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Mori dreamness of blowups of weighted projective planes

Shengtian Zhou

Abstract. We consider the blowup X(a, b, c) of a weighted projective
space P(a, b, c) at a general nonsingular point. We give a sufficient condi-
tion for a curve to be a negative curve on X(a, b, c) in terms of χ(OX(C)).
This can be applied to find the effective cone of X(a, b, c) and can serve as
a starting point to prove the Mori dreamness of blowups of many weighted
projective planes. We confirm the Mori dreamness of some X(a, b, c) as
examples of our method.
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1. Introduction. The geometry of blowups of weighted projective spaces at a
general nonsingular point has been studied in many articles. Most recently,
in [4], the authors find negative curves on such blowups by finding certain
Newton polygons, while in [11], the authors compute lower bounds for the
effective threshold of an ample divisor P(a, b, c), which is equivalent to finding
pseudo effective curves on the blowups. In [6], Hausen, Keicher, and Laface
give a criterion for a blowup of a weighted projective plane to be a Mori
dream space, that is, whether there exists an orthogonal pair on the blowup.

There is also extensive research on justifying whether certain families X(a,
b, c) are Mori dream spaces. In [2,4,6,9], the authors give examples of X(a, b, c)
that are Mori dream spaces. In [3,5], there are examples of X(a, b, c) that are
not Mori dream spaces.

In this article, instead of studying the associated Rees algebras as in [2,6],
or studying certain Newton polygons as in [4], we reduce the question of finding
negative curves on X(a, b, c) to applying the orbifold Riemann-Roch formula on
X. We give a sufficient condition in Theorem 4.1 for a curve C to be a negative
curve. This will enable us to find the effective cone for many X(a, b, c)s. As an
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application, we confirm in Theorem 6.2 the Mori dreamness of certain weighted
projective spaces (one of them is from the table in [6, Theorem 1.3]).

2. The weighted projective plane and its blow up. Let a, b, c be three positive
integers, and assume that a, b, c are coprime. The weighted projective plane
P(a, b, c) is given by the quotient of C3\{0} under the C

∗ action

λ : (x1, x2, x3) → (λax1, λ
bx2, λ

cx3), λ ∈ C
∗.

We see that on P(a, b, c) there are three possible singular points P1 = (1, 0, 0),
P2 = (0, 1, 0), P3 = (0, 0, 1), and they are cyclic quotient singularities of type
1
a (b, c), 1

b (a, c), 1
c (a, b) respectively.

Here by saying that a point is a cyclic quotient singularity of type 1
a (b, c),

we mean that there is a neighborhood around the point which is locally ana-
lytically isomorphic to the quotient C

2//μa, where μa is the group of the a-th
roots of unity and the action of μa on C

2 is given by ε : (x, y) → (εbx, εcy) for
ε ∈ μa (see [12]). By considering the affine patches of P(a, b, c), we can find
the singularity type of P1, P2, and P3 as claimed.

Let X(a, b, c) be the blow up of P(a, b, c) at a general nonsingular point
P . We know that X(a, b, c) is isomorphic to P(a, b, c) outside the point P , so
X(a, b, c) has the same singularities as P(a, b, c).

Let f : X(a, b, c) → P(a, b, c) be the morphism of the blow up. Let H be
the pullback of O(1), and E be the exceptional curve. Then H and E generate
the Picard group of X(a, b, c). The relation between the canonical divisor KX

on X(a, b, c) and the canonical divisor KP on P(a, b, c) is given by

KX = f∗KP + E ∼Q −(a + b + c)H + E,

where ∼Q represents Q−linear equivalence. In addition, we know that

H2 =
1

abc
, E2 = −1, H · E = 0.

3. A criterion for X(a, b, c) to be a Mori dream space. According to [7], X
is a Mori dream space (MDS) if and only if the semiample cone and the nef
cone are equal and they are polyhedral in ClQ(X). In the article [6], Hausen
et. al give a criterion to determine whether X is a MDS via the Rees algebra
associated with the blow up. Here we want to translate [6, Proposition 2.4] to
a claim on divisors.

