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On the finite index subgroups of Houghton’s groups

Charles Garnet Cox

Abstract. Houghton’s groups H2, H3, . . . are certain infinite permutation
groups acting on a countably infinite set; they have been studied, among
other things, for their finiteness properties. In this note we describe all of
the finite index subgroups of each Houghton group, and their isomorphism
types. Using the standard notation that d(G) denotes the minimal size
of a generating set for G, we then show, for each n ∈ {2, 3, . . .} and U
of finite index in Hn, that d(U) ∈ {d(Hn), d(Hn) + 1} and characterise
when each of these cases occurs.
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1. Introduction. Introduced in [11] by Houghton, the Houghton groups have
since attracted attention for their finiteness properties [2,13], their growth
[3,10], their many interesting combinatorial features [1,9,14,15] as well as other
properties.

Definition. For X �= ∅, let Sym(X) denote the group of all bijections on X.
For g ∈ Sym(X), let supp(g) := {x ∈ X : (x)g �= x}, called the support of g.
Then FSym(X) = {g ∈ Sym(X) : | supp(g)| < ∞} and Alt(X) ≤ FSym(X)
consists of only the even permutations, meaning [FSym(X) : Alt(X)] = 2.

We give a brief overview of these groups for our purposes; more detailed
introductions can be found, for example, in [1,4]. We will use right actions
throughout. We define N := {1, 2, . . .}, let G ≤f H denote that G is a finite
index subgroup of H, and for a group G and g, h ∈ G, let [g, h] := g−1h−1gh
and gh := h−1gh.
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Definition. Let n ∈ {3, 4, . . .}. Then the nth Houghton group, denoted Hn,
is generated by g2, . . . , gn ∈ Sym(Xn) where Xn = {1, . . . , n} × N and for
k ∈ {2, . . . , n},

(i,m)gk =

⎧
⎪⎪⎨

⎪⎪⎩

(1,m + 1) if i = 1 and m ∈ N,
(1, 1) if i = k and m = 1,
(k,m − 1) if i = k and m ∈ {2, 3, . . .},
(i,m) otherwise.

(1)

For each n ∈ {3, 4, . . .}, we have that FSym(Xn) ≤ Hn. One way to see
this is to first compute that [g2, g3] = ((1, 1), (1, 2)), and then observe that any
2-cycle with support in Xn can be conjugated, using the elements g2, . . . , gn, to
((1, 1), (1, 2)). Furthermore, as observed in [15], we have a short exact sequence
of groups

1 −→ FSym(Xn) −→ Hn
π−→ Z

n−1 −→ 1.

Here π is induced by defining π(gi) := ei−1 for i = 2, . . . , n, where ei denotes
the vector in Z

n−1 with ith entry 1 and other entries 0.

Definition. The second Houghton group is generated by the two cycle
((1, 1), (1, 2)) together with the element g2, defined analogously to (1) above.
This is isomorphic to FSym(Z) � 〈t〉 where t ∈ Sym(Z) sends each z ∈ Z to
z + 1.

There have been many papers with questions and results relating to the
finite index subgroups of this family of groups, e.g. the questions on invariable
generation in [15] and subsequent answers in [6], showing they all have solvable
conjugacy problem in [4], and also all have the R∞ property [5,8]. Some of
these use the partial description of the finite index subgroups from [3]. We
start by giving the first full description of them.

Theorem 1. Let n ∈ {3, 4, . . .} and U ≤f Hn. Then there exist c2, . . . , cn ∈ N

such that π(U) = 〈c2e1, . . . , cnen−1〉 and either U is:
(i) equal to 〈FSym(Xn), gci

i : i = 2, . . . , n〉; or
(ii) isomorphic to 〈Alt(Xn), gci

i : i = 2, . . . , n〉.
If U ≤f H2, then there exists c2 ∈ N such that π(U) = 〈c2〉 ≤ Z and either (i)
or (ii) above occurs or U is equal to 〈Alt(X2), ((1, 1), (1, 2)g2)〉.

