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1. Introduction. Let s and s′ be the spaces of rapidly decreasing and slowly
increasing sequences, respectively, equipped with their natural locally con-
vex topologies. The so-called noncommutative Schwartz space is the space
S := L(s′, s) of all bounded linear operators acting from s′ into s. This space
becomes a Fréchet algebra in a natural way: if T1 and T2 are in S, then the
product T1T2 is defined by the formula T1T2 = T1 ◦ ι ◦ T2, where ι is the natu-
ral embedding of s into s′. In fact, S embeds algebraically into the C∗-algebra
B(�2) of all bounded and linear operators on the Hilbert space �2.

The noncommutative Schwartz space is isomorphic (as a Fréchet ∗-algebra)
to a number of other natural objects of analysis, e.g., S � S(R2)—the Schwartz
space of rapidly decreasing functions on R

2 equipped with the Volterra multi-
plication (f · g)(x, y) :=

∫
R

f(x, z)g(z, y)dz and involution f∗(x, y) := f(y, x).
It plays an important role, e.g., in K-theory—see [4,12], cyclic cohomology
for crossed products—see [9,14], noncommutative geometry—see [3], operator
spaces—see [7,8]. Another motivation comes from quantum mechanics where
S is called the space of physical states and its dual is the so-called space of
observables—see [6] for details.

Since S is a Fréchet algebra of operators, it is natural to ask about the
dynamical properties of the elements of S. Recall that an operator T : s′ → s
is topologically transitive if for every two non-empty and open sets U ⊂ s′,
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V ⊂ s, there exists n ≥ 0 such that Tn(U) ∩ V �= ∅ and hypercyclic if there
exists x ∈ s′ such that the set {Tnx : n ∈ N} is dense in s. It is clear that
hypercyclicity of T implies that it is topologically transitive. Formally it could
happen that the latter is a weaker property since s′ is not a metric space.

The main goal of this note is to show that there are no topologically tran-
sitive operators in S. The main difficulty of the paper is to understand the
spectral properties of operators from S, those are investigated in Sect. 2.

We refer the reader to [1,10,11] for unexplained details from linear dynam-
ics and functional analysis, respectively.

2. Notation and terminology. Recall that

s =

⎧
⎨

⎩
ξ = (ξj)j∈N ⊂ C

N : |ξ|2t :=
+∞∑

j=1

|ξj |2j2t < +∞ for all t � 0

⎫
⎬

⎭

and its topological dual

s′ =

⎧
⎨

⎩
η = (ηj)j∈N ⊂ C

N : (|η|′t)2 :=
+∞∑

j=1

|ηj |2j−2t < +∞ for some t � 0

⎫
⎬

⎭

are the so-called spaces of rapidly decreasing and slowly increasing sequences,
respectively.

Furthermore we consider the space S := L(s′, s) of all linear and continuous
operators from s′ into s, equipped with the topology of uniform convergence on
bounded sets. Consequently, the topology of S is given by the scale (‖ · ‖t)t�0

of norms, defined as

‖T‖t := sup{|Tη|t : |η|′t � 1} (T ∈ S, t � 0).

If we denote Ht := �2((jt)j∈N), t ∈ R, then H ′
t

∼= H−t and every T ∈ S is a
Hilbert space operator in the sense that T : H ′

t → Ht and

‖T‖t = ‖T‖H′
t→Ht

(t � 0).

In other words, if we denote by Dt := diag(jt), t ∈ R, an infinite diago-
nal matrix, then Dt becomes simultaneously an isometry Dt : Ht → �2 and
Dt : �2 → H ′

t and

‖T‖t = ‖DtTDt‖B(�2) (T ∈ S, t � 0). (1)

In particular, S = projt�0 B(H ′
t,Ht) = projk∈N

B(H ′
k,Hk). We will be using

these properties interchangably.
Since s ↪→ s′, we can define multiplication in S as

T1T2 := T1 ◦ ι ◦ T2 (T1, T2 ∈ S),

where ι : s → s′, ι(ξ) := ξ is the formal embedding. Altogether it turns S into
an m-convex Fréchet algebra. It comes endowed also with the involution (or
the adjoint map) given as

〈T ∗ξ, η〉 := 〈ξ, Tη〉 (ξ, η ∈ s′, T ∈ S).

It is worth noting that s ↪→ �2 and, by dualization, also �2 ↪→ s′ therefore S
is algebraically contained in the C∗-algebra B(�2) of all bounded and linear
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operators on the Hilbert space �2. Therefore multiplication in S is essentially
the multiplication in B(�2) with the additional property that the resulting
operator belongs to S. The same applies to involution.

