On the finite index subgroups of Houghton's groups

Charles Garnet Cox ${ }^{\text {D }}$

Abstract

Houghton's groups H_{2}, H_{3}, \ldots are certain infinite permutation groups acting on a countably infinite set; they have been studied, among other things, for their finiteness properties. In this note we describe all of the finite index subgroups of each Houghton group, and their isomorphism types. Using the standard notation that $d(G)$ denotes the minimal size of a generating set for G, we then show, for each $n \in\{2,3, \ldots\}$ and U of finite index in H_{n}, that $d(U) \in\left\{d\left(H_{n}\right), d\left(H_{n}\right)+1\right\}$ and characterise when each of these cases occurs.

Mathematics Subject Classification. 20F05.
Keywords. Generation, Generation of finite index subgroups, Structure of finite index subgroups, Infinite groups, Houghton groups, Permutation groups, Highly transitive groups.

1. Introduction. Introduced in [11] by Houghton, the Houghton groups have since attracted attention for their finiteness properties [2,13], their growth $[3,10]$, their many interesting combinatorial features $[1,9,14,15]$ as well as other properties.

Definition. For $X \neq \emptyset$, let $\operatorname{Sym}(X)$ denote the group of all bijections on X. For $g \in \operatorname{Sym}(X)$, let $\operatorname{supp}(g):=\{x \in X:(x) g \neq x\}$, called the support of g. Then $\operatorname{FSym}(X)=\{g \in \operatorname{Sym}(X):|\operatorname{supp}(g)|<\infty\}$ and $\operatorname{Alt}(X) \leq \operatorname{FSym}(X)$ consists of only the even permutations, meaning $[\operatorname{FSym}(X): \operatorname{Alt}(X)]=2$.

We give a brief overview of these groups for our purposes; more detailed introductions can be found, for example, in $[1,4]$. We will use right actions throughout. We define $\mathbb{N}:=\{1,2, \ldots\}$, let $G \leq_{f} H$ denote that G is a finite index subgroup of H, and for a group G and $g, h \in G$, let $[g, h]:=g^{-1} h^{-1} g h$ and $g^{h}:=h^{-1} g h$.

Definition. Let $n \in\{3,4, \ldots\}$. Then the nth Houghton group, denoted H_{n}, is generated by $g_{2}, \ldots, g_{n} \in \operatorname{Sym}\left(X_{n}\right)$ where $X_{n}=\{1, \ldots, n\} \times \mathbb{N}$ and for $k \in\{2, \ldots, n\}$,

$$
(i, m) g_{k}= \begin{cases}(1, m+1) & \text { if } i=1 \text { and } m \in \mathbb{N} \tag{1}\\ (1,1) & \text { if } i=k \text { and } m=1, \\ (k, m-1) & \text { if } i=k \text { and } m \in\{2,3, \ldots\}, \\ (i, m) & \text { otherwise }\end{cases}
$$

For each $n \in\{3,4, \ldots\}$, we have that $\operatorname{FSym}\left(X_{n}\right) \leq H_{n}$. One way to see this is to first compute that $\left[g_{2}, g_{3}\right]=((1,1),(1,2))$, and then observe that any 2-cycle with support in X_{n} can be conjugated, using the elements g_{2}, \ldots, g_{n}, to $((1,1),(1,2))$. Furthermore, as observed in [15], we have a short exact sequence of groups

$$
1 \longrightarrow \operatorname{FSym}\left(X_{n}\right) \longrightarrow H_{n} \xrightarrow{\pi} \mathbb{Z}^{n-1} \longrightarrow 1
$$

Here π is induced by defining $\pi\left(g_{i}\right):=e_{i-1}$ for $i=2, \ldots, n$, where e_{i} denotes the vector in \mathbb{Z}^{n-1} with i th entry 1 and other entries 0 .

Definition. The second Houghton group is generated by the two cycle $((1,1),(1,2))$ together with the element g_{2}, defined analogously to (1) above. This is isomorphic to $\operatorname{FSym}(\mathbb{Z}) \rtimes\langle t\rangle$ where $t \in \operatorname{Sym}(\mathbb{Z})$ sends each $z \in \mathbb{Z}$ to $z+1$.

There have been many papers with questions and results relating to the finite index subgroups of this family of groups, e.g. the questions on invariable generation in [15] and subsequent answers in [6], showing they all have solvable conjugacy problem in [4], and also all have the R_{∞} property [5,8]. Some of these use the partial description of the finite index subgroups from [3]. We start by giving the first full description of them.

Theorem 1. Let $n \in\{3,4, \ldots\}$ and $U \leq_{f} H_{n}$. Then there exist $c_{2}, \ldots, c_{n} \in \mathbb{N}$ such that $\pi(U)=\left\langle c_{2} e_{1}, \ldots, c_{n} e_{n-1}\right\rangle$ and either U is:
(i) equal to $\left\langle\operatorname{FSym}\left(X_{n}\right), g_{i}^{c_{i}}: i=2, \ldots, n\right\rangle$; or
(ii) isomorphic to $\left\langle\operatorname{Alt}\left(X_{n}\right), g_{i}^{c_{i}}: i=2, \ldots, n\right\rangle$.

If $U \leq_{f} H_{2}$, then there exists $c_{2} \in \mathbb{N}$ such that $\pi(U)=\left\langle c_{2}\right\rangle \leq \mathbb{Z}$ and either (i) or (ii) above occurs or U is equal to $\left\langle\operatorname{Alt}\left(X_{2}\right),\left((1,1),(1,2) g_{2}\right)\right\rangle$.