Given U,U ′ ≤f Hn such that π(U) = 〈c2e1, . . . , cnen−1〉 for c2, . . . , cn ∈ N

and π(U ′) = 〈d2e1, . . . , dnen−1〉 for d2, . . . , dn ∈ N, one might wonder when
U ∼= U ′. Clearly any permutation of the constants c2, . . . , cn produces an
isomorphism. By considering Aut(U) and Aut(U ′), it seems that this is the
only way for the groups to be isomorphic. Our methods do allow us to obtain
the following.

Corollary 2. Let n ∈ {2, 3, . . .} and c2, . . . , cn ∈ N. If U ≤f Hn and π(U) =
〈c2e1, . . . , cnen−1〉, then either

• at least two of c2, . . . , cn are odd and U = 〈gc2
2 , . . . , gcn

n ,FSym(Xn)〉; or
• U is one of exactly 2n−1 + 1 specific subgroups of Hn.
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We then extend the work in [7], where the groups 〈Alt(X2), gc
2〉 were shown

to be 2-generated for each c ∈ N, by investigating the generation properties of
each of these groups.

Notation. For a finitely generated group G, let d(G) := min{|S| : 〈S〉 = G}.

Every finite index subgroup of a finitely generated group is itself finitely
generated. In the case of Z

n, where n ∈ N, we have that each A ≤f Z
n satisfies

d(A) = d(Zn). There has been much work related to this notion, e.g. [12] and
papers verifying the Nielsen–Schreier formula for families of groups other than
free groups. Our second theorem states that there is a close connection between
the minimal number of generators of a Houghton group and its finite index
subgroups. Note that d(H2) = 2 and d(Hn) = n − 1 for n ∈ {3, 4, . . .}.

Theorem 3. If U ≤f H2, then d(U) = d(H2). For n ∈ {3, 4 . . .} and U ≤f Hn,
we have that d(U) ∈ {d(Hn), d(Hn) + 1}. Furthermore, let π(U) =
〈c2e1, . . . , cnen−1〉. Then d(U) = d(Hn) + 1 occurs exactly when both of the
following conditions are met:

i) that FSym(Xn) ≤ U ; and
ii) either one or zero elements in {c2, . . . , cn} are odd.

Our proof involves providing a generating set. Theorem 1 allows us to re-
place U with either 〈FSym(Xn), gc2

2 , . . . , gcn
n 〉 or 〈Alt(Xn), gc2

2 , . . . , gcn
n 〉. Propo-

sition 3.7 states that, in the second case, d(U) = n−1. Lemma 3.5 and Lemma
3.6 combine to tell us that 〈FSym(Xn), gc2

2 , . . . , gcn
n 〉 = 〈Alt(Xn), gc2

2 , . . . , gcn
n 〉

when there are distinct i, j ∈ {2, . . . , n} that are both odd. Thus the only re-
maining possibility is that U = 〈FSym(Xn), gc2

2 , . . . , gcn
n 〉 �= 〈Alt(Xn), gc2

2 , . . . ,
gcn

n 〉. Lemma 3.9 shows that in this case d(U) = d(Hn) + 1, by determining
that the abelianization of U , with these conditions, is C2 × Z

n−1. This com-
plete categorisation provides us with subgroups of the Houghton groups with
constant minimal number of generators on finite index subgroups.

Corollary 4. Let n ∈ {3, 4, . . .} and define G2 := 〈Alt(Xn), g22 , . . . , g
2
n〉 ≤f Hn.

If U ≤f G2, then d(U) = d(G2) = d(Hn).

2. The structure of finite index subgroups of Hn . In this section, we prove
Theorem 1. The following is well known.

Lemma 2.1. Given U ≤f G, there exists N ≤f U which is normal in G.

Some structure regarding finite index subgroups of Hn is known; the fol-
lowing is particularly useful to us.

