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Systems of rank one, explicit Rokhlin towers, and covering
numbers

Christian Weiss

Abstract. Rotations fα of the one-dimensional torus (equipped with the
normalized Lebesgue measure) by an irrational angle α are known to be
dynamical systems of rank one. This is equivalent to the property that
the covering number F ∗(fα) of the dynamical system is one. In other
words, there exists a basis B such that for arbitrarily high h, an arbi-
trarily large proportion of the unit torus can be covered by the Rokhlin
tower (fk

αB)h−1
k=0 . Although B can be chosen with diameter smaller than

any fixed ε > 0, it is not always possible to take an interval for B but
this can only be done when the partial quotients of α are unbounded. In
the present paper, we ask what maximum proportion of the torus can be
covered when B is the union of nB ∈ N disjoint intervals. This question
has been answered in the case nB = 1 by Checkhova, and here we address
the general situation. If nB = 2, we give a precise formula for the max-
imum proportion. Furthermore, we show that for fixed α, the maximum
proportion converges to 1 when nB → ∞. Explicit lower bounds can be
given if α has constant partial quotients. Our approach is inspired by the
construction involved in the proof of the Rokhlin lemma and furthermore
makes use of the three gap theorem.
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1. Introduction. If a measure-theoretic dynamical system (X,T, μ), with μ
being a probability invariant by T , is invertible and ergodic, then for arbitrary
ε > 0 and h ∈ N, it is always possible to find a measurable set B such that
B, TB, . . . , TBh−1 are disjoint sets and have joint measure greater than 1− ε.
This result is known as the famous Rokhlin lemma. Its proof is constructive,
and hence it allows for finding an explicit set B satisfying the mentioned
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properties, see Sect. 2 for more details. The finite sequence of sets (T kB)h−1
k=0 is

called a Rokhlin tower and B is its basis. In this paper, we exclusively consider
a special class of transformations, namely rotations fα : x �→ x + α mod 1 by
an irrational angle α of the unit torus T1 = [0, 1) with ends of the interval
glued, and aim to contribute to a better understanding of Rokhlin towers when
an extra condition on the topological structure of the basis B is imposed. The
map fα yields a uniquely ergodic measure-theoretic dynamical system on the
torus where μ is the Lebesgue-measure. The properties of fα and also of the
structure of its Rokhlin towers have been comprehensively studied, see e.g.
[1,3,6–9] to name only a few references.
Here, we ask how to find nice sets B for fα given ε > 0, h ∈ N. In [3], a
method based on the three gap theorem (Theorem 2.1) was introduced how to
calculate the minimal admissible value ε for fα if we choose B as an interval,
see Theorem 1.5. Necessary and sufficient conditions on α have been described
when ε = 0 can be achieved for arbitrary high h. In this paper, we address
basis sets consisting of a finite union of intervals and analyze differences and
similarities in comparison to the case of only one interval.
Before we come to the presentation of our results, we mention at first that
the dynamical system on T1 defined by fα is not only uniquely ergodic (for
the Lebesgue measure) but even a so-called system of rank one, see [7]. That
means that it does not only satisfy the properties stated in the Rokhlin lemma,
but approximates every partition arbitrarily well by Rokhlin towers, which
means that the diameter of B can be chosen arbitrarily small. As we have
already indicated, this still does not guarantee that B can always be chosen
as an interval. For the formal definition of a system of rank one, we recall
at first that the distance between two partitions P = {P1, P2, . . . , Pr} , P ′ =
{P ′

1, P
′
2, . . . , P

′
r} of X is defined by |P − P ′| =

∑
μ(PiΔP ′

i ).

Definition 1.1. A measure-theoretic dynamical system (X,T, μ) is of rank one
if for any partition P of X and any ε > 0, there exists a subset B ⊂ X, a
positive height h, and a partition P ′ of X such that

• B, TB, . . . , Th−1B are disjoint,
• |P − P ′| < ε,
• P ′ is refined by the partition made of the sets B, TB, . . . , Th−1B and

X\ ∪h−1
k=0 T kB.

