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1. Introduction. The paper gives a simple proof of the existence and multi-
plicities of solutions to the boundary value problems (BVPs)

(ϕ(u′))′ = f(t, u, u′) − s, (1.1)
L(u, u′) = 0, (1.2)

relative to the value of s, assuming that ϕ : (−a, a) → R, ϕ(0) = 0, is an
increasing homeomorphism and L : R

2 → R
2 represents various boundary

conditions.
Problems of the existence/multiplicity of solutions to various BVPs (1.1),

(1.2) have been investigated by numerous authors (see [1–6] and the references
therein). They apply functional analytic methods (e.g., the Leray–Schauder
approach) to get the existence of one solution and then, when the multiplicity
is considered, the existence of the second one is proved by the lower/upper
solutions techniques.

In the proposed approach, we consider the BVP

u′ = ϕ−1(v), v′ = f(t, u, ϕ−1(v)) − s, (1.3)
L(z(t, c)) = (L1(u(t, c1), v(t, c2)), L2(u(t, c1), v(t, c2))) = 0, (1.4)

equivalent to the BVP (1.1), (1.2) and are looking for the initial points of the
T -periodic solutions of (1.3), which reduces the problem to finding zeros of the
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mapping Ψ : R2 → R
2,

Ψ(c) = L(z(t, c)) = (L1(u(t, c1), v(t, c2)), L2(u(t, c1), v(t, c2))), (1.5)

where

u(t, c1) =

t∫

0

ϕ−1(v(σ, c2)) dσ + c1,

v(t, c2) =

t∫

0

(
f(σ, u(σ, c1), ϕ−1(v(σ, c2))) − s

)
dσ + c2, (1.6)

satisfy the initial value problem (1.3), z(0, c) = c = (c1, c2).
When the set of all zeros of Ψ is known, the solution of (1.5) is determined

using a corollary to Borsuk’s theorem [8]. The searching of zeros of (1.5) and
their multiplicities can be solved simultaneously, not referring to the theory of
the upper/lower solutions, which considerably simplifies proofs and permits to
get an extension of results of the quoted papers.

2. Preliminaries. Denote by | · | the norm in R
2 and by ‖ · ‖∞ the maximum

norm in C0(R), xT is the transpose to the vector x. B(x0, r) is the ball {x ∈
R

2 : |x−x0| < r}. int D, cl D, ∂D stand for the interior, closure, and boundary
of a set D ∈ R

2, respectively. For V ⊂ R
2, denote Sj(V ) = {s ∈ R : (1.3)

has in clV at least j ;T−periodic solutions}.
A pair z(t, c) = (u(t, c1), v(t, c2)) is a solution of (1.3) provided it satisfies

(1.3) a.e. for t ∈ [0, T ] and: u ∈ C1([0, T ]), ϕ−1(u′) is absolutely continuous,
|u′| < a if ϕ : (−a, a, ) → R, or |v| < a if ϕ : R → (−a, a).

To simplify the presentation, assume additionally that the initial value
problem (IVP) for (1.1) has a unique solution for any initial conditions. As it
will be shown, this conditions may be removed.

The following theorem (see [8, 3.31,Corollary] (stated here in a form slightly
different from the quoted result; in [8] it is formulated for d = 0) is basic.

Theorem B. Let Ω be a symmetric bounded open set in R
n with symmetry

center at d and ψ : cl Ω → R
n be a continuous mapping never vanishing on

∂Ω such that for every x ∈ ∂Ω,

αψ(x − d) �= (1 − α)ψ(d − x) (2.1)

for all α, 1/2 ≤ α ≤ 1.
Then ψ(Ω) contains a neighborhood of the origin.