Lemma 3.1. Let H and E be as above. Let C be a divisor on X and C ∼
nH − μE with n, μ positive integers. Assume that h0(C) = 1 and C2 < 0, and
in addition assume that

1. h0(C − kE) = 0 for any positive integer k, and
2. there is no positive integer n′ < n such that h0(n′H − μ′E) = 1 and

(n′H − μ′E)2 < 0 for any positive integer μ′.
Then C is a reduced irreducible curve.

Proof. Assume C is not a reduced irreducible curve, i.e., there exist C1 > 0
and C2 > 0 such that C = C1 + C2. Assume Ci ∼ niH − μiE.
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If ni are positive integers, then we have C2
i ≥ 0 and μi > 0 since otherwise it

will contradict the minimality of n. We have also C1 ·C2 ≥ 0 because otherwise
C1 and C2 have a common component C0 ∼ n0H − μ0E with C2

0 < 0. Then
n0 ≥ 0 is impossible under the assumption of minimality of n; if n0 = 0,
then C0 ∼ kE for some positive integer k, but this would contradict with
assumption 1. But if C2

i ≥ 0 and C1 ·C2 ≥ 0, then C2 = (C1 +C2)2 ≥ 0 which
contradicts C2 < 0.

Then one of the ni has to be zero. Assume that C1 ∼ n1H − μ1E and
C2 ∼ μ2E, where μi are positive integers. In this case μ1 > μ, contradicting
assumption 1. Therefore C is a reduced irreducible curve. �

Proposition 3.2 ([1, Lemma 5.1]). Assume that a, b, c are coprime and
√

abc /∈
Z. Let H and E be as before. Then X(a, b, c) is a MDS if and only if there
exist a divisor C as in Lemma 3.1 and a divisor D > 0 such that D · C = 0
and C is not a fixed component of |D|.

Proof. When
√

abc /∈ Z, there will be no C > 0 such that C2 = n2

abc − μ2 = 0.
The proof here is similar to the proof of [6, Proposition 2.4].

=⇒ If X is a MDS, the effective cone of X is polyhedral, which is generated
by E and an irreducible curve C, where C2 < 0. Then h0(C) = 1. Assume
C ∼ nH − μE. Suppose there is another divisor F ∼ lH − mE such that
h0(F ) = 1 and F 0 < 0. Then

C2 < 0, C · F < 0, F 2 < 0.

So C is a component of F . This gives l > n. This gives condition 2 in Lemma
3.1. Since C is the boundary of the effective cone, C − kE, for any positive
integer k, will lie outside the effective cone. This gives condition 1 in Lemma
3.1.

If X is a MDS, then its nef cone equals its semiample cone. Since the nef
cone is the dual of the effective cone, there exists a divisor D > 0 such that
D · C = 0 and D is a generator of the nef cone. D is in addition semiample
and therefore C is not a fixed component of |D|.

⇐= If there exists a curve C ∼ nH − μE such that h0(C) = 1 and C2 < 0
satisfying the conditions in Lemma 3.1, then C is irreducible by Lemma 3.1.
According to [8, Lemma 1.22], C is in the extremal ray of the effective cone
of X. That means C and E generate the effective cone. Since D · C = 0,
D and H generate the nef cone of X. We just need to check that D is also
semiample. Under the condition C2 < 0, we have that D cannot lie in the
extremal ray generated by C. Suppose D ∼ n2H − μ2E, then μ

n > μ2
n2

, i.e.,
μ · n2 > n · μ2. We can then find some multiple kD such that kD = C + B,
where B ∼ (kn2 −n)H − (kμ2 −μ)E is an ample divisor since μ2

n2
> kμ2−μ

kn2−n and
(kμ2 −μ) > 0 . In fact, any k satisfying kn2 > n and kμ2 > μ will do. Since C
is not a base component of D, kD is a divisor with at most finite point base
locus. This gives that D is semiample ([14, Theorem 6.2]). Therefore the nef
cone is also the semiample cone, and X is a MDS. �
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We conclude from the proposition above that to check whether X(a, b, c),
where a, b, c are coprime and