In fact, the map fα has rank one because it is an ergodic transformation
of the compact group R/Z, compare [14]. The notion of covering numbers (see
[3,10]) is closely linked to the definition of systems of rank one, and gives a
quantitative measure of how close (X,T, μ) is to being of rank one.

Definition 1.2. The covering number F ∗(T ) of (X,T, μ) is the supremum of
all z ∈ R such that for every partition P = {P1, . . . , Pr} of X and for every
ε > 0 and every h0 ∈ N, there exists a subset B ⊂ X, an integer h ≥ h0, and
a partition P ′ = {P ′

1, . . . , P
′
r} of X such that we have

(i) B, TB, . . . , Th−1B are disjoint,
(ii) μ(∪h−1

k=0T
kB) ≥ z,
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(iii)
∑r

i=1 μ((PiΔP ′
i ) ∩ (∪h−1

k=0T
kB)) < ε,

(iv) each P ′
i ∩ (∪h−1

i=0 T iB) is a union of sets T jB for some 0 ≤ j ≤ h − 1.

The fact that fα is a system of rank one for any α ∈ R\Q is thus equivalent
to F ∗(fα) = 1. We call an arc of the torus which is closed on the left and open
on the right an interval. If we can approximate any partition, in the sense of
Definition 1.1, by a tower whose basis B is an interval, we say that (X,T, μ)
is of rank one by intervals. This idea can be transferred to Definition 1.2
by restricting covering number to unions of nB ∈ N disjoint intervals and
considering nB = 1.

Definition 1.3. Let Fn(T ) be the supremum of all z ∈ R such that for every
h0 ∈ N, there exists h ≥ h0 and a set B consisting of nB = n disjoint intervals
with

(i) B, TB, . . . , Th−1B are disjoint,
(ii) μ(∪h−1

i=0 T iB) ≥ z.

Note that F1(T ) = 1 means for a transformation T that it is rank one by
intervals. For fα, the property F1(fα) = 1 depends on the continued fraction
of α. Therefore, we briefly fix notation and summarize some of the important
properties of continued fractions. For more details, we refer the reader e.g. to [2,
11]. Let [a0; a1; a2; . . .] with partial quotients ai ∈ N0 be the continued fraction
expansion of α ∈ R and denote the corresponding sequence of convergents by
(pn/qn)n∈N0 . Recall that

p−2 = 0, p−1 = 1, pn = anpn−1 + pn−2, n ≥ 0,

q−2 = 1, q−1 = 0, qn = anqn−1 + qn−2, n ≥ 0,

Theorem 1.4. Let α ∈ R\Q. Then F ∗
1 (fα) = 1 if and only if α has unbounded

partial quotients.

The result was already mentioned in [14]. A complete proof using the three
gap theorem is given in [3]. For α ∈ R\Q with continued fraction expansion
[a0; a1; a2; . . .] and convergents pn, qn, a basis of the Rokhlin towers (depending
on ε) is given by

Bn =
[

qn

∣
∣
∣
∣
pn

qn
− α

∣
∣
∣
∣ ,

1
qn

− qn

∣
∣
∣
∣
pn

qn
− α

∣
∣
∣
∣

)

,

compare [7, Theorem 6]. Note that Bn is well-defined for all n if and only if
α has unbounded partial quotients. In general, the covering number of a base
set consisting of nB = 1 interval can be precisely calculated by the following
theorem.

Theorem 1.5 (Checkhova, [3]). Let α ∈ R\Q have continued fraction ex-
pansion [a0; a1; a2; . . .] with convergents (pn, qn) and define vn = [0; an; an−1;
. . . ; a1] and tn = [0; an+1; an+2; . . .]. Then

F1(fα) = lim
n→∞ qn+1|qnα − pn| = lim sup

n→∞
1

1 + tnvn
.
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Hence, F1(fα) = 1 if and only if α has unbounded partial quotients and
F1(fα) ≥ 1

5+
√
5
10 for all α ∈ R\Q. The minimal value of F1(fα) is attained

for any α ∈ [0, 1) ∩ Zϕ + Z, where ϕ = 1+
√
5

2 is the golden mean.