Given $U, U^{\prime} \leq_{f} H_{n}$ such that $\pi(U)=\left\langle c_{2} e_{1}, \ldots, c_{n} e_{n-1}\right\rangle$ for $c_{2}, \ldots, c_{n} \in \mathbb{N}$ and $\pi\left(U^{\prime}\right)=\left\langle d_{2} e_{1}, \ldots, d_{n} e_{n-1}\right\rangle$ for $d_{2}, \ldots, d_{n} \in \mathbb{N}$, one might wonder when $U \cong U^{\prime}$. Clearly any permutation of the constants c_{2}, \ldots, c_{n} produces an isomorphism. By considering $\operatorname{Aut}(U)$ and $\operatorname{Aut}\left(U^{\prime}\right)$, it seems that this is the only way for the groups to be isomorphic. Our methods do allow us to obtain the following.

Corollary 2. Let $n \in\{2,3, \ldots\}$ and $c_{2}, \ldots, c_{n} \in \mathbb{N}$. If $U \leq_{f} H_{n}$ and $\pi(U)=$ $\left\langle c_{2} e_{1}, \ldots, c_{n} e_{n-1}\right\rangle$, then either

- at least two of c_{2}, \ldots, c_{n} are odd and $U=\left\langle g_{2}^{c_{2}}, \ldots, g_{n}^{c_{n}}, \operatorname{FSym}\left(X_{n}\right)\right\rangle$; or
- U is one of exactly $2^{n-1}+1$ specific subgroups of H_{n}.

We then extend the work in [7], where the groups $\left\langle\operatorname{Alt}\left(X_{2}\right), g_{2}^{c}\right\rangle$ were shown to be 2-generated for each $c \in \mathbb{N}$, by investigating the generation properties of each of these groups.

Notation. For a finitely generated group G, let $d(G):=\min \{|S|:\langle S\rangle=G\}$.
Every finite index subgroup of a finitely generated group is itself finitely generated. In the case of \mathbb{Z}^{n}, where $n \in \mathbb{N}$, we have that each $A \leq_{f} \mathbb{Z}^{n}$ satisfies $d(A)=d\left(\mathbb{Z}^{n}\right)$. There has been much work related to this notion, e.g. [12] and papers verifying the Nielsen-Schreier formula for families of groups other than free groups. Our second theorem states that there is a close connection between the minimal number of generators of a Houghton group and its finite index subgroups. Note that $d\left(H_{2}\right)=2$ and $d\left(H_{n}\right)=n-1$ for $n \in\{3,4, \ldots\}$.

Theorem 3. If $U \leq_{f} H_{2}$, then $d(U)=d\left(H_{2}\right)$. For $n \in\{3,4 \ldots\}$ and $U \leq_{f} H_{n}$, we have that $d(U) \in\left\{d\left(H_{n}\right), d\left(H_{n}\right)+1\right\}$. Furthermore, let $\pi(U)=$ $\left\langle c_{2} e_{1}, \ldots, c_{n} e_{n-1}\right\rangle$. Then $d(U)=d\left(H_{n}\right)+1$ occurs exactly when both of the following conditions are met:
i) that $\operatorname{FSym}\left(X_{n}\right) \leq U$; and
ii) either one or zero elements in $\left\{c_{2}, \ldots, c_{n}\right\}$ are odd.

Our proof involves providing a generating set. Theorem 1 allows us to replace U with either $\left\langle\operatorname{FSym}\left(X_{n}\right), g_{2}^{c_{2}}, \ldots, g_{n}^{c_{n}}\right\rangle$ or $\left\langle\operatorname{Alt}\left(X_{n}\right), g_{2}^{c_{2}}, \ldots, g_{n}^{c_{n}}\right\rangle$. Proposition 3.7 states that, in the second case, $d(U)=n-1$. Lemma 3.5 and Lemma 3.6 combine to tell us that $\left\langle\operatorname{FSym}\left(X_{n}\right), g_{2}^{c_{2}}, \ldots, g_{n}^{c_{n}}\right\rangle=\left\langle\operatorname{Alt}\left(X_{n}\right), g_{2}^{c_{2}}, \ldots, g_{n}^{c_{n}}\right\rangle$ when there are distinct $i, j \in\{2, \ldots, n\}$ that are both odd. Thus the only remaining possibility is that $U=\left\langle\operatorname{FSym}\left(X_{n}\right), g_{2}^{c_{2}}, \ldots, g_{n}^{c_{n}}\right\rangle \neq\left\langle\operatorname{Alt}\left(X_{n}\right), g_{2}^{c_{2}}, \ldots\right.$, $\left.g_{n}^{c_{n}}\right\rangle$. Lemma 3.9 shows that in this case $d(U)=d\left(H_{n}\right)+1$, by determining that the abelianization of U, with these conditions, is $C_{2} \times \mathbb{Z}^{n-1}$. This complete categorisation provides us with subgroups of the Houghton groups with constant minimal number of generators on finite index subgroups.

Corollary 4. Let $n \in\{3,4, \ldots\}$ and define $G_{2}:=\left\langle\operatorname{Alt}\left(X_{n}\right), g_{2}^{2}, \ldots, g_{n}^{2}\right\rangle \leq_{f} H_{n}$. If $U \leq_{f} G_{\mathbf{2}}$, then $d(U)=d\left(G_{2}\right)=d\left(H_{n}\right)$.
2. The structure of finite index subgroups of $\boldsymbol{H}_{\boldsymbol{n}}$. In this section, we prove Theorem 1. The following is well known.

Lemma 2.1. Given $U \leq_{f} G$, there exists $N \leq_{f} U$ which is normal in G.
Some structure regarding finite index subgroups of H_{n} is known; the following is particularly useful to us.

Lemma 2.2 ([5, Prop. 2.5]). Let X be a non-empty set and $\operatorname{Alt}(X) \leq G \leq$ $\operatorname{Sym}(X)$. Then G has $\operatorname{Alt}(X)$ as a unique minimal normal subgroup.