√
abc /∈ Z, is a MDS, we just need to check the

following:
1. Find C ∼ nH − μE such that h0(C) = 1 and C2 < 0, and n is minimal

for this property as stated in Lemma 3.1.
2. Find D > 0 such that D · C = 0 and h0(D) 	= h0(D − C).

4. Effective cone. In general, it is difficult to find C ∼ nH − μE such that
h0(OX(D)) = 1 and C2 < 0 as in Lemma 3.1. The following theorem gives a
sufficient condition.

Theorem 4.1. Let H and E be as before. Let C ∼ nH − μE be a divisor on
X(a, b, c) with n, μ positive integers. If C is the minimal divisor that satisfies
χ(OX(C)) = 1 and C2 < 0 (the minimality of C means that there is no l < n
such that χ(OX(lH − kE)) = 1 and (lH − kE)2 < 0 for any positive integer
k), then C is a divisor that satisfies the assumptions in Lemma 3.1.

Proof. By the Serre duality, we have

H2(OX(C)) = H0(OX(KX − C)) = H0(OX(−(a + b + c + n)H + (1 + μ)E)).

But for positive integers n, μ, we have H0(OX(−(a+b+c+n)H+(1+μ)E)) = 0.
Therefore χ(OX(C)) = 1, together with C2 < 0, implies h0(OX(C)) = 1 and
h1(OX(C)) = 0. Consider the short exact sequence

0 → OX → OX(C) → OC(C) → 0

and the associated long exact sequence. The fact h0(OX) = h0(OX(C)) = 1
and h1(OX) = 0 then imply h0(OC(C)) = 0. Thus h0(OC(C − kE)) = 0 for
any k > 0 since C · E = μ > 0. Then considering the short exact sequence

0 → OX(−kE) → OX(C − kE) → OC(C − kE) → 0

and the assosiated long exact sequence, we have h0(OX(C − kE)) = 0 for any
positive integer k. This gives condition 1 in Lemma 3.1.

Next we need to show that there are no divisors C ′ ∼ n′H −μ′E such that
h0(C ′) = 1, C ′2 < 0, and n′ < n. Assume there is such a C ′ and assume in
addition n′ is minimal for such divisors and μ′ is the highest possible multiple
of E such a C ′ with given n′ can have. We know C ′ is irreducible by Lemma
3.1, and then C ′ generates the extremal ray of the effective cone X. Since
C2 < 0, C ′2 < 0, we have C · C ′ < 0. This indicates that C ′ is a component of
C. Assume C ∼ C ′ + C ′′′. If C ′ · C ′′ < 0, C ′ is also a component of C ′′. We
can therefore assume C ∼ kC ′ +C ′′, where C ′ ·C ′′ ≥ 0. We want to show that
C ′′ = 0 and k = 1.

Suppose C ′′ > 0. Since C ′′ · E ≥ 0 (since H0(OX(C − kE)) = 0 for k > 0)
and C ′′ · C ′ ≥ 0, we have that C ′′ is a nef divisor and therefore C ′′ · C ≥ 0.
Then h0(OC(C − C ′′)) = 0. Together with the exact sequence

0 → OX(−C ′′) → OX(kC ′) → OC(C − C ′′) → 0,

this will imply h0(OX(kC ′)) = 0, which is absurd. Therefore C ′′ = 0, and
C ∼ kC ′.
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The following exact sequence