The unitization of S will be denoted by S1. Clearly, the unit in S1 is the
identity operator on �2 denoted by 1. The algebra S is called the noncom-
mutative Schwartz space and the elements of S are called smooth operators.
We refer the reader to [2,13] for more information on the properties of this
algebra.

3. Spectral properties of operators in S. We start by showing some spectral
properties of smooth operators.

Proposition 3.1 ([5, Proposition 3.1 and Theorem 3.3]). Every smooth opera-
tor is compact, i.e., S ↪→ K(�2) and

σS1(T ) = σB(�2)(T ) (T ∈ S).

In particular, the spectrum of every smooth operator consists of zero and
a (possibly) null sequence of eigenvalues.

Lemma 3.2. For any t ∈ R and every smooth operator T ∈ S, we have

σB(�2)(DtTD−t) ⊂ σS1(T ).

Proof. Let t ∈ R and T ∈ S be fixed. Suppose that λ ∈ ρS1(T ), i.e., there is
S ∈ S such that

(

S − 1
λ
1

)

(T − λ1) = (T − λ1)
(

S − 1
λ
1

)

= 1,

where 1 is the identity operator on �2. Then

�2
D−t−−−→ Ht ↪→ s′ S−→ s ↪→ Ht

Dt−−→ �2

and
(

DtSD−t − 1
λ
1

)

(DtTD−t − λ1) = (DtTD−t − λ1)
(

DtSD−t − 1
λ
1

)

= 1.

Consequently, λ ∈ ρB(�2)(DtTD−t) and the proof is thereby complete. �

Corollary 3.3. If a smooth operator T ∈ S satisfies

σS1(T ) ⊂ D, (2)

then the sequence (Tn)n∈N is bounded in S.
Proof. Let the smooth operator T ∈ S satisfy (2). Since D−1

t = D−t, we obtain
that for every n ∈ N and every t � 0,

‖Tn‖t = ‖DtT
nDt‖B(�2)

= ‖DtTD−tDtTD−t · · · DtTD−t︸ ︷︷ ︸
n−1

DtTDt‖B(�2)

� ‖(DtTD−t)n−1‖B(�2)‖T‖t.
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From Lemma 3.2, the spectral radius formula, and compactness of the spec-
trum, it now follows that there is ε > 0 such that

ν(DtTD−t) = lim
n→∞ ‖(DtTD−t)n‖1/n

B(�2)
� 1 − ε.

Hence there is N ∈ N such that for every n � N , we have

‖(DtTD−t)n‖B(�2) � 1.

If we now define Ct := max{‖T‖t, ‖T 2‖t, . . . , ‖TN‖t, 1} · ‖T‖t, then

sup
n∈N

‖Tn‖t � Ct < ∞.

Consequently, (Tn)n∈N is a bounded sequence in the noncommutative Schwartz
space. �

4. Main result.

Theorem 3.1. There are no topologically transitive operators in S. In particu-
lar, the operators in S are not hypercyclic.

Proof. Let T ∈ S be arbitrary. There are two possible cases: either σS1(T ) =
{0} or there exists 0 �= λ ∈ σS1(T ).

If σS1(T ) = {0}, then from Corollary 3.3, the sequence (Tn)n∈N is bounded
in S and therefore it is equicontinuous. In particular, for every zero neighbour-
hood U ⊂ s′, there is a zero neighbourhood V ⊂ s such that

Tn(U) ⊂ 1
2
V (n ∈ N).

We choose now ξ ∈ s \V and suppose that there is n ∈ N and η ∈ s such that

η ∈ Tn(U) ∩
(

ξ +
1
2
V

)

.

This implies that for some ζ ∈ 1
2V , we have

ξ = η − ζ ∈ 1
2
V +

1
2
V = V.

This contradicts the choice of ξ ∈ s and shows that in this case T is not
topologically transitive.

If there exists 0 �= λ ∈ σS1(T ), then from Proposition 3.1, it follows that λ
is an eigenvalue and we let f be a holomorphic function on a neighbourhood
of σS1(T ) such that f(λ) = 1 and f(z) = 0 for z ∈ σS1(T ) \ {λ}. Using the
holomorphic functional calculus (which is available in S by [12, Lemma 1.3]),
we can now consider the operator f(T ) ∈ S. Let M = Im(f(T )). It is clear
that M is a non-trivial and finite dimensional subspace of s (every non-zero
element of M is an eigenvector of the compact operator f(T )). The properties
of the functional calculus imply that the diagram

s′ s

M M

f(T )

T

f(T )|s
T|M
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commutes and one can easily verify that topological transitivity of T would
imply topological transitivity of T|M . Since M is finite dimensional this implies
that T is not topologically transitive. �
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