If the basis does not only consist of one interval but is a union of several, we
may without loss of generality assume that B is (after rotation) of the form

B = [c1 = 0, β1)
︸ ︷︷ ︸

=:B1

∪ [c2, c2 + β2)
︸ ︷︷ ︸

=:B2

∪ · · · ∪ [cnB
, cnB

+ βnB
)

︸ ︷︷ ︸
=:BnB

(1)

with 1 ≥ ci ≥ ci−1 + βi−1 for all 2 ≤ i ≤ nB , and ci, βi > 0. As an analogue of
Theorem 1.5, we can precisely calculate the covering number if nB = 2.

Theorem 1.6. Let α ∈ R\Q with continued fraction expansion [a0; a1; a2; . . .].

(i) If ai = 1 eventually, then F2(fα) = 4ϕ+3
10 = 2

√
5+5
10 > F1(fα).

(ii) If ai > 1 eventually, then we have

F2(fα) = F1(fα).

In contrast to F1(fα), the covering number by two intervals F2(fα) does
thus not attain its minimum for α = ϕ = 1+

√
5

2 because F2(fϕ) = 2
√
5+5
10

and for example for β = 1 +
√

2, we have F2(fβ) = F1(fβ) = 1/(4 − 2
√

2) <
F2(fϕ) by Theorem 1.5. The proof of Theorem 1.6 relies on a more deep going
application of the three gap theorem (Theorem 2.1) than in [3]. The reason
why this is possible is that the combinatorics behind the orbits of the endpoints
of the base intervals can still be controlled if nB = 2. As the number of base
intervals nB increases, the situation gets more and more complicated but we
can nonetheless give a lower bound when Fk(fα) > F1(fα) holds for a given
α.

Theorem 1.7. We have

Fk(fα) > F1(fα)

for all α ∈ R\Q with lim supi→∞ ai ≤ k − 1.

From Theorem 1.6 and numerical experiments, we conjecture that Fk(fα) >
F1(fα) actually holds if and only if the partial quotients satisfy lim supi→∞ ai ≤
k − 1. From a quantitative point of view, Theorem 1.7 is nonetheless not very
satisfactory because the lower bound therein is constant given α. For this rea-
son, we also describe the behaviour of Fn(fα) as n → ∞. A lower bound in
n can even be made explicit if the partial quotients of α are constant. Our
proof of this result makes use of the explicit construction of base sets B in
the (standard) proof of the Rokhlin lemma, see Theorem 2.3 and explanations
thereafter.

Theorem 1.8. Let α ∈ R\Q have continued fraction expansion [a0; a1; a2; . . .]
and assume that ai ≤ s for all i ∈ N. Then Fn(fα) → 1 for n → ∞. Moreover,
if αi = s for all i ∈ N, then Fn(fα) can for n ≥ αj−1(α + 1) be bounded from
below by

Fn(fα) ≥ F1(fα)
1

αj+2

(�αj+1�α + �αj) . (2)
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Note that assuming ai ≤ s is not a real restriction because in the unbounded
case we have F1(fα) = 1 by Theorem 1.4 and thus Fn(fα) = 1 for all n ∈ N.

Remark 1.9. If the continued fraction expansion of α ∈ R has constant partial
quotients, i.e., α = [s; s; s; . . .], then α = s+

√
s2+4
2 , and

F1(fα) =
1 + α2

α2

follows from Theorem 1.5. This implies that the explicit expression for the
lower bound of Fn(fα) in (2) converges to 1 for n → ∞.

2. Proofs of main results. Three gap theorem. For α ∈ R, the Kronecker
sequence is defined as ({nα})n∈N, where {x} := x − �x denotes the fractional
part of x ∈ R. The Kronecker sequence may either be interpreted as a sequence
on the unit interval [0, 1) or, after gluing its endpoints, on the torus. If the
latter viewpoint is applied, the norm of a point x ∈ R defined by ‖x‖ :=
min(x−�x, 1− (x−�x)) is used. It measures the distance of x ∈ R from the
next integer.
Most of the results of this paper are based on the so-called three gap theorem
which links the gap structure, i.e., the (Euclidean) distance of neighbouring
elements of the Kronecker sequence on the torus, to the continued fraction
expansion of α. Its first proof goes back to Sós in [13] but it turns out to be
useful for us to formulate it here in terms of the Ostrowski expansion, as it
is implicitly done in [12], see also [15] for a slightly different version. For that
purpose, let α ∈ R\Q have continued fraction expansion [a0; a1; a2; . . .] with
convergents pn/qn. Then for N ∈ N, the Ostrowski expansion of N is uniquely
given by

N =
N∑

n=1

bnqn

with 0 ≤ bn ≤ an and bn−1 = 0 if bn = an.

