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The Cremona problem in dimension 2

Wolfgang Bartenwerfer

Abstract. The Cremona conjecture, also called Jacobi problem, claims
that a polynomial morphism C

n −→ C
n is invertible as a polynomial

morphism if its Jacobian is constant and not zero. In this paper, we show
that the conjecture is true for n = 2. The starting point of our proof is
an important result of Shreeram Abhyankar. Then we use a computation
in rigid geometry to achieve the result.
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Introduction. A polynomial map (f, g) : C 2 −→ C
2 is given by two polyno-

mials f and g in two variables X and Y with complex scalars. We write f and
g as sums of their homogenous components

f = fm + · · · + fm′ and g = gn + · · · + gn′ ,

where fμ respectively gν are linear combinations of the terms of total degree
μ respectively ν. The forms fm respectively gn of highest degree are called the
leading forms.

It was shown by Abhyankar that, for a given counterexample (f, g) to the
Jacobian conjecture in dimension 2, one can assume that, after a suitable
transformation of variables, the leading forms of f and g have the following
shape

fm = Xm1Y m2 and gn = Xn1Y n2 ;

cf. [1, Theorem 8.7] or [5, Corollary 10.2.22]. In this paper, we will show that
this assumption leads to a contradiction. Thus the Jacobian conjecture is true
in dimension 2.
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1. Division algorithm. In this section, let K be an algebraically closed field
of characteristic 0. The K-algebra L := K[X,Y ]XY consists of all Laurent
polynomials in two variables. It carries a canonical graduation of type Z given
by the total degree function. Let Hn be the subspace of all homogenous Laurent
polynomials of degree n including the zero polynomial. For f =

∑
ν∈Z

fν ∈ L
and f �= 0, we set

deg f := sup{ν ∈ Z ; fν �= 0} .

On L, we have a filtration (Ln; n ∈ N) where

Ln := {f ∈ L; deg f ≤ −n} =
⊕

ν≤−n

Hν .

The completion with respect to this filtration is denoted by

A := L̂ = lim←− L/Ln ;

cf. [2, Chap. 3]. It consists of all series

m∑

μ=−∞
fμ with fμ ∈ Hμ for some m ∈ Z ;

cf. [5, Prop. 10.2.8]. The degree, the multiplication, and the filtration on A
are declared as on L. The K-algebra A represents the formal functions on a
neighborhood of the twice punctured projective line at infinity which behave
like meromorphic functions there. The algebra A has similar properties as
the algebra R∼ defined in [5, Prop. 10.2.8]. In this section, we consider these
functions without conditions of convergence; in Section 2, we will focus on that
by means of rigid geometry.

Lemma 1.1. An element g ∈ A is a unit in A if and only if g is of the form

g = c · Xn1Y n2 · (1 − v)

where c ∈ K
× , ni ∈ Z , deg(v) < 0. Such a representation is unique. Such a

unit g admits a k-th root for 0 �= k ∈ Z if and only if k divides both numbers
n1 and n2.

Proof. The proof can be left to the reader. For example, we have for the inverse

g−1 = c−1 · X−n1Y −n2 ·
( ∞∑

ν=0

vν

)

.

For c = 1 and k ∈ N, the k-th root is given by

g1/k := Xn1/kY n2/k ·
( ∞∑

ν=0

(
1/k

ν

)

(−v)ν

)

if k divides n1 and n2. We consider this as the canonical k-th root of g. �
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Corollary 1.2. Let g = Xn1Y n2 · (1 + v) ∈ A with deg(v) < 0 and r ∈ Q be
such that r · n1 and r · n2 belong to Z, then

gr := Xr·n1Y r·n2 ·
( ∞∑

ν=0

(
r

ν

)

vν

)

is well defined.

In the following, we denote by ∂/∂X respectively ∂/∂Y the partial deriva-
tives of Laurent series. Obviously they give rise to K-derivations on the K-
algebra A. They satisfy the usual rules for K-derivations. Since the field K has
characteristic 0, we have ker(∂/∂X , ∂/∂Y ) = K.

Definition 1.3. A couple (f, g) of elements of A is called a Jacobian couple if
its Jacobian

det

(
∂f
∂X

∂f
∂Y

∂g
∂X

∂g
∂Y

)

= d ∈ K
×

is constant and not 0.

As for polynomials in two variables, we also have the notion of a leading
form for a Laurent series in A.

Proposition 1.4. Consider a Jacobian couple (f, g) as introduced above, where
m := deg f and n := deg g. Assume that the leading form of g has the shape
gn = Xn1Y n2 .
(a) Then we always have m + n ≥ 2.
(b) If m + n > 2, then fn

m · g−m
n is constant.