Let $n \in\{2,3, \ldots\}$ and $U \leq_{f} H_{n}$. By Lemma $2.1, U$ contains a normal subgroup of H_{n} and so, by Lemma 2.2, Alt $\left(X_{n}\right) \leq U$. Furthermore, $U \leq_{f} H_{n}$ and so $\pi(U) \leq_{f} \pi\left(H_{n}\right)$ where $\pi: H_{n} \rightarrow \mathbb{Z}^{n-1}$ sends g_{i} to e_{i-1} for $i=2, \ldots, n$. Hence there exist minimal $k_{2}, \ldots, k_{n} \in \mathbb{N}$ such that $\pi\left(g_{i}^{k_{i}}\right) \in \pi(U)$ for each
$i \in\{2, \ldots, n\}$. But $\pi\left(g_{i}^{k_{i}}\right)=k_{i} e_{i-1}$, and so the preimage in H_{n} of $\pi\left(g_{i}^{k_{i}}\right)$ is $\left\{\sigma g_{i}^{k_{i}}: \sigma \in \operatorname{FSym}\left(X_{n}\right)\right\}$. If $\operatorname{FSym}\left(X_{n}\right) \leq U$, then $g_{2}^{k_{2}}, \ldots, g_{n}^{k_{n}} \in U$. Otherwise $\operatorname{FSym}\left(X_{n}\right) \cap U=\operatorname{Alt}\left(X_{n}\right)$ and, for each $i \in\{2, \ldots, n\}$, either $g_{i}^{k_{i}} \in U$ or there exists $\omega_{i} \in \operatorname{FSym}\left(X_{n}\right) \backslash \operatorname{Alt}\left(X_{n}\right)$ such that $\omega_{i} g_{i}^{k_{i}} \in U$; since $\operatorname{Alt}\left(X_{n}\right) \leq U$, we can specify that $\omega_{i}=((1,1)(1,2))$. Then, using the minimality of k_{2}, \ldots, k_{n},

$$
\begin{equation*}
U=\left\langle g_{2}^{k_{2}}, \ldots, g_{n}^{k_{n}}, \operatorname{FSym}\left(X_{n}\right)\right\rangle \text { or } U=\left\langle\epsilon_{2} g_{2}^{k_{2}}, \ldots, \epsilon_{n} g_{n}^{k_{n}}, \operatorname{Alt}\left(X_{n}\right)\right\rangle \tag{2}
\end{equation*}
$$

where each ϵ_{i} is either trivial or $((1,1)(1,2))$. We now describe the isomorphism type for these subgroups. To do this, we introduce two families of finite index subgroups in H_{n} where $n \in\{2,3, \ldots\}$.
Notation. For any given $n \in\{2,3, \ldots\}$ and any $\mathbf{c}=\left(c_{2}, \ldots, c_{n}\right) \in \mathbb{N}^{n-1}$, let $F_{\mathbf{c}}:=\left\langle\operatorname{FSym}\left(X_{n}\right), g_{2}^{c_{2}}, \ldots, g_{n}^{c_{n}}\right\rangle$ and $G_{\mathbf{c}}:=\left\langle\operatorname{Alt}\left(X_{n}\right), g_{2}^{c_{2}}, \ldots, g_{n}^{c_{n}}\right\rangle$.

There are some $\mathbf{c} \in \mathbb{N}^{n}$ such that $G_{\mathbf{c}}=F_{\mathbf{c}}$, e.g. if $n \neq 2$ and $c_{2}=\cdots=$ $c_{n}=1$.

Notation. Let $I_{n}:=\left\{\mathbf{c}=\left(c_{2}, \ldots, c_{n}\right) \in \mathbb{N}^{n}: G_{\mathbf{c}} \neq F_{\mathbf{c}}\right\}$.
Lemma 3.5 and Lemma 3.6 together describe I_{n}. This description, together with (2), yields Corollary 2.
Notation. For $n \in\{2,3, \ldots\}$ and $i \in\{1, \ldots, n\}$, let $R_{i}:=\{(i, m): m \in \mathbb{N}\} \subset$ X_{n}.

Proposition 2.3. Let $n \in\{3,4, \ldots\}$, $\mathbf{c}=\left(c_{2}, \ldots, c_{n}\right) \in I_{n}$, each $\epsilon_{2}, \ldots, \epsilon_{n}$ be either trivial or $((i, 1)(i, 2))$, and $U=\left\langle\operatorname{Alt}\left(X_{n}\right), \epsilon_{i} g_{i}^{c_{i}}: i=2, \ldots, n,\right\rangle \leq_{f} H_{n}$. Then U is isomorphic to $G_{\mathbf{c}}$.

Proof. If there are $i \neq j$ such that $c_{i}=c_{j}=1$, then $\operatorname{FSym}\left(X_{n}\right) \leq G_{\mathbf{c}}$ and so $G_{\mathbf{c}}=F_{\mathbf{c}}$, i.e. $\mathbf{c} \notin I_{n}$.

Now consider if $c_{i}=1$ for some i and that $\epsilon_{i}=((i, 1)(i, 2))$. Then $\epsilon_{i} g_{i}$ fixes $(i, 1)$. Moreover, we have $(i, m) \epsilon_{i} g_{i}=(i, m-1)$ for all $m \geq 3,(i, 2) \epsilon_{i} g_{i}=(1,1)$, $(1, m) \epsilon_{i}=(1, m+1)$ for all $m \geq 1$, and that $\epsilon_{i} g_{i}$ fixes all other points in X_{n}. This allows us to relabel X_{n} so that the point $(i, 1)$ becomes part of another ray $j \in\{2, \ldots, n\}$.

If $c_{i} \neq 1$ and $\epsilon_{i}=((i, 1)(i, 2))$, then we can relabel R_{i} as R_{i}^{\prime} by swapping the labels on the points $(i, 1)$ and $(i, 2)$ so that $\epsilon_{i} g_{i}^{c_{i}}$ acts on $R_{i}^{\prime} \cup R_{1}$ in the same way as $g_{i}^{c_{i}}$ acts on $R_{i} \cup R_{1}$.
Lemma 2.4. Let $k \in\{2,3, \ldots\}$, $\epsilon=((1,1)(1,2))$, and $U=\left\langle\operatorname{Alt}\left(X_{n}\right), \epsilon g_{2}^{k}\right\rangle \leq_{f}$ H_{2}. Then U is isomorphic to $\left\langle\operatorname{Alt}\left(X_{2}\right), g_{2}^{k}\right\rangle$.