Theorem 2.1 (Three gap theorem). Let ({nα})n∈N be the Kronecker sequence
of α ∈ R\Q. Let N ∈ N have the Ostrowski expansion

N =
N∑

n=1

bnqn.

Then the gaps that can appear have lengths

L1 = ‖{qnz}‖ ,

L2 = ‖{qn−1z}‖ − (bn − 1)L1 − min(bn−1, 1)L1,

L3 = L1 + L2,
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and their multiplicities are

N1 = N − qn,

N2 = (bn−1 − 1)qn−1 +
N−2∑

n=1

bnqn,

N3 = N − N1 − N2.

In fact, it is necessary to understand the dynamical behaviour of the Kro-
necker sequence in order to derive information about the covering numbers of
unions of nB disjoint intervals from it. This can be regarded as an extension
of the three gap theorem. Our description here is inspired by the presentation
in [3] and [15]: If N = qi is increased to N ′ = qi + qi−1 ≤ qi+1, then the former
small gaps (for N) become large (for N ′) and every former large gap gets split
up into a large and a small gap (both for N ′). If ai+1 > 2, every large gap for
N ′ = qi +qi−1 gets split up into a small gap (same length as for N ′) and a gap
of length smaller than the large gap length (for N ′) but greater than the small
gap length (for N ′) until we reach N ′′ = 2qi + qi−1. This process is repeated
until N ′′′ = (ai+1 − 1)qi + qi−1. Afterwards, every large gap length (for N ′′′)
gets split up into a small gap smaller than for N ′′′ and a now large gap for Ñ
(which is equal to the small gap length for N ′), and this process ends when
Ñ = qi+1 and then starts all over again. In total, a small gap for N = qi is
split up into ai+1 − 1 small gaps for Ñ = qi+1 and 1 large gap for Ñ = qi+1

when passing from qi to qi+1. Similarly, a large gap for N = qi is split up into
ai+1 small gaps for Ñ = qi+1 and 1 large gap for Ñ = qi+1.
These observations imply four fundamental but important facts for disjoint
orbits of sets of the form described in (1) with nB = 2.

Lemma 2.2. Let α ∈ R\Q with continued fraction expansion [a0; a1; a2; . . .] and
convergents pn, qn. Let B be a set of the form (1) and let qn < N ∈ N ≤ qn+1

be arbitrary. If B, fαB, . . . , fN−1
α B are disjoint, then

(i) βi ≤ ‖qnα‖ holds for all βi.
(ii) If nB = 2 and an+1 > 1, then B can be chosen such that β1+β2 = 2 ‖qnα‖

if and only if qn < N ≤ 1
2qn+1.

(iii) If nB = 2 and an+1 > 1 and ‖qnα‖ < β1 + β2 < 2 ‖qnα‖, then β1 + β2 ≤
‖qn−1α‖− (an+1−1) ‖qnα‖ and qn+1 < 2N ≤ qn+1 +qn. If qn+1 < 2N ≤
qn+1+qn, then there exists a B with β1+β2 = ‖qn−1α‖−(an+1−1) ‖qnα‖.

(iv) If nB = 2 and an+1 = 1 and ‖qnα‖ < β1 + β2, then β1 + β2 ≤ ‖qn+1α‖ +
‖qn+2α‖ = ‖qnα‖ and qn < N ≤ qn + qn−1/2. If qn < N ≤ qn + qn−1/2,
then there exists a B with β1 + β2 = ‖qnα‖.

Observe that if an+1 = 1, then the situation described in part (ii) cannot
occur because the long gap length is less than twice the small one in this case.