Proof. (a) The homogenous components of the Jacobian of degree m + n > 2
vanish and for m + n = 2 it is given by

∂fm

∂X
· ∂gn

∂Y
− ∂fm

∂Y
· ∂gn

∂X
. (1)

Since that the Jacobian is constant and the degree of a constant is 0, we see
that m + n ≥ 2.
(b) If m + n > 2, then the expression (1) is zero. We compute

∂

∂X

(
fn

m

gm
n

)

=
fn−1

m · gm−1
n

g2m
n

·
(

∂fm

∂X
· n · gn − ∂gn

∂X
· m · fm

)

. (2)

For homogenous polynomials, we have Euler’s differential equation

n · gn = X
∂gn

∂X
+ Y

∂gn

∂Y
and m · fm = X

∂fm

∂X
+ Y

∂fm

∂Y
.

Then the term in parentheses of equation (2) is equal to

∂fm

∂X
·
(

X
∂gn

∂X
+ Y

∂gn

∂Y

)

− ∂gn

∂X
·
(

X
∂fm

∂X
+ Y

∂fm

∂Y

)

= Y

(
∂fm

∂X
· ∂gn

∂Y
− ∂fm

∂Y
· ∂gn

∂X

)

.
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This vanishes due to (1) since m + n > 2. Thus we see that the left hand term
of equation (2) is equal to 0. Analogously, one shows

∂

∂Y

(
fn

m

gm
n

)

= X

(
∂fm

∂Y
· ∂gn

∂X
− ∂fm

∂X
· ∂gn

∂Y

)

= 0 . (3)

So the total differential of fn
m · g−m

n vanishes. Thus, the function fn
m · g−m

n is
constant. �

Corollary 1.5. Let (f, g) be a Jacobian couple as in 1.4 satisfying gn = Xn1Y n2

with integers n1 > 0 , n2 > 0. If m + n > 2, then we have fm = c · Xm1Y m2

with a constant c ∈ K
×. Moreover it holds

m

n
=

m1

n1
=

m2

n2
.

Therefore the following expression is well defined

gm/n = Xm1Y m2

(

1 +
n−1∑

ν=−∞
gνg−1

n

)m/n

.

In particular, we have
(
gm/n

)n
= gm. Furthermore |m1 − m2| �= |n1 − n2| if

|m| �= |n|.
Proof. The first assertion follows from 1.4(b). For the second assertion, we use

n1 · m

n
= n1 · m1

n1
= m1 and n2 · m

n
= n2 · m2

n2
= m2 .

So we see |m1 − m2| �= |n1 − n2| if |m| �= |n|. The formula for gm/n follows
from 1.2. �

Now we turn to the division algorithm.

Proposition 1.6. Let (f, g) be as in 1.5. Then there exists a rational number
r ∈ Q such that r · n1 ∈ Z and r · n2 ∈ Z are integers, and a constant c ∈ K

×

with deg(f − c · gr) < m. The couple (c, r) is uniquely determined; actually we
have r = m/n and fm = c · Xm1Y m2 .

If, in addition, deg(f − c · gr) = 2 − n, then n1 �= n2 and the leading form
of h := f − c · gr is given by

h2−n =
∑

i+j=2−n

ci,jX
iY j ,

where c1−n1,1−n2 �= 0. Furthermore there is at most one index (i, j) with
(i, j) �= (1 − n1, 1 − n2) with ci,j �= 0. For this index, we have

i

n1
=

j

n2
=

2 − n

n
.

Proof. The first assertion follows from 1.5.
For the supplement, set m′ := deg(f − c · gr) = 2 − n. The Jacobian d of

the couple (h, g) is equal to the Jacobian of (f, g). Then we have

n2

∑

i+j=2−n

i · ci,jX
i+n1−1Y j+n2−1 − n1

∑

i+j=2−n

j · ci,jX
i+n1−1Y j+n2−1 = d.
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For (i, j) = (1 − n1, 1 − n2), it follows that

n2(1 − n1)c1−n1,1−n2 − n1(1 − n2)c1−n1,1−n2 = d .

Thus, we see n1 �= n2 and c1−n1,1−n2 �= 0. For all the other indices, we have

n2 · i · ci,j − n1 · j · ci,j = 0 .

If ci,j �= 0, then

i

n1
=

j

n2
.