Lemma 2.2 ([5, Prop. 2.5]). Let X be a non-empty set and Alt(X) ≤ G ≤
Sym(X). Then G has Alt(X) as a unique minimal normal subgroup.

Let n ∈ {2, 3, . . .} and U ≤f Hn. By Lemma 2.1, U contains a normal
subgroup of Hn and so, by Lemma 2.2, Alt(Xn) ≤ U . Furthermore, U ≤f Hn

and so π(U) ≤f π(Hn) where π : Hn → Z
n−1 sends gi to ei−1 for i = 2, . . . , n.

Hence there exist minimal k2, . . . , kn ∈ N such that π(gki
i ) ∈ π(U) for each
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i ∈ {2, . . . , n}. But π(gki
i ) = kiei−1, and so the preimage in Hn of π(gki

i ) is
{σgki

i : σ ∈ FSym(Xn)}. If FSym(Xn) ≤ U , then gk2
2 , . . . , gkn

n ∈ U . Otherwise
FSym(Xn)∩U = Alt(Xn) and, for each i ∈ {2, . . . , n}, either gki

i ∈ U or there
exists ωi ∈ FSym(Xn) \ Alt(Xn) such that ωig

ki
i ∈ U ; since Alt(Xn) ≤ U , we

can specify that ωi = ((1, 1) (1, 2)). Then, using the minimality of k2, . . . , kn,

U = 〈gk2
2 , . . . , gkn

n ,FSym(Xn)〉 or U = 〈ε2gk2
2 , . . . , εngkn

n ,Alt(Xn)〉 (2)

where each εi is either trivial or ((1, 1) (1, 2)). We now describe the isomor-
phism type for these subgroups. To do this, we introduce two families of finite
index subgroups in Hn where n ∈ {2, 3, . . .}.

Notation. For any given n ∈ {2, 3, . . .} and any c = (c2, . . . , cn) ∈ N
n−1, let

Fc := 〈FSym(Xn), gc2
2 , . . . , gcn

n 〉 and Gc := 〈Alt(Xn), gc2
2 , . . . , gcn

n 〉.
There are some c ∈ N

n such that Gc = Fc, e.g. if n �= 2 and c2 = · · · =
cn = 1.

Notation. Let In := {c = (c2, . . . , cn) ∈ N
n : Gc �= Fc}.

Lemma 3.5 and Lemma 3.6 together describe In. This description, together
with (2), yields Corollary 2.

Notation. For n ∈ {2, 3, . . .} and i ∈ {1, . . . , n}, let Ri := {(i,m) : m ∈ N} ⊂
Xn.

Proposition 2.3. Let n ∈ {3, 4, . . .}, c = (c2, . . . , cn) ∈ In, each ε2, . . . , εn be
either trivial or ((i, 1) (i, 2)), and U = 〈Alt(Xn), εig

ci
i : i = 2, . . . , n, 〉 ≤f Hn.

Then U is isomorphic to Gc.

Proof. If there are i �= j such that ci = cj = 1, then FSym(Xn) ≤ Gc and so
Gc = Fc, i.e. c �∈ In.

Now consider if ci = 1 for some i and that εi = ((i, 1) (i, 2)). Then εigi fixes
(i, 1). Moreover, we have (i,m)εigi = (i,m−1) for all m ≥ 3, (i, 2)εigi = (1, 1),
(1,m)εi = (1,m + 1) for all m ≥ 1, and that εigi fixes all other points in Xn.
This allows us to relabel Xn so that the point (i, 1) becomes part of another
ray j ∈ {2, . . . , n}.

If ci �= 1 and εi = ((i, 1) (i, 2)), then we can relabel Ri as R′
i by swapping

the labels on the points (i, 1) and (i, 2) so that εig
ci
i acts on R′

i ∪ R1 in the
same way as gci

i acts on Ri ∪ R1. �

Lemma 2.4. Let k ∈ {2, 3, . . .}, ε = ((1, 1) (1, 2)), and U = 〈Alt(Xn), εgk
2 〉 ≤f

H2. Then U is isomorphic to 〈Alt(X2), gk
2 〉.