Proof. Assertion (i) is immediately clear by the three gap theorem since the
orbits of the intervals Bi have to be disjoint.
For the second assertion, the following line of argument leads to the desired
result: let us assume first that an+1 > 2 is even. If N = qn+qn−1, then there are
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qn−1 small gaps of size ‖qnα‖ and qn large gaps of size ‖qn−1α‖. At most an+1

small gaps fit into a large gap. In order to have β1 = β2 = ‖qnα‖, there needs
to be an extra small space on the right of each block of small gaps. However,
for N = an+1/2 · qn, the gap structure of the sequence is as follows: it consists
solely of blocks with (an+1/2−1) small gaps followed either by a medium or a
large sized gaps. In each of the following j steps, one of the large gaps gets, as
usual, split up into a medium and a small size gap, i.e., there are qn−1−j large
gaps while we get j additional small gaps. Therefore, we must have 2j ≤ qn−1.
This condition implies 2N ≤ qn+1 and is necessary for β1 + β2 = 2 ‖qnα‖. If
an+1 > 1 is odd, then for N = �an+1/2 · qn, the gap structure of the sequence
is as follows: it consists solely of blocks with (�an+1/2−1) small gaps followed
either by a medium or a large sized gaps and a similar argument as in the even
case can be applied. Now let N satisfy the assumptions of (ii) and choose
β1 = β2 = ‖qnα‖ and c1 = ‖Nα‖. The orbit of the left endpoints of B thus
equals the Kronecker sequence α, . . . , Nα, (N + 1)α, . . . , 2Nα. As 2N ≤ qn+1,
the joint sequence has minimal gap length ‖qnα‖ and thus the orbit of B
is disjoint. Finally, in the case an+1 = 2 and N = qn, there are qn−1 large
gaps and qn − qn−1 small gaps and the gap sizes satisfy ‖qn−1α‖ < ‖qn−2α‖ <
2 ‖qn−1α‖. Therefore N ≤ qn +qn−1/2 = 1

2qn+1 must hold if β1 = β2 = ‖qnα‖.
Again, the upper bound on β1 + β2 can be realized by a rotation with angle,
i.e., c1 = ‖Nα‖

If N ≤ 1
2qn+1, then we are in the situation of (ii). So we may restrict

to the case N > 1
2qn+1 when we want to prove (iii). The maximal possible

value for β1 + β2 is indeed ‖qn−1α‖ − (an+1 − 1) ‖qnα‖ and this is the only
possibility because ‖qn−1α‖ − an+1 ‖qnα‖ < ‖qnα‖. Note that in the �qn/2
steps between the upper and the lower bound for N every medium and large
gap gets diminished by ‖qnα‖. Thus it follows that β1+β2 = ‖qn−1α‖−(an+1−
1) ‖qnα‖ implies 2N ≤ qn+1+qn. A rotation with angle, i.e., c1 = ‖Nα‖, yields
the claim as for (ii).

In order to prove (iv), we only note that β1 + β2 can be realized by a
rotation with angle c1 = ‖Nα‖ because 2N ≤ 2qn + qn−1 = qn+1 + qn and the
three gap theorem. Counting the number of large gaps yields the upper bound
on N . �

Theorem 1.6 can be deduced by using Lemma 2.2.

Proof of Theorem 1.6. Let us at first take a look at the general setting for any
set

B = [0, β1) ∪ [c2, c2 + β2)

consisting of two intervals. By Lemma 2.2 (iii) and (iv), it follows, for 2N >
qn + qn−1, that

vol(B ∪ fαB ∪ · · · ∪ fN−1
α B) ≤ qn+1 ‖qnα‖ ≤ F1(fα).

If 2N < qn+1, Lemma 2.2 (ii) yields

vol(B ∪ fαB ∪ · · · ∪ fN−1
α B) = 2 ‖qnα‖ N < qn+1 ‖qnα‖ ≤ F1(fα).
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The cases which remain to be checked are the maximal values of N in
Lemma 2.2 (iii) and (iv).
(i) If an = 1 eventually and N = qn+1 + � 1

2qn, then

vol(B ∪ fαB ∪ · · · ∪ fN−1
α B) = ‖qnα‖ N

= (qn+1 + � 1
2qn) ‖qnα‖

follows by Lemma 2.2 (iv). The right hand side of the equality converges to

1
1 + 1

θ
1
θ

+
1
2

1
θ

1
1 + 1

θ
1
θ

=
4θ + 3

10
=

2
√

5 + 5
10

.