Mappings Ψ : R2 → R
2, associated with (1.4), corresponding to periodic or

Neumann-Steklov boundary conditions and various right hand sides of (1.3)
g(t, u), h(t, u), or f(t, u, ϕ−1v(v)) are

Ψ(c) =

⎛
⎝

T∫

0

(−g(u(σ, c1)) + s) dσ,

T∫

0

ϕ−1(v(σ, c2)) dσ

⎞
⎠

T

, (2.2)
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Ψ(c) =

⎛
⎝

T∫

0

(
ϕ−1(v(σ, c2)) − F (u(σ, c1))

)
dσ,

T∫

0

(−h(u(σ, c1)) + s) dσ

⎞
⎠

T

.

(2.3)

Ψ(c) =

⎛
⎝c2 − ϕ−1(g0(c1)),

T∫

0

(
f(σ, u(σ, c1), ϕ−1(v(σ, c2))) − s) dσ

+c2 − ϕ−1

⎛
⎝gT

⎛
⎝

T∫

0

ϕ−1(v(σ, c2) + c1)

⎞
⎠ dσ

⎞
⎠

⎞
⎠

T

. (2.4)

The formula (2.3) represents the BVP

u′ = ϕ−1(v − F (u)), v′ = −h(t, u) + e(t) + s,

h(t, u) = g(t, u) or a(t)q(u),
u(0) − u(T ) = v(0) − v(T ) = 0, (2.5)

equivalent to the periodic BVP for the Liénard-type equation

(ϕ(u′))′ + f(u)u′ + h(t, u) = e(t) + s, u(0) − u(T ) = u′(0) − u′(T ) = 0.

3. Results.

Theorem 1 (see [1, Thm. 1]). If ϕ : (a, a) → R, 0 < a ≤ ∞, is an increasing
homeomorphism, ϕ(0) = 0, g is continuous, and

T∫

0

e(σ) dσ = 0, (3.1)

g(u) > 0 for all u ∈ R, (3.2)
lim

u→±∞ g(u) = 0, (3.3)

then there exists an s∗ ∈ (0, sup
R

g) such that the BVP

(ϕ(u′))′ + g(u) = e(t) + s, u(0) − u(T ) = u′(0) − u′(T ) = 0, (3.4)

has zero, at least one, or at least two solutions according to s /∈ (0, s∗], s = s∗,
or s ∈ (0, s∗).

Theorem 2 (see [1, Thm. 2]). Suppose ϕ : R → (−a, a) with 0 < a < ∞ is
an increasing homeomorphism, ϕ(0) = 0, g satisflies (3.1), (3.2), (3.3), and
moreover

‖e‖∞ ≤ ‖g‖∞ <
a

2T
, (3.5)

then there exists s∗ ∈ (0, sup
R

g] such that the BVP (3.4) has zero, at least
one, or at least two solutions according to s /∈ (0, s∗), s = s∗, or s ∈ (0, s∗).

Remark 1. In contrast to [1, Thms. 1, 2], s∗ can be chosen independently of
e(t).
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The presented method applies also in the search of T -periodic solutions to
the Liénard-type equations (2.5).

Theorem 3 (see [6, Thms. 1.1, 1.2., 1.3]). Assume that ϕ : R → ϕ(R) = R

is an increasing homeomorphism ϕ(0) = 0, f : R → R is continuous, h :
[0, T ] × R → R is a Carathéodory function, so h is continuous in u for a.a.
t ∈ [0, T ], and is Lebesgue measurable in t for all u. For h(t, u) = a(t)g(u), the
functions a, e ∈ L∞[0, T ] satisfy a ≥ 0 with

∫ T

0
a(σ) dσ = T ,

∫ T

0
e(σ) dσ = 0.

