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Frobenius groups of low rank
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Abstract. Let G be a finite Frobenius group of degree n. We show, by
elementary means, that n is a power of some prime p provided the rank
rk(G) ≤ 3 +

√
n+ 1. Then the Frobenius kernel of G agrees with the

(unique) Sylow p-subgroup of G. So our result implies the celebrated
theorems of Frobenius and Thompson in a special situation.
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1. Introduction. Throughout, G will be a finite Frobenius group with point
stabilizer H and degree n = |G : H| (n > 2). Thus G is a transitive, nonregular
permutation group where each element �= 1 has at most one fixed point. In
other words, H �= 1 and H∩Hg = 1 for all g ∈ G\H (Hg = g−1Hg). It follows
that each nontrivial H-orbit has size |H| and that there are just s = n−1

|H| such
orbits. Hence the (permutation) rank of G equals

rk(G) = 1 + s = 1 +
n − 1
|H| .

Let ̂H =
⋃

g∈G Hg and F � = G \ ̂H. Thus F � is the set of all derangements
in G (acting fixed-point-freely). Let F = F � ∪ {1}. By definition, F � and F
are normal subsets of G, and |F | = n is the cardinality of F . By a theo-
rem of Frobenius [4], F is always a (normal) subgroup of G, and Thompson
[16] has shown that the Frobenius kernel F is nilpotent (confirming a long-
standing conjecture). Combining these celebrated results, we will speak of the
Frobenius–Thompson theorem in what follows.

Except for some special cases the known proofs for the theorem of Frobe-
nius make use of character theory (or Fourier analysis). The Fourier-analytic
approach given by Terry Tao in [15] is “character-free” but, as he conceded
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in this blog post, it is “not all that far from character-based in spirit”. One
should compare this with the rather direct approach [11] of the present authors
which uses only some basic facts on characters; see also [12].

Lemma 0. The theorem of Frobenius has been proved without employing char-
acters (or Fourier analysis) when H is solvable or |H| is even, or when rk(G) ≤
3. If |H| is even or rk(G) ≤ 3, the Frobenius kernel F is an abelian subgroup
of G.

For proofs of this lemma, we refer to [1, Theorems 3.4A and 3.4B] (see also
[8, Ex. 18 in Sect. V.8]). One knows that the Sylow subgroups of H are cyclic
or generalized quaternion, so that H is solvable (metacyclic) when |H| is odd.
However, in order to prove this, one requires that F is a (normal) subgroup of
G and that H acts freely on the group F [8, Satz V.8.15].

The following provides an elementary approach to the Frobenius–Thompson
theorem in a special situation.

Theorem. The degree n of the Frobenius group G is a power of some prime
p if the rank rk(G) ≤ 3 +

√
n + 1. In this case, the Frobenius kernel F is the

unique Sylow p-subgroup of G.

Since H is a Hall subgroup of G, in general, for every prime p dividing
|F | = n, the Sylow p-subgroups of G are contained in F . Thus, for small
rank as above, the Frobenius–Thompson theorem is just a consequence of
Sylow’s theorem. In a certain sense, the given upper bound is best possible.
For instance, the dihedral group G of order 2 ·15 is a Frobenius group of degree
n = 15 and rank rk(G) = 8, whereas 3 +

√
n + 1 = 7.

When G is a point stabilizer in a Zassenhaus group (of degree n+1), then,
by the classification of these groups, indeed rk(G) ≤ 3+

√
n + 1. A crucial step

towards this classification is a result by Feit [2] which in particular tells us that
here n is always a prime power (see also [9, Theorem XI.6.1]). The largest rank
(in relation to the degree) is obtained when G is a point stabilizer in the Suzuki
group Sz(q), where n = q2 with q = 2m+1 (m ≥ 1) and rk(G) = 2 +

√
n.