Proof. In a similar way to the preceding proof, we can relabel R_{2} as R_{2}^{\prime} (by swapping the labels on the points $(2,1)$ and $(2,2))$ so that ϵg_{2}^{k} acts on $R_{1} \cup R_{2}^{\prime}$ in the same way that g_{2}^{k} acts on $R_{1} \cup R_{2}$.
Remark 2.5. The preceding lemma may hold for $k=1$. Such an isomorphism would not be induced by a permutation of X_{2}, however: any element g in $\left\langle\operatorname{Alt}\left(X_{2}\right),((1,1)(1,2)) t\right\rangle$ with $\pi(g)=1$ cannot have an infinite orbit equal to X_{2}.
3. Generation of the groups $\boldsymbol{F}_{\mathbf{c}}$ and $\boldsymbol{G}_{\mathbf{c}}$. We start with the case of H_{2}, first dealing with the 'exceptional' case.
Lemma 3.1. The group $\left\langle\operatorname{Alt}\left(X_{2}\right),((1,1)(1,2)) g_{2}\right\rangle$ is 2-generated.
Proof. Note that $\left\langle\operatorname{Alt}\left(X_{2}\right),((1,1)(1,2)) g_{2}\right\rangle \cong\langle\operatorname{Alt}(\mathbb{Z}),(12) t\rangle \leq \operatorname{FSym}(\mathbb{Z}) \rtimes$ $\langle t\rangle$ where $t: z \rightarrow z+1$ for all $z \in \mathbb{Z}$. Our aim will be to show that $S=$ $\left\{\left(\begin{array}{lll}0 & 1 & 2\end{array}\right),\left(\begin{array}{ll}0 & 1\end{array}\right) t\right\}$ generates $\left\langle\operatorname{Alt}(\mathbb{Z}),\left(\begin{array}{ll}1 & 2\end{array}\right) t\right\rangle$. To do this, we will use $\langle S\rangle$ to construct all 3-cycles ($0 a b$) with $0<a<b$. With these elements we can then also produce every 3 -cycle of the form ($a b c$) where $0<a<b<c$, by conjugating $\left(\begin{array}{ll}0 & a\end{array}\right.$) by ($0 c 2 c$). Then every 3 -cycle in $\operatorname{Alt}(\mathbb{N} \cup\{0\})$, or its inverse, is accounted for by such elements. Conjugation by some power of (01)t yields every 3 -cycle in $\operatorname{Alt}(\mathbb{Z})$, and we recall that $\operatorname{Alt}(\mathbb{Z})$ is generated by the set of all 3 -cycles with support in \mathbb{Z}.

In addition to our first simplification, note that it is sufficient to show that $(0,1, k+1) \in\left\langle\left(\begin{array}{ll}0 & 1\end{array}\right),\left(\begin{array}{ll}0 & 1\end{array}\right) t\right\rangle$ for every $k \in \mathbb{N}$. This is because any 3 -cycle ($0 a b$) with $0<a<b$ will be conjugate, by (01) t, to an element of the form $(0,1, k+1)$. We start with $\sigma_{1}:=(0, k, k+1)$. If $k=1$, then we are done. Otherwise, conjugate σ_{1}^{-1} by $(0, k-1, k)$ to obtain $\sigma_{2}=(0, k-1, k+1)$. If $k>2$, conjugate σ_{2}^{-1} by $(0, k-2, k-1)$ to obtain σ_{3}. Continuing in this way yields the result.

The following results conclude the H_{2} case. We include the proof here as we will adapt it for $F_{\mathbf{c}}$ and $G_{\mathbf{c}}$. The notation $\Omega_{k}:=\{1, \ldots, k\}$ is helpful for these results.

Lemma 3.2 ([5, Lem. 3.6]). Let $k \in\{3,4, \ldots\}$ and $t: z \rightarrow z+1$ for all $z \in \mathbb{Z}$. Then $\left\langle\operatorname{Alt}(\mathbb{Z}), t^{k}\right\rangle$ is generated by $\operatorname{Alt}\left(\Omega_{2 k}\right) \cup\left\{t^{k}\right\}$.
Lemma 3.3 ([5, Lem. 3.7]). Let $k \in \mathbb{N}$ and $t: z \rightarrow z+1$ for all $z \in \mathbb{Z}$. Then $G_{k}:=\left\langle\operatorname{Alt}(\mathbb{Z}), t^{k}\right\rangle$ and $F_{k}:=\left\langle\operatorname{FSym}(\mathbb{Z}), t^{k}\right\rangle$ are 2-generated.
Proof. We start with G_{k}. We will show that we can find, for each $k \in\{3,4, \ldots\}$, an $\alpha_{k} \in \operatorname{Alt}(\mathbb{Z})$ such that $\left\langle t^{k}, \alpha_{k}\right\rangle$ contains $\operatorname{Alt}(\mathbb{Z})$. Then, for $d \in\{1,2,3\}$, $\left\langle t^{d}, \alpha_{6}\right\rangle$ contains $\left\langle t^{6}, \alpha_{6}\right\rangle$ and so contains $\operatorname{Alt}(\mathbb{Z})$. We can therefore fix some $k \in\{3,4, \ldots\}$, meaning all 3 -cycles in $\operatorname{Alt}\left(\Omega_{2 k}\right)$ are conjugate.