(ii) For an+1 ≥ 3 and N = � 1
2 (qn + qn+1), we get

vol(B ∪ fαB ∪ · · · ∪ fN−1
α B) = (‖qnα‖ + ‖qn+1α‖)N

≤ 1
2
(qn+1 + qn)(‖qnα‖ + ‖qn+1α‖)

≤ 1
2
F1(fα) +

1
6
F1(fα) +

1
6
(fα) +

1
9
F1(fα) < F1(fα).

For an+1 = 2 and N = � 1
2 (qn + qn+1), Lemma 2.2 (iii) implies

vol(B ∪ fαB ∪ · · · ∪ fN−1
α B) = (‖qnα‖ + ‖qn+1α‖)N

=
1
2
(qn+1 + qn)(‖qnα‖ + ‖qn+1α‖).

=
1
2
qn+1 ‖qnα‖

(

1 +
qn

qn+1
+

‖qn+1α‖
‖qnα‖ +

qn

qn+1

‖qn+1α‖
‖qnα‖

)

.

If an+1 = 2 eventually, then qn/qn+1 → 1
2+

√
2

=
√

2−1 and ‖qn+1α‖ / ‖qnα‖ →
1

2+
√
2
. If an+1 = 2 and an > 2, then qn/qn+1 < 1

2+
√
2
. As (1 + 1

2+
√
2
)2 = 2, we

have in any case limN→∞ vol(B ∪fαB ∪· · ·∪fN−1
α B) ≤ F1(fα). In conclusion,

we always get F2(fα) ≤ F1(fα). �

From the observation in the proof of Lemma 2.2 that the choice c1 = Nα
suffices to attain the maximum in the case of two intervals, it is possible to
also derive a lower bound on Fk in the case ai < k for all but finitely many
i ∈ N. This is the content of Theorem 1.7.

Proof of Theorem 1.7. Let k∗ = lim supi→∞ ai. By considering the correspond-
ing subsequence, we may without loss of generality assume ai = k∗ for all i ∈ N.
Partitioning the complete Kronecker sequence z = {jα}qn+1

j=1 into k∗ blocks of
elements of size �qn+1/k∗ yields

Fk∗+1(fα) ≥ (k∗ − 1)�qn+1

k∗  ‖qnα‖ + �qn+1

k∗ (‖qnα‖ + ‖qn+1α‖),

where the length ‖qnα‖ + ‖qn+1α‖ stems from the last block. �

Explicit Rokhlin towers. In order to improve the lower bound for the area
covered by B, fαB, . . . , fh−1

α B for circle rotations by α ∈ R\Q, we will make
use of the construction used in the standard proof of the Rokhlin lemma, as it
is presented e.g. in [5, Lemma 2.45].
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Theorem 2.3 (Rokhlin lemma). Let (X,T, μ) be an invertible ergodic measure-
theoretic dynamical system with non-atomic μ. Then for any h ≥ 1 and ε > 0,
there is a measurable set B such that B, TB, . . . , Th−1B are disjoint and

μ(B ∪ TB ∪ · · · ∪ Th−1B) > 1 − ε.

We therefore shortly recall the construction in the proof of Theorem 2.3 at
first. Choose a measurable set A with 0 < μ(A) < ε/h and define the sets

A1 = A ∩ T−1A,

A2 = A ∩ T−2A\A1,

...

An = A ∩ T−nA\
⋃

i<n

Ai.