Moreover we know i + j = 2 − n and n = n1 + n2. This yields

i

n1
=

j

n2
=

2 − n − i

n2

and i · n2 = (2 − n − i) · n1 and hence i · n = i · (n2 + n1) = (2 − n) · n1 �

Corollary 1.7. Keep the assumptions of 1.6. Then we have n1 �= n2 and there
exist a natural number s ∈ N, constants cσ ∈ K, and rational numbers rσ ∈ Q

satisfying

r1 > r2 > · · · > rs =
2 − n

n

such that

G =
s∑

σ=1

cσ · grσ

belongs to A and the leading term of (f − G) fulfills

(f − G)2−n = c1−n1,1−n2X
1−n1Y 1−n2 .

Proof. Apply 1.6 inductively. Note that deg(f − G) is always an integer and
that (f − G , g) is a Jacobian couple. Therefore the procedure stops after
finitely many steps until we arrive at the situation deg(f − G) = 2 − n since
there is at each step at most one term which has to be cancelled. In the case
deg(f − G) = 2 − n, we apply the additional claim of 1.6. Then we obtain for
the leading form

(f − G)2−n = c1−n1,1−n2X
1−n1Y 1−n2 + ci,jX

iY j ,

where i/n1 = j/n2 = (2 − n)/n as follows from 1.6. Then we subtract

ci,j · g(2−n)/n := ci,j ·
(

(Xn1Y n2) ·
(

1 +
n−1∑

ν=−∞
gνg−1

n

))(2−n)/n

which cancels the term ci,jX
iY j . Thus the assertion is proved. �
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2. Convergence of the division algorithm. In the following, we make use of
some elementary results in rigid geometry; for a general reference, we cite
[3] or [4]. We consider an algebraically closed field K which is complete with
respect to a non-Archimedean valuation and which has residue characteristic
0. We assume that K contains the field K of characteristic 0 as a subfield,
where K is the algebraically closed field over which the Jacobian problem is
posed. Such a field can be constructed in the following way: Consider the field
of fractions K ′ of K[[T ]] and define K as the topological algebraic closure of
K ′. The canonical valuation on K[[T ]] extends to a valuation of K. Note that
we write valuations in the multiplicative way. So we obtain on K

2 a canonical
structure of rigid space in the sense of Tate. On each subset V ⊂ K

2, we have
the spectral norm of functions f

|f |V := sup
{|f(x)| ; x ∈ V

}
.

In particular, we have the notion of an affinoid domain V ⊂ K
2; for example,

bounded domains described by finitely many inequalities

V := {x ∈ K
2 ; 1 ≤ |fi(x)| , |gj(x)| ≤ 1 for i = 1, . . . , r , j = 1, . . . , s}

with polynomials fi, gj ∈ K[X,Y ] are affinoid domains. Affinoid functions
on such a domain are functions which can be uniformly approximated by
rational functions without poles in V . Such functions are bounded and take
their maximal absolute value in V . Thus the spectral norm |f |V is always a
non-negative real number which actually lies in the value group of K. We are
mainly interested in domains of the following shape

Wε,ρ := {(x, y) ∈ K
2 ; ε ≤ |x| ≤ ρ , ε ≤ |y| ≤ ρ}

for values ε ≤ ρ belonging to the value group of K. The affinoid functions
on Wε,ρ are exactly the Laurent series which converge on Wε,ρ. Of particular
interest will be the following domains

Uε,ρ := {(x, y) ∈ K
2 ; ε ≤ |x| = |y| ≤ ρ} .

These subsets are also affinoid and they are open subsets in the rigid analytic
sense.

Lemma 2.1. Keep the above notations. Let ε , ρ be elements of the value group
|K×| with ρ ≥ ε.
(a) If v is an affinoid function on U := Uε,ρ with |v|U < 1, then the series

h :=
∞∑

ν=0

(
r

ν

)

vν ,

for any r ∈ Q, converges uniformly on Uε,ρ and gives rise to an affinoid
function there. In particular, (1+v)r is well-defined and affinoid on Uε,ρ.

(b) Let g = gn + · · · + g0 ∈ K[X,Y ] be a polynomial with homogenous com-
ponents gν of degree ν. Assume gn = Xn1Y n2 . Then there exists an
ε in |K×| such that |gν(x, y)| < |gn(x, y)| for all (x, y) ∈ Uε,ρ and all
ν = 0, . . . , n − 1 and ρ ≥ ε. Especially, for any r ∈ Q with n1 · r ∈ Z and
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n2 · r ∈ Z, the function gr is well-defined and affinoid on Uε,ρ for all ρ
with ρ ≥ ε.

