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Primitive normalisers in quasipolynomial time
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Abstract. The normaliser problem has as input two subgroups H and K
of the symmetric group S,, and asks for a generating set for Nx (H): it is
not known to have a subexponential time solution. It is proved in Roney-
Dougal and Siccha (Bull Lond Math Soc 52(2):358-366, 2020) that if H is
primitive, then the normaliser problem can be solved in quasipolynomial
time. We show that for all subgroups H and K of S,,, in quasipolynomi-
al time, we can decide whether Ng, (H) is primitive, and if so, compute
Nk (H). Hence we reduce the question of whether one can solve the nor-
maliser problem in quasipolynomial time to the case where the normaliser
in S, is known not to be primitive.
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1. Introduction. The normaliser problem asks for a generating set for N (H),
given subgroups K and H of S,,. In this paper, we investigate the theoretical
complexity of the normaliser problem. It is shown in [13] that the problem
can be solved in simply exponential time 29", but there is no known subex-
ponential solution to the general problem, and in fact, the fastest practical
algorithms all use a backtrack search whose worst-case complexity is greater
than exponential. A permutation group problem P is said to be quasipolyno-
mial if there exists a constant ¢ such that P can be solved in time 2008 "),
where n is the degree of the underlying group or groups.

Tt is shown in [11] that if H is primitive, then the normaliser problem is
quasipolynomial. In this paper, we will show that if Ng_ (H) is primitive, then
the normaliser problem is quasipolynomial. Our main theorem is the following.

Theorem 1.1. Let subgroups H = (X) and K = (Y) of S,, be given.

1. We can decide if N = Ng, (H) is primitive, and if so, construct N in
time 200108 1)
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2. If N is primitive, then we can compute N (H) in time 20(10g® n)

(Throughout the paper, we shall assume all generating sets have size at most
n: see Lemma 2.3.1).

In fact, we can compute N (H) in time 20(l0g” 1) except when: (i) H is
intransitive; or (i) [H| > n'tU°8™ but H is not ample (see Definition 3.1);
or (iii) [H| < n'*l°en] hut H does not have a small base or a small generat-
ing set (see Lemma 2.4). In this latter case, we can still compute Ng(H) in
quasipolynomial time 20(1og? ") see Proposition 2.5.

Babai in [1] gave a 200" 1) time solution to the string isomorphism prob-
lem, and Helfgott in [3] showed that we can take ¢ = 3. The setwise stabiliser
problem is a special case of the string isomorphism problem, and was shown
in [7] to be polynomial-time equivalent to the intersection problem. Hence to
show that Ng(H) = N N K can be computed in time 20008’ n) it suffices to
prove that N can be computed in time 20(log® n)

In Section 2, we first present some preliminaries on permutation groups and
permutation group algorithms. We then see how we can determine that certain
groups H have base and generating set of size O(logn) in quasipolynomial
time and prove Proposition 2.5. In Section 3, we introduce the class of ample
groups and show that if H is ample, then N = Ng,_(H) can be computed in
quasipolynomial time. Finally these results come together to prove Theorem
1.1.

2. Preliminaries and small groups. This section first collects background on
permutation groups and polynomial time computation and then studies small
groups.

Let G < Sym(Q) and H < Sym(T'). Then G and H are permutation iso-
morphic if there exist an isomorphism ¢ : G — H and a bijection o : Q — T’
such that o(w9) = o(w)?9) for all w € Q and g € G. We say that such a pair
(¢,0) is a permutation isomorphism from G to H.

Notation 2.1. Let [m]; denote the set of all k-subsets of {1,2,...,m} with
1<k<m/2. Let A, and S,,  denote A,, and S,,, acting on [m];. Let [m]ﬁC
denote the set of all [-tuples of [m]y, and let A(m, k,l) be the group (A,, )"

acting coordinatewise on [m]}.

We will be using the following key result, proved by Mardéti using the Clas-
sification of Finite Simple Groups.

Theorem 2.2 ([9]). Let G be a primitive subgroup of S,,. Then at least one of
the following holds.

1. G is M1y, Mia, Mas, or Moy with their 4-transitive actions.

2. There existm > 5,1 <k <m/2, and ] > 1 such that, up to permutation
isomorphism, A(m,k,l1) <G < S, 1 1S;.

3. |G| < ni+logn

We shall call these classes Mathieu, large, and small, respectively. A prim-
itive group is of type PA if it is in product action and the component of the
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base group is almost simple (see [6]). It follows that a large primitive group is
either almost simple (when ! = 1) or of type PA (when [ > 1).

For G = (z1,22,...,2;) < S, and L = (y1,y2,..-,4) < Sm, a homo-
morphism ¢ : G — L is giwen by generator images if it is encoded by a
list [21, ..., 2k, Y1s-- > Y @(21), - - -, P(2k)]. We shall assume that all homomor-
phisms are given by generator images, that we have a library of standard rep-
resentations of all finite simple groups, and that their automorphism groups
are known.

The following results are standard (see, for example, [12, §3.1] or [4, §4]).