Let one of the following group of conditions be satisfied:
(A) ω+ = limu→±∞ g(t, u) uniformly in t ∈ [0, T ] and ω+ = ∞,
(B) ω± = limu→±∞ q(u) = ω ∈ R and q(u) > ω for |u| > ρ sufficiently large,
(C) ω− = +∞ and there is an r such that q(u) < ω+ ∈ R for u ∈ (r,+∞).
Then:

if (A) holds, there is an s∗ ∈ R such that (2.5) has zero, at least one, or at
least two T -periodic solutions according to s < s∗, s = s∗, or s > s∗.

if (B) holds, then there is an s∗ ∈ (ω,∞) such that (2.5) has zero, at least
one, at least two T -periodic solutions according to s > s∗, s = s∗, s ∈ (ω, s∗).
If q(u) > ω for all u, then (2.5) has no T -periodic solutions for s ≤ ω.

if (C) holds, set γ = ω+, then there are α, β such that
if min{−∞,r} g < min{r,∞} g, then β < α and (4.5) has no solution, at least

one, at least two T -periodic solutions according to s < β, s ∈ [β, α) ∪ [γ,∞),
or s ∈ [α, γ),

if min{−∞,r} g > min{r,∞} g, then α < β and (4.5) has no solution, at least
one, at least two T -periodic solutions according to s < α, s ∈ [α, β) ∪ [γ,∞),
or s ∈ [β, γ),

if min{−∞,r} g = min{r,∞} g, then α = β and (4.5) has no solution, at least
one, at least two T -periodic solutions according to s < α, s ∈ {α} ∪ [γ,∞), or
s ∈ (β, γ),

the condition min{−∞,r} g > γ implies γ ≤ β and (4.5) has at least one
T -periodic solution for s ∈ [α, γ) ∪ [β,∞)

Remark 2. Condition (C) u ↗ ω+ ∈ R is weakened to u < ω+ ∈ R, holding
for u large enough, moreover the conclusion of (C) is extended.

Theorem 4 (see [3, Thm. 6]). Consider the BVP (1.1) with the Neumann-
Steklov boundary conditions

v(0, c2) − ϕ−1(g0(u(0, c1))) = 0, v(T, c2) − ϕ−1(gT (u(T, c1))) = 0. (3.6)

Let f : [0, T ] × R
2 → R be continuous and limu→∞ f(t, u, v) = ∞, uniformly

with respect to [0, T ] × (−a, , a), g0,−gT : R → R be continuous and bounded
from below, ϕ : (−a, a) → R, a < ∞, ϕ(0) = 0, be an increasing homeomor-
phism.

Then then there exists an s∗ ∈ R such that the BVP for (1.1), (3.6) has
zero, at least one, or at lest two solutions according to s < s∗, s = s∗, or
s > s∗.

Remark 3. The conditions g0(0) = 0, g0(u) ≥ 0 for u ≥ 0, and gT (0) = 0,
gT (u) ≤ 0 for u ≥ 0 are not needed.
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4. Proofs. By (3.2) and (3.3), one can assume g(0) = max{g(u) : u ∈ R}.
Theorems 1 and 2 deal with the BVP

u′ = ϕ−1(v), v′ = −g(u) + e(t) + s, u(0) − u(T ) = v(0) − v(T ) = 0,
(4.1)

equivalent to (3.4). The periodicity conditions imply that Ψ(c) defined by (2.2)
has a root.

Proof of Theorem 1. From (2.2), it follows that for s > g(0), the BVP (4.1)
has no T -periodic solutions. For 0 < s ≤ g(0), from (3.2), we get

|v(t, c2) − c2| ≤
T∫

0

(| − g(u(σ, c1)) + s| + |e(σ)|) dσ

<

T∫

0

(g(0) + ‖e‖∞) dσ = bT. (4.2)

Since vϕ−1(v) > 0 for v �= 0, we have c2ϕ
−1(v(t, c2)) > 0 for t ∈ [0, T ] and

|c2| > bT , which gives

c2

T∫

0

ϕ−1(v(σ, c2)) dσ > 0 for c1 ∈ R, |c2| > bT. (4.3)