The sets Ai are disjoint and so are the unions

Ak ∪ TAk ∪ · · · ∪ T k−1Ak

for all k ≥ 1. Then the base set B defined by

B =
⋃

k≥n

	k/n
−1⋃

j=0

T jnAk

satisfies the properties mentioned in Lemma 2.3.
Now let α ∈ R\Q and let pn, qn be the sequence of the convergents. According
to classical continued fraction theory, ‖qnα‖ → 0 for n → ∞ holds. For ε > 0
and n ∈ N arbitrary, set ε′ := ε/n. In order to apply the following algorithm,
we furthermore need to impose the condition that ε′ < 1 (although this might
seem to be a trivial remark, it will indeed have some importance in the re-
mainder of the proof). Assume that ‖qkα‖ < ε′ ≤ ‖qk−1α‖. Given ak+1 > 1,
the value ε′ lies in one of the following intervals

(‖(qk + qk−1)α‖ , ‖qk−1α‖]
︸ ︷︷ ︸

:=I0

, (‖(2qk + qk−1)α‖ , ‖(qk + qk−1)α‖]
︸ ︷︷ ︸

:=I1

, . . . ,

(‖qkα‖), ‖((ak+1 − 1)qk + qk−1)α‖]
︸ ︷︷ ︸

:=Iak+1

.

If {qkα} > 0.5, then {(iqk + qk−1)α} < 0.5 for 1 ≤ i ≤ ak+1. If ε′ ∈ Ij−1,
let l0(k) := qk, l1(k) := jqk + qk−1, and l2(k) := (j + 1)qk + qk−1 and αk,0 :=
{l0(k)α} , αk,1 = {l1(k)α}, and αk,2 = {l2(k)α}. Define the sets Ai as in the
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proof of the Rokhlin lemma. These intervals are explicitly given by

A1 = A ∩ f−1
α A = ∅,

...

Al0(k)−1 = A ∩ f−(l0(k)−1)
α A = ∅,

Al0(k) = A ∩ f−l0(k)
α A = [αk,0, ε

′),

Al0(k)+1 = A ∩ f−(l0(k)+1)
α A = ∅,

...

Al1(k)−1 = A ∩ f−(l1(k)−1)
α A = ∅,

Al1(k) = A ∩ f−l1(k)
α A = [0, ε′ − αk,1),

Al1(k)+1 = A ∩ f−(l1(k)+1)
α A = ∅,

...

Al2(k)−1 = A ∩ f−(l2(k)−1)
α A = ∅,

Al2(k) = A ∩ f−l2(k)
α A = [ε′ − αk,1, αk,0),

and Ai = ∅ for all i > l2(k). Note that Al1(k) = ∅ might happen (if the left and
the right endpoint of the interval are equal). More precisely, we observe that
only two intervals occur excatly if ε′ is a right endpoint of one of the Ij . For
the cases {qkα} < 0.5 and ai+1 = 1, the calculation of the Ai can be treated
similarly. Thus, we may without loss of generality restrict our analysis to the
case {qkα} > 0.5, which was described above explicitly.
If n = qk+1 and ε′ = ‖qkα‖, then it can be easily checked that l0(k) =
qk+1, l1(k) = qk+1 + qk and these are the only non-empty sets Ai. Since
�l1(k)/n = 0, it follows that B consists of one interval only. Moreover, the
Rokhlin tower built by the base B satisfies lim supn→∞ vol(B ∪ fαB ∪ · · · ∪
fn−1

α B) = F1(fα). Thus, we see that for ε = qk+1 ‖qkα‖ < 1, the construction
from the Rokhlin lemma yields a basis consisting of one interval only which
covers the maximal possible area.
Writing ε := nε′, our idea is now to keep n constant while alternating ε′. Due
to our preparatory work, the actual proof of Theorem 1.8 can be kept relatively
short now.

Proof of Theorem 1.8. Let ε′ = ‖qk+jα‖ for some j ∈ N0. The intervals Al0(k+j)

and Al1(k+j) are adjacent by construction. Therefore the basis B consists of
�l1(k + j)/n = �(qk+j+1 + qk+j)/n distinct intervals. Hence �l1(k + j)/n ≤
αj−1

s (αs +1) for j � 1 big enough. The area covered by B, fαB, . . . , fn−1
α B is

equal to

qk+1�qk+j+1/qk+1 ‖qk+jα‖ + qk+1�qk+j/qk+1 ‖qk+j+1α‖ . (3)