0 → OX((k − 1)C ′) → OX(kC ′) → OC′(kC ′) → 0

gives 1 = χ(OX(C)) = χ(OX(kC ′)) ≤ χ(OX(C ′)) ≤ 1, we have 1 = χ(OX(C))
= χ(OX(kC ′) ≤ χ(OX((k − 1)C ′)). By induction, 1 = χ(OX(C)) = χ(OX

(kC ′)) ≤ χ(OX(C ′)) ≤ 1. This implies χ(OX(C ′)) = 1. This gives C ∼ C ′,
that is, C has to be the minimal divisor in the sense of Lemma 3.1. �

Once we have the above theorem, we can reduce the question of finding a
negative curve on X(a, b, c) to applying the orbifold Riemann-Roch formula
on X(a, b, c). One remark here is that we are aware that the conditions in
the above theorem are not necessary conditions, i.e., we do not always have
χ(OX(C)) = 1 for a negative curve satisfying conditions Lemma 3.1. For
example, X(5, 33, 49) has a negative curve C ∼ 1617H−18E and χ(OX(C)) =
0; X(8, 15, 43) has a negative curve C ∼ 645H − 9E and χ(OX(C)) = 0 (see
[9]).

5. Riemann-Roch on blowups of weighted projective planes. In this section,
we want to prepare ourselves to use the Riemann-Roch formula to find curves C
that satisfy the conditions in Theorem 4.1. We first introduce some notations.

For a cyclic quotient singularity of type 1
r (a1, a2), we denote

δn(
1
r
(a1, a2)) =

1
r

∑

ε∈μr,ε�=1

ε−n − 1
(1 − εa1)(1 − εa2)

, (5.1)

and

σn(
1
r
(a1, a2)) =

1
r

∑

ε∈μr,ε�=1

ε−n

(1 − εa1)(1 − εa2)
. (5.2)

There are, as mentioned earlier, three possible singular points on X, which
are given by f−1(P1), f−1(P2), and f−1(P3), and they are cyclic quotient
singularities of type 1

a (b, c), 1
b (a, c), 1

c (a, b) respectively. Given a divisor C =
nH −μE on X(a, b, c), we can apply the orbifold Riemann-Roch formula ([13,
Section 8]) and get

χ(OX(C)) = χ(OX) +
1
2
D(D − KX) + δn(

1
a
(b, c)) + δn(

1
b
(a, c)) + δn(

1
c
(a, b)).

Taking into consideration the intersection matrix of H and E, the RR
formula for D can be written as

χ(OX(nH − μE)) = χ(OX) +
1
2

(
n2 + n(a + b + c)

abc
− (μ2 + μ)

)

+δn(
1
a
(b, c)) + δn(

1
b
(a, c)) + δn(

1
c
(a, b)). (5.3)

The contributions from the singularities are given by Dedekind sums. To
have some control over these sums, we first recall a formula for δn( 1r (a)) and
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σn( 1r (a)) for r, a coprime integers ([15, Lemma 3.2.1]). Here δn( 1r (a)) and
σn( 1r (a)) are given by

δn(
1
r
(a)) =

1
r

∑

ε∈μr,ε�=1

ε−n − 1
(1 − εa)

and σn(
1
r
(a)) =

1
r

∑

ε∈μr,ε�=1

ε−n

(1 − εa)
. (5.4)

Lemma 5.1. Given two coprime integers a and r,

δn(
1
r
(a)) = −αn

r
,

where α is the inverse of a mod r, i.e., a · α ≡ 1 mod r, for all n ∈ Z. In
particular, this gives

σ0(
1
r
(a)) =

r − 1
2r

.

Lemma 5.2. Given δn( 1r (a1, a2)) as in 5.1, assume r, a1, a2 are coprime, we
have

−r

8
≤ δn(

1
r
(a1, a2)) <

r

8
.