Let a∗ = max{|ϕ−1(−bT )|, ϕ−1(bT )}, then by the first formula (1.6), c1 −
a∗T ≤ u(t, c1) ≤ c1 + a∗T and for s0 < min{g(u) : u ∈ [−a∗T, a∗T ]}, we
obtain

T∫

0

(−g(u(σ, 0)) + s0) dσ < 0 for |c2| ≤ bT. (4.4)

For s0 ∈ (0, g(0)), there is an N(s0) such that −g(u) + s0 > 0 for |u| >
N(s0). Hence −g(u(t, c1)) + s0 > 0 for t ∈ [0, T ], |c1| ≥ N(s0) + a∗T , and
|c2| ≤ bT , implying that

T∫

0

(−g(u(σ, c1)) + s0) dσ > 0 for |c1| ≥ N(s0) + a∗T and |c2| ≤ b. (4.5)

By (4.3), (4.4), (4.5), the mapping (2.2) does not vanish on the bound-
aries the bounded symmetric sets U2(s0) = (−(N(s0) + a∗T ), 0) × (−bT, bT ),
U1(s0) = (0, N(s0) + a∗T )) × (−bT, bT ) and Theorem B shows Ψ(ci(s0)) = 0
for ci(s0) ∈ Ui(s0) and S1(U1(s0)) = S1(U2(s0)).

Let s∗ = sup{S1(U1(s0)) : 0 < s0 < g(0)}. From S1(U1(s0)) = S1(U2(s0)),
since s0 > 0 has been arbitrarily chosen, we get S2(U1(s∗) ∪ U2(s∗)) = (0, s∗),
proving the existence of at least two different solutions z = z(t, ci(s)) (i =
1, 2) of (4.1) for s ∈ (0, s∗). Let {s(k)} be an increasing sequence satisfying
limk→∞ s(k) = s∗ and let {z(t, c1(s(k))} be the corresponding T -periodic so-
lution of (4.1).
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For all k, U1(s(k)) ⊂ clU1(s(0)) hence passing, if necessary, to a subse-
quence, we conclude that limk→∞ z(t, c1(s(k))) is T -periodic, which completes
the proof. �

Proof of Theorem 2. By (3.5), g(0) + ‖e‖∞ < 2g(0) = b/T with b < a and
|v(t, c2) − c2| ≤ ∫ T

0
(2g(0) dσ ≤ b for t ∈ [0, T ].

If the component v(t, c2) of z(t, s) is T -periodic, then

c2 − b ≤ v(t, c2) ≤ c2 + b for t ∈ [0, T ], c2 ∈ R, (4.6)

independent of the choice of an increasing homeomorphism ϕ, assuming only
that ϕ(0) = 0.

For the proof, note that u′(ξ, c1) = 0 for a certain ξ ∈ [0, T ] which by
(4.1) implies that v(ξ, c2) = 0 and from |v(t, c2) − v(ξ, c2)| = |v(t, c2)| ≤ b, the
formula (4.6) follows.

Following [1], set p = max{|ϕ−1(±b)|} and for an increasing homeomor-
phism ψ : R → R satisfying ψ|[−p,p] = ϕ, define the modification of (4.1)

u′ = ψ−1(v), v′ = −g(u) + s + e(t) (4.7)

having the same T -periodic solutions as (4.1).
From vψ(v) > 0, v �= 0, and (4.6), we get that (4.3) is valid for |c2| ≥ M > b.

The solution of (4.7) satisfies for all t ∈ [0, T ], c2 ∈ [−M,M ], the inequality

|u(t, c1) − c1| = |
T∫

0

ϕ−1(v(σ, c2)) dσ| ≤ pT. (4.8)

If s < m = min{g(u) : u ∈ [−pT, pT ]} and c2 ∈ [−M,M ], then
T∫

0

(−g(u(σ, 0)) + s) dσ < 0. (4.9)

As in Theorem 1, by (4.8), (4.9), for a fixed 0 < s0 < m, there is an N(s0) > 0
such that for |c1| ≥ N(s0) + pT and c2 ∈ [−M,M ], the inequality (4.5) holds.