From the three gap Theorem 2.1, it follows that qk+j+1 ‖qk+jα‖ + qk+j

‖qk+j+1α‖ = 1. Therefore, expression (3) converges to 1 as j → ∞ which
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implies Fn(α) → 1 as n → ∞. If ai = s for all i ∈ N, then (3) can be bounded
from below by

qk+1·
(
�αj+1� ‖qk+jα‖ + �αj� ‖qk+j+1α‖

)
≥ qk+1 · ‖qk+j+1α‖

(
�αj+1��α� + �αj�

)

≥ qk+1 · ‖qkα‖ 1

αj+2

(
�αj+1��α� + �αj�

)
.

Applying lim sup with respect to k implies the desired result. �

3. Constructive geometric definition of systems of rank one. At the end of
this paper, we would like to comment on an alternative definition of systems
of rank one, namely the constructive geometric one, and thereby round off
the presentation of the topic. An advantage of Definition 3.1 in comparison
to Definition 1.1 is that the bullet points in Definition 3.1 give an explicit
possibility how to define a system of rank one and thereby yield an infinite
class of examples. A proof for the equivalence of the two definitions can be
found e.g. in [6, Lemme 16].

Definition 3.1. A dynamical system (X,T, μ) is of rank one if there exists a
sequence of positive integers qn, n ∈ N and an,i, n ∈ N, 1 ≤ i ≤ qn − 1, such
that if hn is defined by

h0 = 1, hn+1 = qnhn +
n−1∑

i=1

an,i,

then
∞∑

n=0

hn+1 − qnhn

hn+1
< ∞,

and subsets Bn ⊂ X,n ∈ N, Bn,i, n ∈ N, 1 ≤ i ≤ qn, and Cn,i,j , n ∈ N, 1 ≤ i ≤
qn − 1, 1 ≤ j ≤ an,i, such that for all n,

• the Bn,i, 1 ≤ i ≤ qn, form a partition of Fn,
• the T kBn, 1 ≤ k ≤ hn − 1, are disjoint,
• ThnBn,i = Cn,i,1 if an,i �= 0 and i < qn,
• ThnBn,i = Bn,i+1 if an,i = 0 and i < qn,
• TCn,i,j = Cn,i,j+1 if j < an,i,
• TCn,i,an,i

= Bn,i+1 if j < an,i,
• Bn+1 = Bn,1,

and the partitions
{

Bn, TBn, . . . , Thn−1Bn,X\ ∪hn−1
k=0 T kBn

}
converge to the

Lebesgue σ-algebra of X.

We call a rank one map (CG) rank one by intervals if the sets Bn can be
chosen as intervals. A detailed description of the action of T for the case that
X is the unit torus can be found e.g. in [8].
If, given a system of rank one in the sense of Definition 1.1, we were able to
find the sets and calculate the coefficients in Definition 3.1, one of the main
outcomes would be that the star-discrepancy (see [11]) of T -orbits could be
easily calculated, see [4, Théorème 2.6] or [8, Theorem 86]. On the downside of
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Definition 3.1, this task seems to be very hard also for dynamical systems for
which it is comparably easy to prove that they are of rank one in the sense of
Definition 1.1 (despite that the proof of the equivalence of the two definitions
is even partially though not completely constructive, compare [6, Lemme 16]).
At the end of this article, we give a theoretical justification what makes this
task particularly hard for rotations. The reason is that the sets Bn can never
be chosen as intervals.

Theorem 3.2. For α ∈ R\Q arbitrary, the rotation map fα : x �→ x + α is not
(CG) rank one by intervals.

Proof. Assume that the claim is false and let B1 be an interval. By rotating (if
necessary), we may without loss of generality assume that B1 = [0, x) for some
x > 0. By definition, f i

α(B2) would then be of the form [0, x/k) with k ∈ N

for some i ∈ N. Since the finite sequence (f l
α(B2)) needs to build a partition

of B1, we must have
{nα}
{mα} = k

for some m,n ∈ N which can only hold for n = mk. This contradicts the fact
that x is in the forward-orbit of x/k. Thus, the rotation cannot be (CG) rank
one by intervals. �
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