Proof. (a) Since the residue field of K has characteristic 0, the absolute value
|(r

ν

)| = 1 is equal to 1. Therefore the series converges on Uε,ρ for all ρ ≥ ε.
(b) For all monomials Xν1Y ν2 of gν with ν < n, we have |xν1yν2 | ≤ |xn1yn2 |
if (x, y) ∈ Uε,ρ and ε > 1. If we now choose ε ≥ |cν1,ν2 | for all the coefficients
cν1,ν2 of gν for all ν = 0, . . . , n − 1, then the assertion follows by (a).

For the last assertion, note that (Xn1Y n2)r = Xm1Y m2 , where n1 · r = m1

and n2 · r = m2 with m1,m2 ∈ Z . Then it follows from (a). �
Proposition 2.2. Let (f, g) be a Jacobian couple of polynomials with homoge-
nous decompositions

f = Xm1Y m2 +
m−1∑

μ=0

fμ and g = Xn1Y n2 +
n−1∑

ν=0

gν

in K[X,Y ] with n1 > 0 , n2 > 0, where m := m1 + m2 and n := n1 + n2.
If we apply the division algorithm of 1.6 and 1.7 to f and set v :=∑n−1

ν=0 gνg−1
n , then there exists an ε ∈ |K×| such that the formal series G

defined in 1.7 converges on every affinoid domain Uε,ρ for all ρ ≥ ε and gives
rise to an affinoid function there.

After a possible enlarging of ε, the function (f − G) has the form

(f − G)Uε,ρ
= eX1−n1Y 1−n2(1 + u)

with e ∈ K
× , deg(u) < 0 , is affinoid on each Uε,ρ, and satisfies |u|Uε,ρ

< 1.

Proof. The claim follows from Lemma 2.1. �
In the following, we will compute the cardinality of the fibers of (f −G , g)

on Uε,ρ.

Proposition 2.3. Let (f, g) be a Jacobian couple as in 2.2. Thus we have the
map

(f − G, g) :=
(
eX1−n1Y 1−n2(1 + u) , Xn1Y n2(1 + v)

)
: Uε,ρ −→ K

2 .

Set k := gcd(n1, n2). Then, for any domain V := Uε′,ρ′ ⊂ Uε,ρ, the fibers of
the morphism

(
f − G , g1/k

) |V consist of exactly |n1−n2|/k points. The fibers
of (f , g) |V consist of exactly |n1 − n2| points.

Proof. We abbreviate

Ψ := (ψ1, ψ2) :=
(
f − G , g1/k

)
|V .

Since |u|V < 1 and |v|V < 1, the map Ψ gives rise to a map

|Ψ| := (|ψ1|, |ψ2|) : |V | := {(|x|, |y|) ∈ |K×|2 ; (x, y) ∈ V } −→ |K×| × |K×|,
(|x|, |y|) �−→

(
|e| · |x|1−n1 |y|1−n2 , |x|n1/k|y|n2/k

)
.

Due to the construction, all numbers k · rσ are integers by 1.6 since rσ ·n1 ∈ Z

and rσ · n2 ∈ Z. Obviously, this map is injective. So, for every (x0, y0) ∈ V ,
the map Ψ induces a mapping
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Ψ(x0,y0) : {(x, y) ∈ V ; |x| = |x0| , |y| = |y0|}
−→ {

(x, y) ∈ K
2 ; |x| = |ψ1(x0)| , |y| = |ψ2(y0)|

}
.

Next we will compute the cardinality of the fibers of Ψ(x0,y0). After adjusting
the radii |x0| and |y0| to 1 and the constant e to 1, we are concerned with a
morphism of type Φ : W −→ W with

W := {(x, y) ∈ K × K ; |x| = 1, |y| = 1} ,

sending (x, y) ∈ W to (x1−n1 ·y1−n2 ·(1+u(x, y)) , xn1/k ·yn2/k ·(1+v(x, y))1/k.
The degree of this map can be calculated via its reduction. The algebra of affi-
noid functions on W which are bounded by 1 is given by K

◦〈X,Y,X−1, Y −1〉,
where K

◦ denotes the valuation ring of K. Denote by K̃ the residue field of
the valued field K and by K̃

× its multiplicative group. The reduction of W
is given by the spectrum of the K̃-algebra W̃ = K̃[x̃ , x̃−1 , ỹ , ỹ−1], where x̃
resp. ỹ is the reduction of x resp. y. Since |u| < 1 and |v| < 1, the map of the
reductions coincides with the mapping

Φ̃ : K̃× × K̃
× −→ K̃

× × K̃
× , (x̃, ỹ) �−→

(
x̃1−n1 ỹ1−n2 , x̃n1/kỹn2/k

)
.