Proof. In a similar way to the preceding proof, we can relabel R2 as R′
2 (by

swapping the labels on the points (2, 1) and (2, 2)) so that εgk
2 acts on R1 ∪R′

2

in the same way that gk
2 acts on R1 ∪ R2. �

Remark 2.5. The preceding lemma may hold for k = 1. Such an isomorphism
would not be induced by a permutation of X2, however: any element g in
〈Alt(X2), ((1, 1) (1, 2))t〉 with π(g) = 1 cannot have an infinite orbit equal to
X2.
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3. Generation of the groups Fc and Gc. We start with the case of H2, first
dealing with the ‘exceptional’ case.

Lemma 3.1. The group 〈Alt(X2), ((1, 1) (1, 2))g2〉 is 2-generated.

Proof. Note that 〈Alt(X2), ((1, 1) (1, 2))g2〉 ∼= 〈Alt(Z), (1 2)t〉 ≤ FSym(Z) �

〈t〉 where t : z → z + 1 for all z ∈ Z. Our aim will be to show that S =
{(0 1 2), (0 1)t} generates 〈Alt(Z), (1 2)t〉. To do this, we will use 〈S〉 to
construct all 3-cycles (0 a b) with 0 < a < b. With these elements we can
then also produce every 3-cycle of the form (a b c) where 0 < a < b < c,
by conjugating (0 a b) by (0 c 2c). Then every 3-cycle in Alt(N ∪ {0}), or
its inverse, is accounted for by such elements. Conjugation by some power of
(0 1)t yields every 3-cycle in Alt(Z), and we recall that Alt(Z) is generated by
the set of all 3-cycles with support in Z.

In addition to our first simplification, note that it is sufficient to show that
(0, 1, k + 1) ∈ 〈(0 1 2), (0 1)t〉 for every k ∈ N. This is because any 3-cycle
(0 a b) with 0 < a < b will be conjugate, by (0 1)t, to an element of the form
(0, 1, k + 1). We start with σ1 := (0, k, k + 1). If k = 1, then we are done.
Otherwise, conjugate σ−1

1 by (0, k − 1, k) to obtain σ2 = (0, k − 1, k + 1). If
k > 2, conjugate σ−1

2 by (0, k − 2, k − 1) to obtain σ3. Continuing in this way
yields the result. �

The following results conclude the H2 case. We include the proof here as
we will adapt it for Fc and Gc. The notation Ωk := {1, . . . , k} is helpful for
these results.

Lemma 3.2 ([5, Lem. 3.6]). Let k ∈ {3, 4, . . .} and t : z → z + 1 for all z ∈ Z.
Then 〈Alt(Z), tk〉 is generated by Alt(Ω2k) ∪ {tk}.
Lemma 3.3 ([5, Lem. 3.7]). Let k ∈ N and t : z → z + 1 for all z ∈ Z. Then
Gk := 〈Alt(Z), tk〉 and Fk := 〈FSym(Z), tk〉 are 2-generated.

Proof. We start with Gk. We will show that we can find, for each k ∈ {3, 4, . . .},
an αk ∈ Alt(Z) such that 〈tk, αk〉 contains Alt(Z). Then, for d ∈ {1, 2, 3},
〈td, α6〉 contains 〈t6, α6〉 and so contains Alt(Z). We can therefore fix some
k ∈ {3, 4, . . .}, meaning all 3-cycles in Alt(Ω2k) are conjugate.

Let r =
(
2k
3

)
and let ω1, . . . , ωr be a choice of distinct 3-cycles in Alt(Ω2k)

with ωi �= ω−1
j for every i, j ∈ {1, . . . , r}. Thus 〈ω1, . . . , ωr〉 = Alt(Ω2k). Set

σ0 = (1 3) and σr+1 = (2 3) and note that (σ−1
r+1σ

−1
0 σr+1)σ0 = (1 2 3).