2. Preliminaries. We keep the assumptions and notation as introduced above.
In particular, n = |G : H| = |F | is the degree of G, with |H| dividing n − 1.
For a subgroup M of G, we have M ⊆ F if and only if |M | is a divisor of n
because |H| and n are relatively prime. Recall that F is a normal subset of G.

Lemma 1. The Frobenius complement H acts semiregularly (via conjugation)
on the set F �. For any y ∈ F �, the centralizer CG(y) ⊆ F , and the conjugacy
class yG has cardinality |yG| = sy|H| where sy = n

|CG(y)| is an integer.

Proof. For convenience, we include a proof of this lemma (which is probably
well known). If yh = h−1yh = y for some h ∈ H (y ∈ F �), then yhy−1 = h ∈
H ∩ Hy−1

= 1 and therefore h = 1. If x ∈ CG(y) fixes some element α (in the
underlying G-set), then β = αy−1 �= α and

βx = α(y−1x) = α(xy−1) = (αx)y−1 = αy−1 = β.



Vol. 117 (2021) Frobenius groups of low rank 123

This forces that x = 1. Thus the subgroup CG(y) of G is contained in F ,
whence |CG(y)| is a divisor of n. It follows that |yG| = |G : CG(y)| = sy|H| is
as asserted. �

In particular, s = n−1
|H| is just the number of distinct H-orbits on F �, each

being of size |H|.
The set ̂H =

⋃

g∈G Hg has cardinality | ̂H| = (n−s)|H|, an integer multiple
of |H|. This is not surprising because it is a consequence of another well known
theorem of Frobenius [5] just noting that

̂H = {x ∈ G| x|H| = 1}.

The following will play a crucial role in this paper.

Lemma 2. Let m be a positive integer dividing |F | = n, or let M be a subgroup
of G with order |M | = m (dividing n). Defining ̂M = {x ∈ G| xm = 1}, the
following hold:

(i) ̂M is a normal subset of G with ̂M ⊆ F , and M ⊆ ̂M in the latter case.
(ii) We have |̂M | = kmm for some positive integer km ≤ n

m .

Proof. For (i), observe that F � = G \ ̂H and that each element of ̂H has order
dividing n−1. We have M ⊆ ̂M by Lagrange’s theorem. Statement (ii) follows
from the result by Frobenius [5] mentioned above. We refer to Theorems 9.1.1
and 9.1.2 in M. Hall’s monography [7] for a nice inductive approach (see also
[10] and [13]; improvements can be found in the paper [6] by P. Hall). The
upper bound on km is clear since ̂M ⊆ F by (i). �

In particular, taking m = n in Lemma 2, we get that F = {x ∈ G| xn = 1}
(as already noted in [8, V.19.15]). It has been asked by Frobenius whether a set
̂M as introduced above is a (characteristic) subgroup of G provided |̂M | = m.
This has been verified in some special cases (e.g. see [7, Theorem 9.4.1] and
[3]), the general problem being settled now through the classification of the
finite simple groups.

In what follows, we fix a prime p dividing |F | = n and a Sylow p-subgroup
P of G, and we let m = np′ = n

|P | be the p′-part of n. According to Lemma 2,

we define ̂M for this m. So ̂M is the set of all p′-elements in F , and |̂M | =
kp′m for some positive integer kp′ = km ≤ |P |. We have kp′ < |P | as p is a
divisor of n. We also define ̂P = {x ∈ G| x|P | = 1}. By Lemma 2, we have
P ⊆ ̂P ⊆ F and | ̂P | = kp|P | for some positive integer kp ≤ m. By Sylow’s
theorem, ̂P =

⋃

g∈G P g is the set of all p-elements in G, and kp = 1 if and
only if P = ̂P is normal in G.