Let $r=\binom{2 k}{3}$ and let $\omega_{1}, \ldots, \omega_{r}$ be a choice of distinct 3 -cycles in $\operatorname{Alt}\left(\Omega_{2 k}\right)$ with $\omega_{i} \neq \omega_{j}^{-1}$ for every $i, j \in\{1, \ldots, r\}$. Thus $\left\langle\omega_{1}, \ldots, \omega_{r}\right\rangle=\operatorname{Alt}\left(\Omega_{2 k}\right)$. Set $\sigma_{0}=\left(\begin{array}{ll}1 & 3\end{array}\right)$ and $\sigma_{r+1}=\left(\begin{array}{ll}2 & 3\end{array}\right)$ and note that $\left(\sigma_{r+1}^{-1} \sigma_{0}^{-1} \sigma_{r+1}\right) \sigma_{0}=\left(\begin{array}{lll}1 & 2 & 3\end{array}\right)$. Now choose $\sigma_{1}, \ldots, \sigma_{r} \in \operatorname{Alt}\left(\Omega_{2 k}\right)$ so that for each $m \in\{1, \ldots, r\}$, we have $\sigma_{m}^{-1}(123) \sigma_{m}=\omega_{m}$.

Let $\alpha_{k}:=\prod_{i=0}^{r+1} t^{-2 i k} \sigma_{i} t^{2 i k}$ and, for $m \in\{1, \ldots, r+1\}$, let $\beta_{m}:=$ $t^{2 m k} \alpha_{k} t^{-2 m k}$. Then $\beta_{r+1}^{-1} \alpha_{k}^{-1} \beta_{r+1} \alpha_{k}=\sigma_{r+1}^{-1} \sigma_{0}^{-1} \sigma_{r+1} \sigma_{0}=\left(\begin{array}{lll}1 & 2 & 3\end{array}\right)$ and, for $m \in\{1, \ldots, r\}$, we have that $\beta_{m}^{-1}(123) \beta_{m}=\omega_{m}$. Hence $\left\langle\alpha_{k}, t^{k}\right\rangle=G_{k}$.

We can now adapt the element α_{k} to an element γ_{k} so, for each $k \in$ $\{3,4, \ldots\}$, we have that $\left\langle\gamma_{k}, t^{k}\right\rangle=F_{k}$. One way to do so is to set $\gamma_{k}:=$ $\left(\sigma_{0}^{\prime}\right)\left(\prod_{i=1}^{r+1} t^{-2 i k} \sigma_{i} t^{2 i k}\right)$ where $\sigma_{0}^{\prime}=(13)(45)$. This means that $\left[\sigma_{r+1}, \sigma_{0}^{\prime}\right]$ still equals (123), and so $\operatorname{Alt}(\mathbb{Z}) \leq\left\langle\gamma_{k}, t^{k}\right\rangle$, but that $\operatorname{Alt}(\mathbb{Z}) \cup \gamma_{k}(\operatorname{Alt}(\mathbb{Z}))=$ $\operatorname{FSym}(\mathbb{Z}) \leq\left\langle\gamma_{k}, t^{k}\right\rangle$ as well.

We now work with a fixed $n \in\{3,4, \ldots\}$. The following well-known commutator identities will be helpful for a few of our remaining proofs.

$$
\begin{align*}
{[a, b c]=a^{-1}(b c)^{-1} a(b c)=a^{-1} c^{-1} a c c^{-1} a^{-1} b^{-1} a b c } & =[a, c][a, b]^{c} \tag{3}\\
{[a b, c]=(a b)^{-1} c^{-1}(a b) c=b^{-1}\left(a^{-1} c^{-1} a c\right) b b^{-1} c^{-1} b c } & =[a, c]^{b}[b, c] \tag{4}
\end{align*}
$$

Remark 3.4. Let $a, b, c \in H_{n}$ and sgn denote the sign function on $\operatorname{FSym}\left(X_{n}\right)$. From the identities (3) and (4) above, we have that $\operatorname{sgn}([a, b c])=$ $\operatorname{sgn}([a, b]) \operatorname{sgn}([a, c])$ and $\operatorname{sgn}([a b, c])=\operatorname{sgn}([a, c]) \operatorname{sgn}([b, c])$.

Recall that $\mathbf{c} \in \mathbb{N}^{n-1}$ is in I_{n} if and only if $G_{\mathbf{c}} \neq F_{\mathbf{c}}$.
Lemma 3.5. Let $\mathbf{c}=\left(c_{2}, \ldots, c_{n}\right) \in \mathbb{N}^{n}$. We have that $\mathbf{c} \in I_{n}$ if and only if $\left[g_{i}^{c_{i}}, g_{j}^{c_{j}}\right] \in \operatorname{Alt}\left(X_{n}\right)$ for all $i, j \in\{2, \ldots, n\}$.

Proof. If there exist $i, j \in\{2, \ldots, n\}$ such that $\left[g_{i}^{c_{i}}, g_{j}^{c_{j}}\right] \notin \operatorname{Alt}\left(X_{n}\right)$, then $G_{\mathbf{c}}$ contains an odd permutation and so $G_{\mathbf{c}}=F_{\mathbf{c}}$. Recall that $G_{\mathbf{c}}=\left\langle\operatorname{Alt}\left(X_{n}\right), g_{2}^{c_{2}}\right.$, $\left.\ldots, g_{n}^{c_{n}}\right\rangle$ and that we have a homomorphism $\pi: H_{n} \rightarrow \mathbb{Z}^{n-1}$ induced by sending g_{i} to e_{i-1} for $i=2, \ldots, n$. Then $\pi\left(G_{\mathbf{c}}\right) \leq_{f} \pi\left(H_{n}\right)=\mathbb{Z}^{n-1}$, and so $\pi\left(G_{\mathbf{c}}\right)$ is free abelian of rank $n-1$. Define $S:=\left\{g_{2}^{c_{2}}, \ldots, g_{n}^{c_{n}}\right\}$ so that $\left\langle S \cup \operatorname{Alt}\left(X_{n}\right)\right\rangle=G_{\mathbf{c}}$ and $\pi(S)$ is a linearly independent set. Let $t_{i}:=\pi\left(g_{i}^{c_{i}}\right)$ for $i=2, \ldots, n$. Thus

$$
\begin{equation*}
\pi(\langle S\rangle)=\left\langle t_{2}, \ldots, t_{n} \mid R\right\rangle \text { where } R=\left\{\left[t_{i}, t_{j}\right]: i \neq j\right\} \tag{5}
\end{equation*}
$$