Proof. As r, a1 are coprime, there exists k > 0 ∈ Z such that a1 ·k ≡ 1 mod r.
Then

δn(a1, a2) =
1
r

∑

ε∈μr,ε�=1

ε−n − 1
(1 − εa1)(1 − εa2)

=
1
r

∑

ε∈μr,ε�=1

(εa1)r−kn − 1
(1 − εa1)(1 − εa2)

= −1
r

∑

ε∈μr,ε�=1

(εa1)r−kn−1 + · · · + εa1 + 1
(1 − εa2)

= −1
r

∑

ε∈μr,ε�=1

εr−kn−1 + · · · + ε + 1
(1 − εka2)

= −1
r

∑

ε∈μr,ε�=1

ε−(kn+1) + · · · + ε−(kn+r−kn−1) + ε−(kn+r−kn)

(1 − εka2)
.

Since r, ka2 are coprime, there exists q > 0 ∈ Z such that q · ka2 ≡ 1 mod r.
By Lemma 5.1, we can further write the above expression as
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δn(a1, a2) =
r−kn∑

i=1

(
q(kn + i)

r
− r − 1

2r
)

≤ (kn + 1 + r − 1)(r − kn − 1)
2r

− (r − kn) · r − 1
2r

=
1
2r

(−kn
2

+ (r − 2)kn)

≤ r

8
+

1
2r

− 1
2

<
r

8
.

When q = 1, the first inequality above becomes an equality, and when kn =
r−2
2 , the second equality becomes an equality. The final inequality is strict as

long as r > 1. We also have the lower bound as follows:

δn(a1, a2) =
r−kn∑

i=1

(
q(kn + i)

r
− r − 1

2r
)

≥ (r − kn − 1 + 1)(r − kn − 1)
2r

− (r − kn) · r − 1
2r

=
1
2r

(kn
2 − rkn)

≥ −r

8
.

One sufficient condition for the first inequality to be an equality is that q =
r − 1. The last inequality is equal when kn = r

2 . �

Example. An example where δn( 1r (a1, a2)) takes maximal value: δ11( 1
24 (1, 1)) =

24
8 − 1

2 + 1
2·24 = 121

48 ; and an example where δn( 1r (a1, a2)) takes minimum value:
δ12( 1

24 (23, 1)) = − 24
8 = −3.

Remark 5.3. It is possible to find all the contributions from cyclic quotient
singularities of type 1

r (a1, a2), see [15, Section 3.2]. We gave there a Magma
program Contribution(r, [a1, a2]) to calculate σn( 1r (a1, a2)).

6. Mori dreamness of some blowups X(a, b, c). We start with finding a neg-
ative curve C ∼ nH − μE that satisfies the conditions in Theorem 4.1. To
reduce the searching time, we have the following proposition.

Proposition 6.1. Given μ > 0, for a curve C ∼ nH−μE to satisfy χ(OX(C)) =
1 and C2 < 0, one must have

m− < n ≤ min{μ
√

abc,m+}
where

m−,+ =
−(a + b + c) +

√
((a + b + c)2 + 4abc(μ2 + μ) ∓ abc(a + b + c)

2
.

Proof. We use the Riemann-Roch formula 5.3 and the bounds in Lemma 5.2
for the δn’s. �



S. Zhou Arch. Math.

This proposition says that for a given μ, we only need to check n in a certain
range to search for C ∼ nH − μE such that χ(OX(C)) = 1 and C2 < 0. We
then increase μ gradually to find such a C that satisfies the conditions in
Theorem 4.1. We use the Magma program [10] to help us with the search. See
the algorithms here [16].

In the remark after [6, Theorem 1.3], the authors suspect that the blowups
of the weighted projective spaces P(7, 10, 19), P(7, 19, 22), P(7, 23, 27), and
P(7, 26, 29) are Mori dream spaces. As an application of our theorem, we can
show that P(7, 10, 19) is a Mori dream space and this rests heavily on the
Kawamata-Viehweg vanishing theorem. We can not do the same for P(7, 19, 22),
P(7, 23, 27), and P(7, 26, 29). But we could also confirm the Mori dreamness of
the blow up of P(7, 19, 60) and P(7, 23, 59), which as far as we are aware of are
new.