Lemma 3. Let p be a prime dividing |F | = n, and define P , m = n
|P | , kp,

and kp′ as above. Then |H| is a divisor of kp|P | − 1 and of |P | − kp′ (where
1 ≤ kp ≤ m and 1 ≤ kp′ < |P |). We have kp = m if and only if m = 1
(P = F ), and rk(G) > m + 1 unless m = 1 and G is 2-transitive.
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Proof. The set ̂P � = ̂P \ {1} is a G-invariant subset of F �. By Lemma 1, all
H-orbits on ̂P � have size |H|, so | ̂P �| = kp|P | − 1 is divisible by |H|. We have
kp = m if and only if ̂P = F , in which case F consists merely of p-elements,
and this forces that m = 1 and P = F . As before, ̂M is the set of all p′-
elements in F (so that |̂M | = kp′m). By Lemmas 1 and 2, we know that |H|
is a divisor of kp′m − 1. Similarly, each H-orbit on F \ ̂M has size |H| and
therefore

|F \ ̂M | = n − kp′m = m(|P | − kp′)

is divisible by |H|. Since |H| is relatively prime to n and hence to m, we get
that |H| is a divisor of |P | − kp′ . Consequently

s =
n − 1
|H| = m

|P | − kp′

|H| +
kp′m − 1

|H| .

This gives the last statement (noting that rk(G) = s + 1 and that kp′ = 1 if
m = 1 ). �

Lemma 4. Suppose that n = paqb where p �= q are primes and a, b are positive
integers. Assume that pa + 1 = qb. Then one of the following holds:

(i) n = 23 · 32.
(ii) p = 2 and b = 1 (so that q = 2a + 1 is a Fermat prime).
(iii) q = 2 and a = 1 (so that p = 2b − 1 is a Mersenne prime).

This seems to be “folklore”; a proof can be found in Suzuki [14, Theorem
III.2]. On the basis of Lemma 3, we will actually prove below that none of the
statements (i), (ii), (iii) can occur in the Frobenius group G, thus refuting the
assumption that pa + 1 = qb.

3. Proof of the theorem. Assume that n is not a prime power. Let p be that
prime divisor of n for which a corresponding Sylow p-subgroup P of G has least
possible order. Let |P | = pa. Recall that P ⊆ F . Let m = n

|P | . By Lemma 3,
there is a positive integer kp′ < |P | such that |H| is a divisor of |P | − kp′ . We
get the estimate |H| ≤ |P | − kp′ ≤ |P | − 1. By our choice of the prime p, we
certainly have pa ≤ m − 1.

Assume that pa +1 = m. Then necessarily m = qb is a power of some prime
q �= p (and n = paqb). We now apply Lemma 4. We cannot have n = 23 · 32

(|P | = 23) because then |H| ≤ 7. However |H| is a (nontrivial) divisor of the
prime n − 1 = 71. Consider next statement (ii) of Lemma 4, where p = 2 and
q = qb = 2a + 1 is a Fermat prime. Now we may write kq = kp′ , and |H|
is a divisor of kqq − 1 by Lemma 3. Let Q be a Sylow q-subgroup of G. We
assert that Q is normal in G, whence kq = 1. Otherwise there are at least q+1
(conjugate) Sylow q-subgroups in G, all pairwise with trivial intersection, so
that there are | ̂Q| ≥ (q + 1)(q − 1) + 1 = q2 q-elements in F (and G). However
q2 > n, giving the desired contradiction. Therefore kq = 1 and |H| is a divisor
of q − 1 = 2a. But |H| is relatively prime to n = 2aq.