Now choose σ1, . . . , σr ∈ Alt(Ω2k) so that for each m ∈ {1, . . . , r}, we have
σ−1

m (1 2 3)σm = ωm.
Let αk :=

∏r+1
i=0 t−2ikσit

2ik and, for m ∈ {1, . . . , r + 1}, let βm :=
t2mkαkt−2mk. Then β−1

r+1α
−1
k βr+1αk = σ−1

r+1σ
−1
0 σr+1σ0 = (1 2 3) and, for

m ∈ {1, . . . , r}, we have that β−1
m (1 2 3)βm = ωm. Hence 〈αk, tk〉 = Gk.

We can now adapt the element αk to an element γk so, for each k ∈
{3, 4, . . .}, we have that 〈γk, tk〉 = Fk. One way to do so is to set γk :=
(σ′

0)(
∏r+1

i=1 t−2ikσit
2ik) where σ′

0 = (1 3)(4 5). This means that [σr+1, σ
′
0] still

equals (1 2 3), and so Alt(Z) ≤ 〈γk, tk〉, but that Alt(Z) ∪ γk(Alt(Z)) =
FSym(Z) ≤ 〈γk, tk〉 as well. �
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We now work with a fixed n ∈ {3, 4, . . .}. The following well-known com-
mutator identities will be helpful for a few of our remaining proofs.

[a, bc] = a−1(bc)−1a(bc) = a−1c−1acc−1a−1b−1abc = [a, c][a, b]c (3)

[ab, c] = (ab)−1c−1(ab)c = b−1(a−1c−1ac)bb−1c−1bc = [a, c]b[b, c] (4)

Remark 3.4. Let a, b, c ∈ Hn and sgn denote the sign function on FSym(Xn).
From the identities (3) and (4) above, we have that sgn([a, bc]) =
sgn([a, b])sgn([a, c]) and sgn([ab, c]) = sgn([a, c])sgn([b, c]).

Recall that c ∈ N
n−1 is in In if and only if Gc �= Fc.

Lemma 3.5. Let c = (c2, . . . , cn) ∈ N
n. We have that c ∈ In if and only if

[gci
i , g

cj
j ] ∈ Alt(Xn) for all i, j ∈ {2, . . . , n}.

Proof. If there exist i, j ∈ {2, . . . , n} such that [gci
i , g

cj
j ] �∈ Alt(Xn), then Gc

contains an odd permutation and so Gc = Fc. Recall that Gc = 〈Alt(Xn), gc2
2 ,

. . . , gcn
n 〉 and that we have a homomorphism π : Hn → Z

n−1 induced by
sending gi to ei−1 for i = 2, . . . , n. Then π(Gc) ≤f π(Hn) = Z

n−1, and
so π(Gc) is free abelian of rank n − 1. Define S := {gc2

2 , . . . , gcn
n } so that

〈S ∪ Alt(Xn)〉 = Gc and π(S) is a linearly independent set. Let ti := π(gci
i )

for i = 2, . . . , n. Thus

π(〈S〉) = 〈t2, . . . , tn | R〉 where R = {[ti, tj ] : i �= j}. (5)

Now let α ∈ 〈S〉 ∩ FSym(Xn). We will show that α ∈ Alt(Xn), meaning
that c ∈ In. First, express α as a word w in S±1. Thus α = w(gc2

2 , . . . , gcn
n )

and π(α) = w(t2, . . . , tn) for the same word w. But also π(α) = 0 which, from
(5), means that w(t2, . . . , tn) is in the normal closure of R. Thus w(t2, . . . , tn)
is a product of conjugates of powers of commutators in terms of t2, . . . , tn.
Then α = w(gc2

2 , . . . , gcn
n ) must also be a product of conjugates of powers of

commutators in terms of gc2
2 , . . . , gcn

n . Our assumption that [gci
i , g

cj
j ] ∈ Alt(Xn)

for all i, j ∈ {2, . . . , n} together with Remark 3.4 means that α ∈ Alt(Xn).
�

The following gives a clearer description of the set In.