Now let $\alpha \in\langle S\rangle \cap \operatorname{FSym}\left(X_{n}\right)$. We will show that $\alpha \in \operatorname{Alt}\left(X_{n}\right)$, meaning that $\mathbf{c} \in I_{n}$. First, express α as a word w in $S^{ \pm 1}$. Thus $\alpha=w\left(g_{2}^{c_{2}}, \ldots, g_{n}^{c_{n}}\right)$ and $\pi(\alpha)=w\left(t_{2}, \ldots, t_{n}\right)$ for the same word w. But also $\pi(\alpha)=\underline{0}$ which, from (5), means that $w\left(t_{2}, \ldots, t_{n}\right)$ is in the normal closure of R. Thus $w\left(t_{2}, \ldots, t_{n}\right)$ is a product of conjugates of powers of commutators in terms of t_{2}, \ldots, t_{n}. Then $\alpha=w\left(g_{2}^{c_{2}}, \ldots, g_{n}^{c_{n}}\right)$ must also be a product of conjugates of powers of commutators in terms of $g_{2}^{c_{2}}, \ldots, g_{n}^{c_{n}}$. Our assumption that $\left[g_{i}^{c_{i}}, g_{j}^{c_{j}}\right] \in \operatorname{Alt}\left(X_{n}\right)$ for all $i, j \in\{2, \ldots, n\}$ together with Remark 3.4 means that $\alpha \in \operatorname{Alt}\left(X_{n}\right)$.

The following gives a clearer description of the set I_{n}.
Lemma 3.6. Let $i, j \in\{2, \ldots, n\}$ and $c_{i}, c_{j} \in \mathbb{N}$. Then $\left[g_{i}^{c_{i}}, g_{j}^{c_{j}}\right] \notin \operatorname{Alt}\left(X_{n}\right)$ if and only if c_{i} and c_{j} are both odd.
Proof. Note that $\left[g_{i}, g_{j}\right] \in \operatorname{FSym}\left(X_{n}\right) \backslash \operatorname{Alt}\left(X_{n}\right)$ whereas $\left[g_{i}^{2}, g_{j}^{2}\right],\left[g_{i}, g_{j}^{2}\right],\left[g_{i}^{2}, g_{j}\right]$ $\in \operatorname{Alt}\left(X_{n}\right)$. Now, by repeatedly applying Remark 3.4, we can reduce c_{i} and c_{j} to be either 1 or 2 , depending on whether they are odd or even respectively.

Combining Lemma 3.5 and Lemma 3.6, we see that $\mathbf{c}=\left(c_{2}, \ldots, c_{n}\right) \in \mathbb{N}^{n-1}$ is in I_{n} if and only if at least two of c_{2}, \ldots, c_{n} are odd.

Proposition 3.7. Given $\mathbf{c}=\left(c_{2}, \ldots, c_{n}\right) \in \mathbb{N}^{n-1}$, we have that $d\left(G_{\mathbf{c}}\right)=d\left(H_{n}\right)$.
Proof. We start with the case that $\mathbf{c} \in I_{n}$. By possibly relabelling the branches of X_{n}, set $c_{3}:=\max \left\{c_{2}, \ldots, c_{n}\right\}$. Thus $c_{3} \neq 1$, as otherwise $c_{2}=c_{3}=1$
and $\mathbf{c} \notin I_{n}$. Let $k:=2 c_{3}$ and $\Omega^{*}:=\{(1,1), \ldots,(1,2 k)\}$. Thus $2 k \geq 8$ and all 3 -cycles in $\operatorname{Alt}\left(\Omega^{*}\right)$ are conjugate in $\operatorname{Alt}\left(\Omega^{*}\right)$. We claim that $\operatorname{Alt}\left(X_{n}\right) \leq$ $\left\langle\operatorname{Alt}\left(\Omega^{*}\right), g_{2}^{c_{2}}, \ldots, g_{n}^{c_{n}}\right\rangle$. By Lemma 3.2, $\left\langle\operatorname{Alt}\left(\Omega^{*}\right), g_{3}^{c_{3}}\right\rangle$ is a subgroup of H_{n} which generates $\left\langle\operatorname{Alt}\left(R_{1} \cup R_{3}\right), g_{3}^{c_{3}}\right\rangle \cong\left\langle\operatorname{Alt}(\mathbb{Z}), t^{c_{3}}\right\rangle$. Most importantly, $\left\langle\operatorname{Alt}\left(\Omega^{*}\right), g_{3}^{c_{3}}\right\rangle$ contains $\operatorname{Alt}\left(R_{1}\right)$. Now, given any $\sigma \in \operatorname{FSym}\left(X_{n}\right)$, there exists a word of the form $g_{2}^{d_{2}} \ldots g_{n}^{d_{n}}$ for some $d_{i} \in c_{i} \mathbb{N}$ which conjugates σ to σ^{\prime}, where $\operatorname{supp}\left(\sigma^{\prime}\right) \subset R_{1}$. Hence $\left\langle\operatorname{Alt}\left(\Omega^{*}\right), g_{2}^{c_{2}}, \ldots, g_{n}^{c_{n}}\right\rangle=G_{\mathbf{c}}$. Our next aim is to adapt the proof of Lemma 3.3. In particular, we will show that there exists a $\sigma \in \operatorname{Alt}\left(X_{n}\right)$ such that $\left\langle\sigma g_{2}^{c_{2}}, g_{3}^{c_{3}}, \ldots, g_{n}^{c_{n}}\right\rangle=G_{\mathbf{c}}$. For any $\omega \in \operatorname{FSym}\left(X_{n}\right)$, let $\sigma_{\omega}:=\left[\omega g_{2}^{c_{2}}, g_{3}^{2 k}\right]$, which we can calculate using (4) as

$$
\begin{equation*}
\left[\omega, g_{3}^{2 k}\right]^{g_{2}^{c_{2}}}\left[g_{2}^{c_{2}}, g_{3}^{2 k}\right]=g_{2}^{-c_{2}}\left(\omega^{-1} g_{3}^{-2 k} \omega g_{3}^{2 k}\right) g_{2}^{c_{2}}\left[g_{2}^{c_{2}}, g_{3}^{2 k}\right] \tag{6}
\end{equation*}
$$