From the inequalities (4.9), (4.5), and (4.3), it follows that Ψ in each of the
sets

U2(s0) = (−(N(s0) + pT ), 0) × (−M,M),
U1(s0) = (0, N(s0) + pT )

×(−M,M)

fulfills the conditions of Theorem B, proving that S2(U1 ∪ U2) is nonempty.
The remaining part repeats the argument of the previous proof. �

Proof of Theorem 3. Observe that for each of the conditions (A)–(C), there is
an s0 and the corresponding ρ(s) > 0 such that for |u| > ρ(s),

ε min{−h(t, u) + s0 : a.a. t ∈ [0, T ]} > 0 (ε = −1 or 1) (4.10)

with ε = −1 in cases (A), (C) or ε = 1 in the case (B). In cases (A) and (B),
one can assume that g(0) = min{g(u) : u ∈ R}.
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We begin with lemmas.

Lemma 1. Assume that for s0 ∈ R, under one of the conditions (A)–(C), (2.5)
has a T -periodic solution z(t, c) = (u(t, c1), v(t, c2)), then there is a constant
M(s0) independent of c such that u(t, c1) satisfies

|u(t, c1)| < M(s0) for a.a. t ∈ [0, T ]. (4.11)

Proof of Lemma 1. Suppose (4.11) does not hold. Let {z(t, cn)} be the se-
quence of T -periodic solutions to (2.5) satisfying limn→∞ ‖u(·, c1n)‖∞ = ∞.

As u(t, c1n) are T -periodic, they do not satisfy (4.10) for all t ∈ [0, T ] and
for a certain τ(c1n) ∈ [0, T ], ε(−h(τ1n, u(τ, c1n) + s0) ≤ 0, hence {(τ(c1n)),
u(τ(c1n), c1n))} is contained in the compact set A = [0, T ]×[−ρ(s0), ρ(s0)] and
it has a subsequence {(tn(k), un(k))} converging to (t0, d1)∈A corresponding to
the T -periodic function u(·, d1) contradicting limk→∞ ‖u(·, c1n(k))‖∞ =∞. �

Lemma 2. If z(t, c) is the T -periodic solution of (2.5), then from (4.11) it fol-
lows that for t ∈ [0, T ] and a given s0, one has the inequalities

|v(t, c2) − c2| ≤ m(s0)T, |v(t, c2) − c2 − F (u(t, c1))| ≤ P (s0),
|u(t, c1) − c1| ≤ m1(s0)T, (4.12)

where constants m(s0), N(s0),m1(s0) are defined by

m(s0) = max{|g(t, u) − s0 + e(t)| : a.a. t ∈ [0, T ], |u| ≤ M(s0)},

N(s0) = max{|F (u)| : |u| ≤ M(s0)}, P (s0) = m(s0)T + N(s0),
m1(s0) = ϕ−1(P (s0)). (4.13)

Proof of Lemma 2. By the formula |v′(t, c2)| = |g(t, u(t, c1)) − s0 + e(t)| ≤
m(s0)), we get two first inequalities. The last one results from (4.12), |v(t, c2)−
F (u(t, c1))| ≤ P (s0), and |u(t, c1) − c1| = | ∫ t

0
ϕ−1 (v(σ, c2) − F (u(σ, c1))) dσ|.

�
Passing to the proof of the theorem, assume the case (A).
Let h(t, u) = g(t, u). By (2.3), the T -periodic solutions z(t, c) to (2.5) are

possible for s > min{g(t, u) : T ∈ [0, T ], u ∈ R} and the component u(t, c1) of
z(t, c) satisfies (4.11).