Lemma 3.6. Let i, j ∈ {2, . . . , n} and ci, cj ∈ N. Then [gci
i , g

cj
j ] �∈ Alt(Xn) if

and only if ci and cj are both odd.

Proof. Note that [gi, gj ] ∈ FSym(Xn)\Alt(Xn) whereas [g2i , g2j ], [gi, g
2
j ], [g2i , gj ]

∈ Alt(Xn). Now, by repeatedly applying Remark 3.4, we can reduce ci and cj

to be either 1 or 2, depending on whether they are odd or even respectively.
�

Combining Lemma 3.5 and Lemma 3.6, we see that c = (c2, . . . , cn) ∈ N
n−1

is in In if and only if at least two of c2, . . . , cn are odd.

Proposition 3.7. Given c = (c2, . . . , cn) ∈ N
n−1, we have that d(Gc) = d(Hn).

Proof. We start with the case that c ∈ In. By possibly relabelling the branches
of Xn, set c3 := max{c2, . . . , cn}. Thus c3 �= 1, as otherwise c2 = c3 = 1



Vol. 118 (2022) On the finite index subgroups of Houghton’s groups 119

and c �∈ In. Let k := 2c3 and Ω∗ := {(1, 1), . . . , (1, 2k)}. Thus 2k ≥ 8 and
all 3-cycles in Alt(Ω∗) are conjugate in Alt(Ω∗). We claim that Alt(Xn) ≤
〈Alt(Ω∗), gc2

2 , . . . , gcn
n 〉. By Lemma 3.2, 〈Alt(Ω∗), gc3

3 〉 is a subgroup of Hn

which generates 〈Alt(R1 ∪ R3), gc3
3 〉 ∼= 〈Alt(Z), tc3〉. Most importantly,

〈Alt(Ω∗), gc3
3 〉 contains Alt(R1). Now, given any σ ∈ FSym(Xn), there ex-

ists a word of the form gd2
2 . . . gdn

n for some di ∈ ciN which conjugates σ to σ′,
where supp(σ′) ⊂ R1. Hence 〈Alt(Ω∗), gc2

2 , . . . , gcn
n 〉 = Gc. Our next aim is to

adapt the proof of Lemma 3.3. In particular, we will show that there exists a
σ ∈ Alt(Xn) such that 〈σgc2

2 , gc3
3 , . . . , gcn

n 〉 = Gc. For any ω ∈ FSym(Xn), let
σω := [ωgc2

2 , g2k
3 ], which we can calculate using (4) as

[ω, g2k
3 ]g

c2
2 [gc2

2 , g2k
3 ] = g−c2

2 (ω−1g−2k
3 ωg2k

3 )gc2
2 [gc2

2 , g2k
3 ]. (6)

Observe that supp([gc2
2 , g2k

3 ]) ⊆ {(1, 1), . . . , (1, c2 + 2k)} and, since k = 2c3 >
2c2, that (1, 4k + 1), (1, 4k + 3) �∈ supp([gc2

2 , gk
3 ]). Let δ0 := ((1, 2k − c2 +

1), (1, 2k − c2 + 3)) and note, using (6), that supp(σδ0) ∩ {(1,m) : m =
4k + 2 or m ≥ 4k + 4} = ∅ and σδ0 swaps (1, 4k + 1) and (1, 4k + 3). We now
restrict to those ω ∈ Alt(Xn) with

supp(ωδ0) ⊂
⋃

j∈N

(Ω∗)g−4jk
3 .