Observe that $\operatorname{supp}\left(\left[g_{2}^{c_{2}}, g_{3}^{2 k}\right]\right) \subseteq\left\{(1,1), \ldots,\left(1, c_{2}+2 k\right)\right\}$ and, since $k=2 c_{3}>$ $2 c_{2}$, that $(1,4 k+1),(1,4 k+3) \notin \operatorname{supp}\left(\left[g_{2}^{c_{2}}, g_{3}^{k}\right]\right)$. Let $\delta_{0}:=\left(\left(1,2 k-c_{2}+\right.\right.$ $\left.1),\left(1,2 k-c_{2}+3\right)\right)$ and note, using (6), that $\operatorname{supp}\left(\sigma_{\delta_{0}}\right) \cap\{(1, m): m=$ $4 k+2$ or $m \geq 4 k+4\}=\emptyset$ and $\sigma_{\delta_{0}}$ swaps $(1,4 k+1)$ and $(1,4 k+3)$. We now restrict to those $\omega \in \operatorname{Alt}\left(X_{n}\right)$ with

$$
\operatorname{supp}\left(\omega \delta_{0}\right) \subset \bigcup_{j \in \mathbb{N}}\left(\Omega^{*}\right) g_{3}^{-4 j k}
$$

The following implications of this restriction are all important in relation to (6):

- $\operatorname{supp}\left(\sigma_{\omega}\right) \subset R_{1} \cup R_{3}$;
- $\operatorname{supp}\left(\omega^{-1}\right) \cap \operatorname{supp}\left(g_{3}^{-2 k} \omega g_{3}^{2 k}\right)=\emptyset$;
- $(x) g_{2}^{-c_{2}} \omega^{-1} g_{2}^{c_{2}}=(x) \omega^{-1}$ for all $x \in R_{3}$; and
- $(x) g_{2}^{-c_{2}}\left(g_{3}^{-2 k} \omega g_{3}^{2 k}\right) g_{2}^{c_{2}}=(x) g_{3}^{-2 k} \omega g_{3}^{2 k}$ for all $x \in R_{3}$.

Now, by mimicking the proof of Lemma 3.3, we can choose one such ω, which we will denote by α, so that $\operatorname{Alt}\left(R_{1}\right) \leq\left\langle g_{3}^{k}, \sigma_{\alpha}\right\rangle$. Let $r=\binom{2 k}{3}$ and $\omega_{1}, \ldots, \omega_{r}$ be a set of 3 -cycles such that $\left\langle\omega_{1}, \ldots, \omega_{r}\right\rangle=\operatorname{Alt}\left(\Omega^{*}\right)$. Choose $\sigma_{1}, \ldots, \sigma_{r} \in \operatorname{Alt}\left(\Omega^{*}\right)$ such that $\sigma_{i}^{-1}((1,1)(1,2)(1,3)) \sigma_{i}=\omega_{i}$ for $i=1, \ldots, r$. Also set $\sigma_{r+1}:=((1,2)(1,3))$ and $\sigma_{0}:=((1,1)(1,3))$. Define $\delta_{i}:=g_{3}^{4 k i} \sigma_{i} g_{3}^{-4 k i}$ for $i=1, \ldots, r+1$ and $\alpha:=\delta_{0} \ldots \delta_{r+1}$. Define $\beta_{m}:=g_{3}^{-4 m k} \sigma_{\alpha} g_{3}^{4 m k}$ for $m=-1, \ldots, r+1$. Then, as in Lemma 3.3, we have that $\left[\beta_{r+1}, \beta_{-1}\right]=\left[\sigma_{d+1}, \sigma_{0}\right]$ and $\beta_{i}\left[\sigma_{d+1}, \sigma_{0}\right] \beta_{i}^{-1}=\omega_{i}$ for $i=1, \ldots, r$.

We end our proof with the case where $\mathbf{c} \notin I_{n}$. From Lemma 3.5 and Lemma 3.6, there then exist $i, j \in\{2, \ldots, n\}$ such that $\left[g_{i}^{c_{i}}, g_{j}^{c_{j}}\right] \in \operatorname{FSym}\left(X_{n}\right) \backslash$ $\operatorname{Alt}\left(X_{n}\right)$. Using the element $\sigma_{\alpha} \in \operatorname{Alt}\left(X_{n}\right)$ defined above, we claim that $\left\langle\sigma_{\alpha} g_{2}^{c_{2}}\right.$, $\left.g_{3}^{c_{3}}, \ldots, g_{n}^{c_{n}}\right\rangle=F_{\mathbf{c}}$. We note that if $\left[g_{i}^{c_{i}}, g_{j}^{c_{j}}\right] \in \operatorname{FSym}\left(X_{n}\right) \backslash \operatorname{Alt}\left(X_{n}\right)$, then, by Remark 3.4, so is $\left[\sigma g_{i}^{c_{i}}, g_{j}^{c_{j}}\right]$ for any $\sigma \in \operatorname{FSym}\left(X_{n}\right)$. Hence $\left\langle\sigma_{\alpha} g_{2}^{c_{2}}, g_{3}^{c_{3}}, \ldots, g_{n}^{c_{n}}\right\rangle$ contains both Alt $\left(X_{n}\right)$ and an odd permutation, and so $d\left(G_{\mathbf{c}}\right)=d\left(H_{n}\right)$.