Theorem 6.2. The blowups of the weigthed projective spaces P(7, 10, 19), P(7,
19, 60), and P(7, 23, 59) are Mori dream spaces, and the generators of the effec-
tive cones and the generators of the semiample cones are given in the following
table.

X Effective cone Nef and SAmp cone

X(7, 10, 19) (E, 437H − 12E) (H, 840H − 23E)
X(7, 19, 60) (E, 266H − 3E) (H, 90H − E)
X(7, 23, 59) (E, 184H − 2E) (H, 413H − 4E)

Proof. We use the algorithm [16] to search for the negative curves. We can
easily check that the given divisors generate the corresponding effective cones
according to Theorem 4.1 and Lemma 3.1. We then find the corresponding dual
cone in each case, which gives the nef cone respectively. What is remaining is
to check whether each nef cone is also the semiample cone.

We see this case by case.
1. In the case of X(7, 10, 19), we see that H and D ∼ 840H − 23E generate

the nef cone. It remains to check whether the divisor D ∼ 840H − 23
is also semiample. To justify that, we need to prove that the negative
curve C ∼ 437H − 12E is not a fixed component of D. We see that
χ(OX(D)) = 1 by Riemann-Roch, and this implies h0(OX(D)) ≥ 1. And
the divisor D−C ∼ 403H−11E can be written as D−C ∼ 403H−11E =
KX+(403+7+10+19)H−12E. We can check that the divisor D−C−KX

is ample since

(D − C − KX) · C =
17
70

, (D − C − KX) · E = 12, (D − C − KX)2 =
1201
1330

.

Therefore, by the Kawamata-Viehweg vanishing theorem, H1(OX(D −
C)) = 0. Then h0(OX(D − C)) = χ(OX(D − C)) = 0 by Riemann-
Roch. So C is not a fixed component of D. This gives the condition
in Proposition 3.2. Therefore mD is semiample for some m >> 0 and
X(7, 10, 19) is a MDS.

https://sites.google.com/view/szhou/algorithms
https://sites.google.com/view/szhou/algorithms
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2. In the case of X(7, 19, 60), we see that H and D ∼ 90H − E generate
the nef cone. We claim that C ∼ 266H − 3E is not a fixed compo-
nent of 4D. To see this, we have first χ(OX(2D)) = 1 and therefore
h0(OX(4D)) ≥ h0(OX(2D)) ≥ 1. Further we have 4D − C − KX ∼
180H − 2E, which is on the extremal ray of the nef cone. We also
check D2 > 0, and therefore 4D − C − KX is nef and big. By the
Kawamata-Viehweg vanishing theorem, we have H1(OX(4D − C)) = 0.
Since h0(OX(4D − C)) = χ(OX(4D − C)) = 0, we know that C is not a
base component of 4D. Again, by Proposition 3.2, X(7, 19, 20) is a MDS.

3. In the case of X(7, 23, 59), we see that H and D ∼ 413H − 4E generate
the nef cone. We claim that C ∼ 184H − 2E is not a fixed component
of D. As in the first case, we can prove D − C − KX is ample, then
H1(OX(D − C)) vanishes. Riemann-Roch tells us h0(OX(D − C)) =
χ(OX(D − C)) = 0. But h0(OX(D)) ≥ χ(OX(D)) = 1, and therefore C
is not a fixed component of D. We are done. �

Remark 6.3. The above proof rests on the fact that kD − C − KX is nef and
big for some k ≥ 1. This enable us to use the Kawamata-Viehweg vanishing
theorem.

Remark 6.4. We can (and should) use our algorithm to do some systematic
search for more examples as above. We expect that the same method can also
be extended to quasismooth del Pezzo surfaces and K3 surfaces of Picard rank
1 inside weighted projective spaces. We will try this out in our further work.
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