Lemma 2.3. Given G = (Z) < S,,, the following can be done in time polyno-
mial in |Z| - n.
1. Replace Z by a generating set for G of size at most n; given o € S,,, decide
if o € G; compute |G|; compute the orbits of G; compute the stabiliser in
G of any given point; compute an irredundant base for G; decide if G is
primitive.
2. Given a map ¢ : G — L by the images of Z, decide if ¢ extends to an
isomorphism; given an isomorphism ¢ : G — L, compute ¢~ 1.
3. Find a minimal normal subgroup of G; compute Cq(J) for J < G; find
generators for the socle soc(G).
4. Compute the composition factors of G; decide if G is simple and if so,
give an isomorphism from G to a standard representation.

Next, we show that we can find a small base and a small generating set for
certain groups H in quasipolynomial time. For a group G < S, let d(G) and
b(G) denote the size of the smallest generating set and base of G, respectively.

Lemma 2.4. Let H = (X) <S,, be given.

1. If |H| < n*tlloen) then in time 200°¢° ™) we can decide if d(H) <
[logn], and if so, output such a generating set.
2. In time 200°8° ™) we can decide if b(H) < [logn] + 1, and if so, output
such a base.
3. If N = Ng, (H) is a small primitive group, then d(H) < [logn] and
b(H) < [logn] + 1.
Proof. Part 1: We consider all ([logn])-tuples Z of elements of H and decide
for each Z if (Z) = H. The number of such tuples is |H| Mogn] ¢ 9O(log® n) By
Lemma 2.3.1, for each such tuple Z, we can decide if (Z) = H in polynomial
time.
Part 2: We consider all ([logn| + 1)-tuples B over {1,2,...,n}. For each such
B, we check if B is a base of H by checking if H(p) = 1, which can be done in

polynomial time by Lemma 2.3.1. Since there are nllesn1+1 ¢ 20(log” n) tuples
to consider, the result follows.

Part 3: If N is a small primitive group, then H has order at most n'*logn],
Since H is a normal subgroup of a primitive group, by [5, Theorem 1.1], d(H) <
logn or H = S3, so d(H) < [logn]. By [10], b(H) < b(N) < [logn] +1. O

Lastly we observe that the normaliser problem for groups of order less than
nitlogn] can be solved in quasipolynomial time, even if they are not primitive.
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Proposition 2.5. Let H = (X) < S,, be given. If |H| < n'tU°8") then Ny (H),
and hence Nk (H), can be computed in time 90(log” n)

Proof. By Lemma 2.3.1, in polynomial time, we can check that |H| < n'*llogn]
compute an irredundant base B for H, and remove from X = {x1,x2,..., 25}
the generators x; where x; € (x1,...,2;-1). This gives a base B and a gener-
ating set Z for H of size at most log |H| € O(log® n).

In [11, proof of Theorem 3.3], it is shown that in time 20UZIIBllogn) e
can construct a set containing all |Z]|-tuples of elements of H that are im-
ages of Z under conjugation by elements of Ng, (H). By Lemma 2.3.2 and [8,
Lemma 3.5], for each such potential image, we can determine a conjugating
element o € Ng, (H) or show that no such ¢ exists in polynomial time. O

3. Ample groups. In this section, we will introduce ample groups, and show
that if N = Ng_ (H) is a large primitive group, then H is ample. We then show
that in quasipolynomial time, we can decide if a given group is ample and if
so compute its normaliser. Finally, we will prove Theorem 1.1.

Definition 3.1. We define a subgroup H of S,, to be ample if there exist m > 5,
1 <k < m/2, and I > 1 such that soc(H) is permutation isomorphic to
A(m, k,1).

Notice that an ample group can be imprimitive.

Lemma 3.2. Let H be a subgroup of S, such that N = Ng (H) is a large
primitive group. Then soc(N) = soc(H), and H is ample.

Proof. We first show that soc(IN) = soc(H). The group soc(H) is characteristic
in H,sosoc(H) < N. A large primitive group is either almost simple or of type
PA, and so N has a unique minimal normal subgroup (see [6, §1]). Therefore

soc(N) <soc(H) < H, so soc(N) < H.

To see that soc(H) < soc(N), let M be a minimal normal subgroup of H.
Then either M < soc(N) or M Nsoc(N) = 1. If M Nsoc(N) = 1, then M <
Cn(soc(N)). But by [2, Theorem 4.3B|, Cn(soc(N)) = 1, a contradiction.
Therefore, all minimal normal subgroups of H are contained in soc(N), hence
soc(H) < soc(N), and so soc(N) = soc(H).

The largeness of N implies that there exist m, k, and [ such that soc(N) is
permutation isomorphic to A(m, k,1). Now since soc(H) = soc(N), the group
H is ample. O

The following is well known (see [2, Theorem 4.5A] for example).

Lemma 3.3. Let W < Sym([m]}) be S,k 1S, acting on [m]t. for some m > 5,
1<k <m/2, and Il > 1. Then the normaliser in Sym([m]L) of A(m,k,1) is
w.