The following implications of this restriction are all important in relation to
(6):

• supp(σω) ⊂ R1 ∪ R3;
• supp(ω−1) ∩ supp(g−2k

3 ωg2k
3 ) = ∅;

• (x)g−c2
2 ω−1gc2

2 = (x)ω−1 for all x ∈ R3; and
• (x)g−c2

2 (g−2k
3 ωg2k

3 )gc2
2 = (x)g−2k

3 ωg2k
3 for all x ∈ R3.

Now, by mimicking the proof of Lemma 3.3, we can choose one such ω,
which we will denote by α, so that Alt(R1) ≤ 〈gk

3 , σα〉. Let r =
(
2k
3

)
and

ω1, . . . , ωr be a set of 3-cycles such that 〈ω1, . . . , ωr〉 = Alt(Ω∗). Choose
σ1, . . . , σr ∈ Alt(Ω∗) such that σ−1

i ((1, 1) (1, 2) (1, 3))σi = ωi for i = 1, . . . , r.
Also set σr+1 := ((1, 2) (1, 3)) and σ0 := ((1, 1) (1, 3)). Define δi := g4ki

3 σig
−4ki
3

for i = 1, . . . , r + 1 and α := δ0 . . . δr+1. Define βm := g−4mk
3 σαg4mk

3 for
m = −1, . . . , r+1. Then, as in Lemma 3.3, we have that [βr+1, β−1] = [σd+1, σ0]
and βi[σd+1, σ0]β−1

i = ωi for i = 1, . . . , r.
We end our proof with the case where c �∈ In. From Lemma 3.5 and

Lemma 3.6, there then exist i, j ∈ {2, . . . , n} such that [gci
i , g

cj
j ] ∈ FSym(Xn)\

Alt(Xn). Using the element σα ∈ Alt(Xn) defined above, we claim that 〈σαgc2
2 ,

gc3
3 , . . . , gcn

n 〉 = Fc. We note that if [gci
i , g

cj
j ] ∈ FSym(Xn) \ Alt(Xn), then, by

Remark 3.4, so is [σgci
i , g

cj
j ] for any σ ∈ FSym(Xn). Hence 〈σαgc2

2 , gc3
3 , . . . , gcn

n 〉
contains both Alt(Xn) and an odd permutation, and so d(Gc) = d(Hn). �

We now look at the final case of determining d(Fc) where c ∈ In.

Lemma 3.8. Let c ∈ In. Then the commutator subgroup of Fc equals Alt(Xn).

Proof. Note that [Alt(Xn),Alt(Xn)] = Alt(Xn). Let σ
∏

i∈I gpi

i and ω
∏

j∈J g
qj
j

be in Fc, where I, J ⊆ {2, . . . , n}, {pi : i ∈ I} ⊂ Z, {qj : j ∈ J} ⊂ Z, and
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σ, ω ∈ FSym(Xn). Then their commutator, using (3), will be a product of
conjugates of elements of the form [σ

∏
i∈I gpi

i , ω] or [σ
∏

i∈I gpi

i , gqk
k ] for some

k ∈ J . Applying (4) to these elements will produce a product of conjugates of
elements of the form

[σ, ω], [gpl

l , ω], [σ, gqk
k ], or [gpl

l , gqk
k ]

for some l ∈ I and k ∈ J . The first 3 of these are clearly in Alt(Xn). The
4th is also in Alt(Xn) from our assumption that c ∈ In together with Lemma
3.5. Hence, from Remark 3.4, a commutator of any two elements in Fc is in
Alt(Xn). �

Lemma 3.9. Let c = (c2, . . . , cn) ∈ In. Then d(Fc) = d(Hn) + 1.

Proof. Recall that d(Gc) = n − 1. Including an element from FSym(Xn) \
Alt(Xn) to a minimal generating set for Gc therefore yields a generating set
of Fc of size n. So we need only show that, with the given hypothesis, no
generating set of Fc of size n − 1 exists. From Lemma 3.8, the abelianization
of Fc is Z

n−1 × C2. Thus Fc cannot be generated by n − 1 elements. �
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