Choose s0 > mA = max{g(t, u) : T ∈ [0, T ], |u| ≤ M(s0)}. Then

T∫

0

(−g(σ, u(σ, 0)) + s0) dσ > 0. (4.14)

From (4.12), we have for |c2| > P (s0) and c1 ∈ R,

c2

T∫

0

ϕ−1(v(σ, c2) − F (u(σ, 0))) dσ > 0. (4.15)

If |c2| ≤ P (s0), then from the last formula (4.12) and the inequality

s0 < min{g(t, u) : t ∈ [0, T ], |u| > ρ(s0)}
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holding for ρ(s0) large enough, it follows that

T∫

0

(−g(σ, u(σ, c1)) + s0) dσ < 0 for |c1| > m1(s0)T + ρ(s0). (4.16)

Conditions (4.14), (4.15), and (4.16) define boundaries of sets

U1(s0) = (−ρ(s0) − m1(s0)T, 0) × (−P (s0), P (s0)),
U2(s0) = (0, ρ(s0) + m1(s0)T ) × (−P (s0), P (s0)). (4.17)

Ψ(c) considered on each of them fulfills the assumptions of Theorem B, hence
(2.3) for s = s0 has at least two distinct roots, showing that S2(U1(s0) ∪
U2(s0)) �= ∅.

Let s∗ = inf{s0 : S2(U1(s0)∪U2(s0)) > 0}. By the argument of Theorem 1,
the system (2.5) with s = s∗ has at least one solution.

Case (B). If for s0, z(t, c) is periodic, then Lemma 1 implies that its compo-
nent u(t, c1) fulfills (4.11). T -periodic solutions to (2.5) are possible for s ∈ K =
(nB ,mB), where nB = min{g(u) : u ∈ R} and mB = max{q(u) : |u| ≤ M(s0)}.

Fix s0 ∈ (ω,mB). Then for all c2 ∈ R,

T∫

0

(−a(σ)q(u(σ, 0)) + s0) dσ < 0. (4.18)

From (4.10) and (4.12), for |c1| ≥ m1(s0)T + ρ(s0), we get

T∫

0

(−a(σ)q(u(σ, 0)) + c1) dσ > 0. (4.19)

By (4.19), (4.18), (4.15), and Theorem B, (2.5) has a solution at each of the
sets (4.17), hence S2(U(s0)) = S1(U1(s0) ∪ U2(s0)) = (ω, s∗), where s∗ =
sup{S2(U(s0)) : s0 ≤ R+}.

For s∗, repeating the argument of Theorem 1, one shows that (2.5) has at
least one T -periodic solution.

If u > ω for all u, then
∫ T

0
(−h(u(σ, c1)) + s) dσ > 0 for s < ω implying the

last assertion.
Case (C). The T -periodic solutions may occur for s > m = min{a(t)q(u) :

T ∈ [0, T ], u ∈ R}. By (4.10), and Lemma 1, if for s0 > m the solution z(t, c)
is T -periodic, then |u(t, c1)| ≤ M(s0).

Define mC = max{q(u)a(t) : |u| ≤ M(s0), a.a. t ∈ [0, T ]}.
For c0 > r+M(s0), a.a. t ∈ [0, T ], and s0 ∈ (mC , ω+), we get −a(t)q(u(c0))

+ s0 > 0, implying

T∫

0

(−a(σ)q(u(σ, c0)) + s0) dσ > 0 (4.20)



Vol. 118 (2022) Boundary value problems 109

and, by Remark 2, the reversed inequality
T∫

0

(−a(σ)q(u(σ, c1)) + s0) dσ < 0, (4.21)

holding for |c1| > ρ(s0) + m1(s0)T .
With N(s0), P (s0), m1(s0) defined as in Lemma 2, we get inequality (4.15)

which together with (4.20), (4.21) describes the sets

U1(s0) = (−ρ(s0) − m1(s0)T, c0) × (−P (s0), P (s0)),
U2(s0) = (c0, ρ(s0) + m1(s0)T ) × (−P (s0), P (s0)).