Next we give a polynomial time algorithm to decide whether H is ample.

Lemma 3.4. Given H = (X) < S,,, in polynomial time, we can decide if H is
ample, and if so, oultput a permutation isomorphism from soc(H) to A(m,k,l)
for some m, k, and [.
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Proof. By Lemma 2.3.3, we can compute a generating set for S := soc(H) in
polynomial time. The group S is a direct product of simple groups, so we can
decide whether S = Al | for some m > 5 and | > 1, by checking if S has
[ composition factors, each isomorphic to A,,. By Lemma 2.3.4, this can be
done in polynomial time.

If S is isomorphic to Al

ms we next determine whether there exists a k
such that 1 < k < m/2 and n = (T,:‘)l If so, we construct an isomorphism
t: S — A(m, k) as follows. Initialise Ny = S, then for 2 < i < [, we
iteratively find a minimal normal subgroup M; of N; and take N, 1 = Cy, (M;)
in polynomial time by Lemma 2.3.3. Then M; = A,, and N; = M; x Cy,(M;)
for each 7 and so S = M; x My x -+ x M;. We construct an isomorphism
t: S — A(m,k,l) using an isomorphism from each M; to a direct factor of
A(m, k, 1), via isomorphisms to a standard copy of A,,, in polynomial time by
Lemma 2.3.4.

It remains to show how to find a permutation isomorphism between S
and A(m,k,l). Let A = [m]} and let W < Sym(A) be as in Lemma 3.3. If
m = 6, then there exists an involution « such that Aut(A., k) = (Sm.k, @),
and we can obtain such an « in polynomial time by Lemma 2.3.4. So in poly-
nomial time, we can write down all 28 < 21°8™ = pn coset representatives of
W in Aut(A(m, k,1)). We check if S and A(m,k,[) are permutation isomor-
phic by checking if there exist such a coset representative A and a bijection

o:{1,2,...,n} — A such that (:A, o) is a permutation isomorphism, in poly-
nomial time by [11, Lemma 2.7]. If m # 6, then Aut(A,, x) = Sy x and so
Aut(A(m, k,1)) = W, and we may set A = 1. O

If H is ample and [ = 1, then H is almost simple. The next result considers
the case where H is ample and [ > 1.

Theorem 3.5. Given H = (X) < S,,, we can decide if H is ample and not
almost simple, and if so, compute N = Ng_(H) in time 20(cgnloglogn)

Proof. By Lemma 3.4, in polynomial time, we can check if H is ample and not
almost simple, and if so obtain a permutation isomorphism (¢, o) from soc(H)
to A(m, k,1).

We first show that we can compute a generating set for M = Ng_(soc(H))
of size at most four in polynomial time. Let W be as in Lemma 3.3. The
bijection o~! induces an isomorphism from Sym([m]}) to S,, that maps W to
M. By [11, Lemma 4.3], we can write down a generating set Z for W of size
four, so M = (60=1(Z)) can be computed in polynomial time by Lemma 2.3.2.

Next, since M is isomorphic to W,

[M :soc(H)] < 2'S;| < 24t = 2t+tloel

As | < logn, it follows that [M : soc(H)] < 2legntlognloglogn Notice that
soc(H) < H, so H < M. Therefore [M : H] < [M : soc(H)] < 22lesnloglogn,
By [11, Lemma 4.4], the group N can be computed in time O(n3[M : H?]) =
20(ognloglogn) (it s assumed in [11] that H is primitive, but the assumption
is not needed in the proof). U



24 M.S. CHANG AND C.M. RONEY-DOUGAL Arch. Math.

We end by giving the proof of Theorem 1.1.

Proof of Theorem 1.1. We first prove Part 1. Without loss of generality, sup-
pose that H is non-trivial. We check if H is transitive, in polynomial time by
Lemma 2.3.1. If not, then N = Ng_(H) is not primitive, and we return false.

Otherwise, by [11, Lemma 4.5], in polynomial time, we can check if H is
almost simple and if so, compute N. Assume from now on that H (and hence
N) is not almost simple. Next, by Theorem 3.5, in time 20(lognloglogn) = e
can determine if H is ample and if so, compute N.

If H is not ample, then by Theorem 3.2, N is not large. So by Theorem 2.2,
N is primitive if and only if N is small. We check if |H| < n'tlosn) in
polynomial time by Lemma 2.3.1 and return false if not. Next we look for a
generating set of size at most [logn] and a base of size at most [logn] + 1 for
H in time 20(og”n) by Lemma 2.4.1-2. If no such base and generating set exist,
then by Lemma 2.4.3, N is not primitive, and we return false. Otherwise we
compute N in time 20(log® n) by [11, Theorem 3.3], and check if N is primitive,
in polynomial time by Lemma 2.3.1.

Part 2 now follows from the fact that, given N, the group Ny (H) =
K N N can be computed in time 20(log® n) by Babai and Helfgott’s results
[1,3,7]. O
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