Assume now that 〈x〉∩A �= {1}; notice that 〈x〉∩A ≤ Z(G). The first part
of this proof yields that either A/ 〈x〉∩A is periodic or G/ 〈x〉∩A is abelian. If
A/ 〈x〉 ∩A is periodic, then G/ 〈x〉 ∩A is finite; thus G′ is finite (see [18, Part
1, Theorem 4.12]) and so, since G is not periodic, it follows from Lemma 2.5
that G must be abelian. On the other hand, if G/ 〈x〉 ∩ A is abelian, we have
that G is nilpotent and so even abelian by Lemma 2.4. The lemma is proved.

�

The next result also solves the non-periodic case of Theorem A1.

Lemma 2.7. Let G be a locally graded group satisfying the minimal condition on
subgroups which are neither abelian nor self-normalizing. If G is not periodic,
then G is abelian.

Proof. In order to prove that G is abelian, without loss of generality, it can be
supposed that G is finitely generated.

Assume first that G is soluble. Suppose by contradiction that G is not
abelian and let G be a counterexample with minimal derived length. Ap-
plication of Lemma 2.5 yields that G/G′ is finite, hence G′ is likewise a
non-periodic finitely generated group with the minimal condition on sub-
groups which are neither abelian nor self-normalizing, and so G′ is abelian
by the minimality of derived length of G. Let G/G′ = 〈x1G

′, . . . , xtG
′〉 with

every xiG
′ of prime-power order. Lemma 2.6 yields that every 〈xi, G

′〉 is
abelian, so that G = 〈x1, G

′〉 · · · 〈xt, G
′〉 is nilpotent and hence even abelian by
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Lemma 2.4. This contradiction proves the statement for non-periodic soluble
groups with the minimal condition on subgroups which are neither abelian nor
self-normalizing.

In the general case, let G be locally graded. Since G is finitely generated, it
contains a descending chain G1 > · · · > Gn > · · · of proper normal subgroups
of finite index; in particular, each Gi is not periodic. Since G satisfies the
minimal condition on subgroups which are neither abelian nor self-normalizing,
there exists a positive integer n such that Gn is abelian. If g ∈ G, then 〈g〉Gn

is a soluble non-periodic group with the minimal condition on subgroups which
are neither abelian nor self-normalizing and hence it is abelian by the first part
of the proof. Therefore Gn ≤ Z(G) and so G/Z(G) is finite; thus G′ is finite
(see [18, Part 1, Theorem 4.12]). Hence G �= G′ and Lemma 2.5 yields that
either G is abelian or G/G′ is periodic. Since G is not periodic, it follows that
G is abelian. �

Proof of Theorem A1. Lemma 2.7 allows us to suppose that G is periodic.
Assume that G is not a Chernikov group, and let H be an arbitrary finite
non-abelian subgroup of G. Let g ∈ NG(H), and consider the finite subgroup
K = 〈H, g〉. Then G contains an abelian subgroup A which does not satisfy
the minimal condition such that AK = A (see [22]). Hence the socle S of A is
infinite and so it is possible to find finite K-invariant subgroups A1, A2, . . . of
S such that

〈An : n ∈ N〉 = Dr
n∈N

An

(see [11, Lemma 3.8]). Clearly, the subgroup 〈An : n ∈ N〉 ∩ K is contained in
a direct product of finitely many An’s, so that, by replacing 〈An : n ∈ N〉 with
a suitable subgroup of finite index, it can be assumed that

〈An : n ∈ N〉 ∩ K = {1}.
For any n ∈ N, consider the K-invariant subgroup

Bn = Dr
i≥n

Ai.

Then B1H > · · · > BnH > · · · is an infinite descending chain of non-abelian
subgroups of G and so there exists a positive integer k such that NG(BkH) =
BkH. Since g ∈ NG(BkH), it follows that

g ∈ BkH ∩ K = H(Bk ∩ K) = H.

Thus H = NG(H). Therefore all finite non-abelian subgroups of G are self-
normalizing and so G is an H-group by Lemma 2.1. �

Next we consider groups with the minimal condition on subgroups which
do not have the property H. The proof of Theorem A2 will be essentially the
same as Theorem A1, but we need a corresponding version of Lemma 2.4.

Lemma 2.8. Let G be a nilpotent group satisfying the minimal conditions on
non-H-subgroups. Then G is either abelian or a Chernikov group.
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Proof. Let G1 > · · · > Gn > · · · an infinite descending chain of non-abelian
subgroups. Then there exists a positive integer n such that Gn is an H-group.
Since G is nilpotent, it follows that Gn is a minimal non-abelian group and
hence it is finite. This contradiction proves that G satisfies the minimal condi-
tion on non-abelian subgroups, thus G is either abelian or a Chernikov group
(see [2]). �

Lemma 2.9. Let G be a locally graded group satisfying the minimal conditions
on non-H-subgroups. If G is not periodic, then G is abelian.