In each set U1, U2, by Theorem B, Ψ(c) = 0 has a solution.
Setting α = inf S1(U1), β = inf S1(U2), γ = ω+, we have

S1(U1 ∪ U2), and S2(U1 ∪ U2) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

[β, α] ∪ [γ,∞), and (α, γ) for β < α

[α, β] ∪ [γ,∞), and (α, γ) for α < β

{β},∪[γ,∞), and (β, γ) for β = α

[α, γ) ∪ [β,∞), and ∅ for β > γ.

(4.22)

By the argument of Theorem 1, one shows that the points α, β are the initial
points of the T -periodic solutions. �

Proof of Theorem 4. The functions f(t, u, v), ϕ−1(g0(u)), −ϕ−1(gT (u)) are
bounded from below, hence for s < fD = min{f(t, u, v) + ϕ−1(g0(u)) − ϕ−1

(gT (u)) : u ∈ R}, |v| < a}, the mapping (1.3) has no zeros.
Take s0 > fD such that

T∫

0

(
f(t, u(σ, 0), ϕ−1(v(σ, 0))) − s0

)
dσ

+g0(u(0, 0)) − gT (u(T, 0)) < 0. (4.23)

By the inequality |u(t, c1)− c1| ≤ aT , for any fixed s0 > fD, there is an M(s0)
such that for |c1| > M(s0),

T∫

0

(
f(σ, u(σ, c1), ϕ−1(v(σ, c2))) − s0

)
dσ

+g0(u(0, c1)) − gT (u(T, c1)) > 0. (4.24)

Let m(s0) = max{g0(u(0, c1)) : c1 ∈ [−M(s0),M(s0)]}. Then for |c2| >
m(s0),

c2 (v(0, c2) − g0(u(0, c1))) > 0. (4.25)

From (4.23), (4.24), (4.25), it follows that the mapping (2.4) considered in the
sets

U1(s0) = (−M(s0), 0) × (−m(s0),m(s0)),
U2(s0) = (0,M(s0)) × (−m(s0),m(s0)),
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satisfies the conditions of Theorem B and for s0 > fD, has the root in each set
Ui(s), proving thus the existence of at least two different T -periodic solutions
z(t, ci(s0)), i = 1, 2, of the BVP (1.3), (3.6)

Proceeding as in the proof of Theorem 1, let s∗ = inf {S1(Ui(s)) : s ∈ R, i =
1, 2} and set ci = lims→s∗ ci(s). Then the corresponding solutions z(t, ci),
i = 1, 2, are T -periodic and satisfy Ψ(ci) = 0 showing the second part of
Theorem 4.

If c1 = c2, from the uniqueness of the solution to (1.3), we get the existence
of exactly one solution of the BVP (1.3), (3.6) for s = s∗.

This completes the proof of Theorem 4 in the case of the unique IVPs. �

Remark 4. Theorems 1–4 hold also in the lack of the uniqueness of the IVP
for (1.1).

Proof. Let K be the compact set containing in intK all solutions of a consid-
ered IVP for [0, T ] and c ∈ cl (U1 ∪ U2).

Approximate (see [7, Ch. 1, Thm. 2.4]) ϕ−1 and f uniformly on [0, T ] × K
by smooth functions gk, fk (k = 1, 2, . . . ) such that gk is a homeomorphism of
R

2 onto the ball B(0, an) with gk(pk) = 0, (limk→∞(pk, ak) = (0, a)) and fk
fulfilling the assumptions of a considered theorem.

The system

u′ = gk(v), v′ = hk(t, u, v) (4.26)

approximating in K the considered theorem has the uniqueness property of
the IVP for k > k0. Apply Theorems 1–4 to get solutions zk(t, ck) of the cor-
responding theorems. Since {zk(t, ck)} are in K, by the Ascoli theorem, they
contain subsequences uniformly converging to solutions described in Theo-
rems 1–4. �
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