We now look at the final case of determining $d\left(F_{\mathbf{c}}\right)$ where $\mathbf{c} \in I_{n}$.
Lemma 3.8. Let $\mathbf{c} \in I_{n}$. Then the commutator subgroup of $F_{\mathbf{c}}$ equals $\operatorname{Alt}\left(X_{n}\right)$.
Proof. Note that $\left[\operatorname{Alt}\left(X_{n}\right), \operatorname{Alt}\left(X_{n}\right)\right]=\operatorname{Alt}\left(X_{n}\right)$. Let $\sigma \prod_{i \in I} g_{i}^{p_{i}}$ and $\omega \prod_{j \in J} g_{j}^{q_{j}}$ be in $F_{\mathbf{c}}$, where $I, J \subseteq\{2, \ldots, n\},\left\{p_{i}: i \in I\right\} \subset \mathbb{Z},\left\{q_{j}: j \in J\right\} \subset \mathbb{Z}$, and
$\sigma, \omega \in \operatorname{FSym}\left(X_{n}\right)$. Then their commutator, using (3), will be a product of conjugates of elements of the form $\left[\sigma \prod_{i \in I} g_{i}^{p_{i}}, \omega\right]$ or $\left[\sigma \prod_{i \in I} g_{i}^{p_{i}}, g_{k}^{q_{k}}\right]$ for some $k \in J$. Applying (4) to these elements will produce a product of conjugates of elements of the form

$$
[\sigma, \omega],\left[g_{l}^{p_{l}}, \omega\right],\left[\sigma, g_{k}^{q_{k}}\right], \text { or }\left[g_{l}^{p_{l}}, g_{k}^{q_{k}}\right]
$$

for some $l \in I$ and $k \in J$. The first 3 of these are clearly in $\operatorname{Alt}\left(X_{n}\right)$. The 4th is also in $\operatorname{Alt}\left(X_{n}\right)$ from our assumption that $\mathbf{c} \in I_{n}$ together with Lemma 3.5. Hence, from Remark 3.4, a commutator of any two elements in $F_{\mathbf{c}}$ is in $\operatorname{Alt}\left(X_{n}\right)$.

Lemma 3.9. Let $\mathbf{c}=\left(c_{2}, \ldots, c_{n}\right) \in I_{n}$. Then $d\left(F_{\mathbf{c}}\right)=d\left(H_{n}\right)+1$.
Proof. Recall that $d\left(G_{\mathbf{c}}\right)=n-1$. Including an element from $\operatorname{FSym}\left(X_{n}\right) \backslash$ $\operatorname{Alt}\left(X_{n}\right)$ to a minimal generating set for $G_{\mathbf{c}}$ therefore yields a generating set of $F_{\mathbf{c}}$ of size n. So we need only show that, with the given hypothesis, no generating set of $F_{\mathbf{c}}$ of size $n-1$ exists. From Lemma 3.8, the abelianization of $F_{\mathbf{c}}$ is $\mathbb{Z}^{n-1} \times C_{2}$. Thus $F_{\mathbf{c}}$ cannot be generated by $n-1$ elements.

Acknowledgements. I thank the anonymous referee and the editor for their excellent comments.

Open Access. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons. org/licenses/by/4.0/.
Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

[1] Antolín, Y., Burillo, J., Martino, A.: Conjugacy in Houghton's groups. Publ. Mat. 59(1), 3-16 (2015)
[2] Brown, K.S.: Finiteness properties of groups. J. Pure Appl. Algebra 44, 45-75 (1987)
[3] Burillo, J., Cleary, S., Martino, A., Röver, C.E.: Commensurations and metric properties of Houghton's groups. Pacific J. Math. 285(2), 289-301 (2016)
[4] Cox, C.G.: Twisted conjugacy in Houghton's groups. J. Algebra 490, 390-436 (2017)
[5] Cox, C.G.: A note on the R_{∞} property for $\operatorname{groups} \operatorname{FAlt}(X) \leq G \leq \operatorname{Sym}(X)$. Comm. Algebra 47(3), 978-989 (2019)
[6] Cox, C.G.: Invariable generation and the Houghton groups. arXiv:2007.01626 (2020)
[7] Cox, C.G.: On the spread of infinite groups. arXiv:2012.12197 (2021)
[8] Gonçalves, D., Kochloukova, D.H.: Sigma theory and twisted conjugacy classes. Pacific J. Math. 247(2), 335-352 (2010)
[9] Gonçalves, D., Sankaran, P.: Sigma theory and twisted conjugacy, II: Houghton groups and pure symmetric automorphism groups. Pacific J. Math. 280(2), 349369 (2016)
[10] Guba, V., Sapir, M.: On the conjugacy growth functions of groups. Illinois J. Math. 54, 301-313 (2010)
[11] Houghton, C.H.: The first cohomology of a group with permutation module coefficients. Arch. Math. (Basel) 31, 254-258 (1978)
[12] Klopsch, B., Snopce, I.: Pro-p groups with constant generating number on open subgroups. J. Algebra 331, 263-270 (2011)
[13] Kropholler, P.H., Martino, A.: Graph-wreath products and finiteness conditions. J. Pure Appl. Algebra 220(1), 422-434 (2016)
[14] Kropholler, R., Mallery, B.: Medium-scale curvature at larger radii in finitely generated groups. arXiv:2004.10801 (2020)
[15] Wiegold, J.: Transitive groups with fixed-point-free permutations. II. Arch. Math. (Basel) 29, 571-573 (1977)

Charles Garnet Cox
School of Mathematics
University of Bristol
Bristol BS8 1UG
UK
e-mail: charles.cox@bristol.ac.uk

Received: 1 February 2021
Revised: 21 September 2021
Accepted: 7 October 2021.