The degree of this map is |n1 − n2|/k as claimed; cf. Lemma 2.4 below. This
degree is the degree of Φ since a finite generating system of the reduced module
via Φ̃ lifts to a generating system via Φ due to the lemma of Nakayama [3,
1.2.4/6]. Linear independence is also preserved as one easily checks.

It remains to compute the cardinality of the fibers of (f , g) |V . Recall
from 1.7 that G(x, y) is a function of g(x, y)1/k. Therefore, we have that the
fiber of (f − G, g1/k)|V of a point (x, y) ∈ V with image (z1, z2) := (f −
G, g1/k)(x, y) coincides with the fiber of (f, g1/k)|V ) over the point (z1+c1, z2)
where c1 := G(x, y) depends only on z2 = g1/k(x, y). Thus, we see that the
cardinality of the fiber of Ψ coincides with that of (f, g1/k)|V . Therefore the
cardinality of the fiber of (f, g)|V is equal to |n1 − n2| since Φ is finite and
étale. �

Lemma 2.4. Let k be a field and let m1,m2 ∈ Z be non-zero and m1 �= m2.
Let x, y be variables and r ∈ Z. Then the extension of k-algebras

k[x1−rm1y1−rm2 , xrm1−1yrm2−1 , xm1ym2 , x−m1y−m2 ] −→ k[x, x−1, y, y−1]

is finite flat of degree |m1 − m2|.
Proof. Obviously we have

k[x1−rm1y1−rm2 , xrm1−1yrm2−1 , xm1ym2 , x−m1y−m2 ]
= k[xy , x−1y−1 , xm1ym2 , x−m1y−m2 ]
= k[xy , x−1y−1 , ym2−m1 , ym1−m2 ] .

Moreover, we have that the extension

k[xy , x−1y−1 , ym2−m1 , ym1−m2 ]−→k[xy , x−1y−1 , y , y−1]=k[x , x−1 , y , y−1]

is finite flat of degree |m1 − m2|. �
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3. The contradiction. Now we have all the preparations to deduce the main
result of our article.

Proposition 3.1. There does not exist a Jacobian couple (f, g) of polynomials
f, g ∈ C[X,Y ] with homogenous decompositions

f =
m∑

μ=0

fμ ∈ K[X,Y ] and g =
n∑

ν=0

fν ∈ K[X,Y ]

where fm = Xm1Y m2 and gn = Xn1Y n2 with m1m2 �= 0 , n1n2 �= 0.

Proof. First of all we perform a field extension C ↪→ K as introduced in Sec-
tion 2. It is clear that it suffices to show the assertion for the field K. Assume
that (f, g) is such a couple in the K-algebra A.

Assume first m = n. If m + n = 2, then we would have m = m1 = 1 and
n = n2 = 1 without loss of generality. Obviously, that case cannot occur as
a counterexample. If m + n > 2, then we have m1 = n1 and m2 = n2 due
to 1.5. So we can replace f by h := f − g. Due to 2.2, the leading form of
the polynomial h also has the shape hr = a · Xr1Y r2 and r := r1 + r2 < n.
Thus we can assume m �= n. Moreover, we have m1 �= n1 and m2 �= n2 and
|m1 − m2| �= |n1 − n2| due to 1.5. Thus we see that we can start just from the
beginning with m �= n.

Now we apply Proposition 2.3. So there exists a function in A

G :=
s∑

σ=1

cσ · grσ

as in 1.5 such that h := (f − G) is of degree (2 − n) and h has a leading form
of the shape

h2−n := c1−n1,1−n2X
1−n1Y 1−n2 .

Note that all the monomials of h have negative degree. Furthermore, there
exists a domain U := Uε,ρ such that for any subdomain V := Uε′,ρ′ ⊂ U the
restriction (h, g)|V has fibers with cardinality n′ = |n1 − n2|, which coincides
with the degree of the map (f, g)|V ; cf. 2.3.

If we interchange f und g, then, after a possible shrinking of U , the degree
of (f, g)|V would be m′ = |m1 − m2|. This has to be equal to n′, but we have
m′ �= n′ due to 1.5. Contradiction! �

Summarizing the arguments we obtain the main result. Indeed, by Ab-
hyankar’s result, a counterexample would give rise to a Jacobian couple of the
given shape, which cannot exist due to Proposition 3.1.

Theorem 3.2. Let (f, g) : C2 → C
2 be a polynomial morphism. If the Jacobian

of (f, g) is constant and unequal zero, then (f, g) is an isomorphism.
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