Proof. Since any locally graded non periodic H-group is abelian, the proof
can be obtained in a similar way as in the proofs of Lemmas 2.5, 2.6, and 2.7,
replacing in the argument Lemma 2.4 with Lemma 2.8. �

Proof of Theorem A2. Lemma 2.9 allows us to suppose that G is periodic.
Assume that G is not a Chernikov group. Consider any finite subgroup H of
G. In order to prove the statement, by Lemma 2.2, it is enough to prove that
H is an H-group. The group G contains an abelian subgroup A which does not
satisfy the minimal condition such that AH = A (see [22]). As in the proof of
Theorem A1, H-invariant subgroups B1, B2, . . . of A can be found such that
B1H > · · · > BnH > · · · is an infinite descending chain. Hence there exists a
positive integer k such that BkH is an H-group. Thus H is likewise an H-group
and the theorem is proved. �

Finally we conclude this section with a result concerning groups in which
non-H-subgroups fall into finitely many conjugacy classes.

Proposition 2.10. Let G be an infinite locally graded group with finitely many
conjugacy classes of non-H-subgroups. Then G is an H-group.

Proof. Since any locally graded H-group is either finite or soluble by Lemma 2.3
and hence also abelian-by-finite (see [5, Lemma 2.3]), the group G is locally
(abelian-by-finite) (see [15, Proposition 3.3]). Then the elements of any chain
of non-H-subgroups are pairwise not conjugate (see [1, Lemma 4.6.3]) and
hence, since G has finitely many conjugacy classes on non-H-subgroups, any
chain of non-H-subgroups subgroups of G is finite. In particular, G satisfies
both the minimal and the maximal condition on non-H-subgroups. Assume
that G is not an H-group, so that G is periodic by Lemma 2.9. Let H be
any minimal element of the set of all non-H-subgroups of G. Then all proper
subgroups of H are H-subgroups and hence it follows from Lemma 2.2 that
H is finitely generated. Thus H is finite. Since G is infinite and locally finite,
it follows that there are infinitely many elements g1, g2, . . . of G which give a
strictly infinite ascending chain of subgroups

H < 〈H, g1〉 < · · · < 〈H, g1, . . . , gn〉 < · · · .
Then 〈H, g1, ..., gn〉 is an H-group for some n ∈ N, a contradiction which proves
the statement. �
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3. Restrictions on subgroups of infinite rank.

Lemma 3.1. Let G be a group of infinite rank whose non-abelian subgroups of
infinite rank are self-normalizing. If G′ has finite rank, then G is abelian.

Proof. Let X be any finitely generated subgroup of G. Then XG′/G′ is an
abelian finitely generated group and hence, as G′ has finite rank, the subgroup
XG′ has likewise finite rank. Thus G/XG′ has infinite rank and so there exists
a proper subgroup of infinite rank Y of G containing XG′; clearly Y is a normal
subgroup and so it is abelian. Hence X is itself abelian and so the lemma is
proved. �
Lemma 3.2. Let G be a group of infinite rank whose non-abelian subgroups
of infinite rank are self-normalizing. If G is abelian-by-finite, then G is an
H-group.

Proof. Let A be an abelian normal subgroup of finite index of G. Then A
has infinite rank and there exists a sequence (Xn)n∈N of finitely generated
G-invariant subgroups of A such that

X = 〈Xn : n ∈ N〉 = Dr
n∈N

Xn,

r(Xn) < r(Xn+1) for every n ∈ N (see [8, Lemma 6]). Let H be any finitely
generated non-abelian subgroup of G, and let g ∈ NG(H). Then K = 〈H, g〉
is abelian-by-finite and finitely generated, hence K ∩ X is likewise finitely
generated and so, by replacing X with a suitable subgroup (which is a direct
product of infinitely many of the Xn’s), it can be assumed that X ∩K = {1}.
Then Y = 〈Xn : n ≥ 2〉 is a proper G-invariant subgroup of infinite rank of
X, hence HY is a proper non-abelian subgroup of infinite rank of G and so
HY = NG(HY ). Since g ∈ NG(HY ), it follows that

g ∈ HY ∩ K = H(Y ∩ K) = H.

Thus H = NG(H). Therefore every finitely generated non-abelian subgroup of
G is self-normalizing and hence G is an H-group by Lemma 2.1. �

As in many problems concerning groups of infinite rank, the existence of a
proper normal subgroup of infinite rank plays a crucial role. We have in fact
the following result on which the proof of Theorem B1 will depend.

Proposition 3.3. Let G be a locally graded group of infinite rank whose non-
abelian subgroups of infinite rank are self-normalizing. If G contains a proper
normal subgroup of infinite rank, then G is an H-group.