Now consider part (iii) of Lemma 4. Here q = 2 and |P | = p = 2b − 1 is a
Mersenne prime. We assert that P is normal in G. Otherwise there are at least
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| ̂P | ≥ (p + 1)(p − 1) + 1 = p2 p-elements in F . There are at least 2b − 1 = p
2-elements in F �, and p2 + p = p(p + 1) = n. If the Sylow 2-subgroup Q of
G is not normal in G, then | ̂P �| + | ̂Q| > n, which is impossible as ̂P � and ̂Q

are disjoint subsets of F . Hence Q = ̂Q is normal in G and |H| a (nontrivial)
divisor of |Q| − 1 = 2b − 1 = p. But |H| is relatively prime to n = p · 2b. Thus
P is a normal Sylow p-subgroup of G, as asserted. Now PQ is a subgroup
of G of order n = |F | and therefore F = PQ by co-primeness of |H| and n
(or by Lemma 2). Moreover G/P is a Frobenius group with kernel F/P and
complement HP/P ∼= H (by a known property of Frobenius groups; use [8,
V.8.5 and I.18.6]). Hence |H| is a (nontrivial) divisor of |F/P |−1 = 2b −1 = p,
which again cannot happen.

Consequently |P |+1 < m. Since |H|+1 ≤ |P |, this yields that |H|+3 ≤ m
and

(|H| + 1)(|H| + 3) ≤ |P |m = n.

Therefore |H|2 + 4|H| − (n − 3) ≤ 0 and so |H| ≤ √
n + 1 − 2. It follows that

rk(G) ≥ 1 +
n − 1√

n + 1 − 2
> 1 +

n − 3√
n + 1 − 2

= 3 +
√

n + 1.

Hence, if rk(G) ≤ 3 +
√

n + 1, then n must be a prime power.

4. Remarks. The Frobenius–Thompson theorem just tells us that, for every
prime p dividing the degree n of the Frobenius group G, there is a unique
(normal) Sylow p-subgroup of G (F being the direct product of these Sylow
subgroups). One may ask whether it is possible to settle this by the methods
used in the present paper.

(1) For y ∈ F �, let sy = n
|CG(y)| be as in Lemma 1. If one can prove, by

elementary arguments, that there is always such an element y with sy = 1, then
one would get an inductive approach to the Frobenius–Thompson theorem. For
then, F = CG(y) and Y = 〈yG〉 are normal subgroups of G, with Y in the
centre of F . Either Y = F or G/Y is a Frobenius group with kernel F/Y .
Observe that

s =
n − 1
|H| =

∑

y

sy

when y varies over a set of representatives for the conjugacy classes of G
contained in F �. The greatest common divisor of these sy is 1 since they
divide n whereas s is a divisor of n − 1. Hence sy = 1 for all y if s = 1 or 2
(see Lemma 0), and there is y with sy = 1 if s ≤ 2 +

√
n + 1 by our theorem

(and in general by the Frobenius–Thompson theorem).
(2) Assuming that |H| is odd (in view of Lemma 0) the proof for the Frobe-

nius theorem is readily reduced to the case where H is a maximal subgroup of
G. (Otherwise we get a Frobenius group G0 which is a proper subgroup of G
having the Frobenius complement H and the kernel F0 ⊂ F . By induction, F0

is a normal subgroup of G0 and so H solvable (metacyclic) as it acts freely on
the group F0.) So let G be primitive. Then the Frobenius–Thompson theorem
implies that F is an elementary abelian p-group for some prime p on which
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H acts irreducibly (and freely). This can be deduced from our theorem in the
cases where |H| ≥ n−1

2+
√

n+1
(e.g. when |H| ≥ √

n − 1). < 3 +
√

n + 1.
(3) Bounding the rank of the Frobenius group G gives rise to an upper

bound on the number of primes dividing the degree n of G. This is clear from
the proof of the theorem. In fact, let n =

∏t
i=1 pai

i with t ≥ 2 distinct prime
divisors. By Lemma 3, we have |H| ≤ pai

i − 1 for each i. We obtain the crude
estimate |H|t ≤ ∏t

i=1(p
ai
i − 1) < n − 1. Hence, if |H| ≥ (n − 1)

1
t , then n is

divisible by at most t − 1 distinct primes. We have |H| ≥ (n − 1)
1
t if and only

if rk(G) ≤ 1 + (n − 1)
t−1
t .
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