Proof. By Lemma 3.2, it is enough to prove that G is abelian-by-finite. Let N
be a proper normal subgroup of infinite rank. Then N is abelian, and so G/N
is locally graded (see [17]). Clearly G/N is an H-group and hence Lemma 2.3
yields that either G/N is finite or G′′ ≤ N . If G/N is finite, G is abelian-by-
finite and so we have done. Assume that G′′ ≤ N , so G �= G′. Lemma 3.1
allows us to suppose that G′ has infinite rank, so that G′ is abelian. Clearly it
can be assumed that G is not abelian, hence G cannot be nilpotent (see [14,
Theorem A]) and so it follows from Fitting’s theorem that G/G′ cannot be
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the product of two proper subgroups. On the other hand, if a, b ∈ G are such
that [a, b] �= 1, then 〈a, b,G′〉 is a non-abelian normal subgroup of infinite rank
and hence G = 〈a, b,G′〉; therefore G/G′ is finitely generated. Hence G/G′ is
a cyclic group of prime-power order and so G is abelian-by-finite. The proof is
completed. �

Corollary 3.4. Let G be a locally (soluble-by-finite) group of infinite rank whose
non-abelian subgroups of infinite rank are self-normalizing. If G has no simple
homomorphic images of infinite rank, then G is an H-group.

Proof. Assume, by contradiction, that G is not an H-group. Then any proper
normal subgroup of G has finite rank by Proposition 3.3; in particular, it fol-
lows from Lemma 3.1 that G = G′. Let N be any proper normal subgroup
of G and assume that N is not abelian. Then N has finite rank and G/N is
a locally (soluble-by-finite) group of infinite rank whose subgroups of infinite
rank are self-normalizing; hence G/N is soluble (see [6]) which is a contra-
diction because G is perfect. Therefore any proper normal subgroup of G is
abelian. Since any proper normal subgroup of G has finite rank and the prod-
uct of finitely many normal subgroups of finite rank has likewise finite rank, it
follows that the join L of all proper normal subgroups of G is abelian. Hence
G �= L and so L has finite rank. Thus G/L has infinite rank and so, since
clearly G/L is simple, we obtain the contradiction which concludes the proof.

�

Proof of Theorem B1. Any simple locally soluble group has prime order (see
[18, Part 1, Corollary 1 on page 154]), hence the statement follows immediately
from Corollary 3.4. �

Corollary 3.5. Let G be a group of infinite rank whose non-abelian subgroups
of infinite rank are self-normalizing. If G �= G′, then G is an H-group.

Proof. If G′ has finite rank, then G is abelian by Lemma 3.1. If G′ has infinite
rank, then G′ is abelian and the result follows from Theorem B1. �

Finally we consider groups in which all proper subgroups of infinite rank
are H-groups.

Lemma 3.6. Let G be a locally graded group of infinite rank whose proper sub-
groups of infinite rank are H-groups. If G′ has finite rank, then G is an H-
group.

Proof. Let X be any finitely generated subgroup of G. Then XG′/G′ is abelian
and finitely generated and so, since G′ has finite rank, XG′ has finite rank.
Hence G/XG′ is an abelian group of infinite rank and so there exists a sub-
group of infinite rank Y such that XG′ < Y < G. Thus Y is an H-group and
so X is likewise an H-group. Therefore G itself is an H-group by Lemma 2.2.

�

Lemma 3.7. Let G be a non-periodic locally (soluble-by-finite) group of infinite
rank whose proper subgroups of infinite rank are H-groups. Then G is abelian.
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Proof. Assume, by contradiction, that G is not abelian. Hence G is not an
H-group, so that Lemma 3.6 yields that G′ is a subgroup of infinite rank and
hence G/G′ is finitely generated (see [10, Lemma 2.8] and Lemma 2.2). Since
every soluble H-group is either abelian or periodic, the derived subgroup G′ is
periodic (see [10, Theorem A]). Hence G/G′ is not periodic and so we may write
G/G′ = 〈x1G

′, . . . , xtG
′〉 with any xiG

′ of infinite order. If i ∈ {1, . . . , t}, p and
q are distinct primes, the subgroups 〈xp

i , G
′〉 and 〈xq

i , G
′〉 are proper normal

non-periodic subgroups of G of infinite rank, so that they are both H-groups
and hence even abelian. Thus

G = 〈xp
1, G

′〉 〈xq
1, G

′〉 · · · 〈xp
t , G

′〉 〈xq
t , G

′〉
is nilpotent. Therefore, since G/G′ is finitely generated, G itself is finitely
generated (see [18, Part 1, Theorem 2.26]) and hence G has finite rank. A
contradiction which concludes the proof. �
Proof of Theorem B2. Lemma 2.3 yields that all subgroups of infinite rank
of G are soluble, and so G itself is soluble (see [9, Theorem 9]). Moreover,
Lemma 3.7 allows us to assume that G is periodic. Let H be any finite subgroup
of G, g ∈ NG(H) � H, and K = 〈H, g〉. Then K is finite and there exist
abelian K-invariant subgroups of infinite rank A1 and A2 such that A2 < A1

and K ∩ A1 = {1} (see [16]). Then A2K is a proper subgroup of infinite rank
of G, so that it is an H-group. Since g ∈ NA2K(H) � H, it follows that H is
abelian. Therefore all finite non-abelian subgroups of G are self-normalizing
and hence G in an H-group by Lemma 2.1. �
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