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The intersection graph of a finite simple group has diameter at
most 5

Saul D. Freedman

Abstract. Let G be a non-abelian finite simple group. In addition, let ΔG

be the intersection graph of G, whose vertices are the proper non-trivial
subgroups of G, with distinct subgroups joined by an edge if and only if
they intersect non-trivially. We prove that the diameter of ΔG has a tight
upper bound of 5, thereby resolving a question posed by Shen (Czechoslov
Math J 60(4):945–950, 2010). Furthermore, a diameter of 5 is achieved
only by the baby monster group and certain unitary groups of odd prime
dimension.
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1. Introduction. For a finite group G, let ΔG be the intersection graph of G.
This is the graph whose vertices are the proper non-trivial subgroups of G, with
two distinct vertices S1 and S2 joined by an edge if and only if S1∩S2 �= 1. We
write d(S1, S2) to denote the distance in ΔG between vertices S1 and S2, and
if these vertices are joined by an edge, then we write S1 ∼ S2. Additionally,
diam(ΔG) denotes the diameter of ΔG.

Csákány and Pollák [5] introduced the graph ΔG in 1969 as an analogue
of the intersection graph of a semigroup defined by Bosák [1] in 1964. For
finite non-simple groups G, Csákány and Pollák determined the cases where
ΔG is connected, and proved that, in these cases, diam(ΔG) � 4 (see also [14,
Lemma 5]). It is not known if there exists a finite non-simple group G with
diam(ΔG) = 4.
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Suppose now that G is a non-abelian finite simple group. In 2010, Shen [14]
proved that ΔG is connected, and asked two questions: does diam(ΔG) have an
upper bound? If yes, does the upper bound of 4 from the non-simple case also
apply here? In the same year, Herzog, Longobardi, and Maj [7] independently
showed that the subgraph of ΔG induced by the maximal subgroups of G is
connected with diameter at most 62. As each proper non-trivial subgroup of G
is adjacent in ΔG to some maximal subgroup, this implies an upper bound of
64 for diam(ΔG), resolving Shen’s first question. Ma [12] reduced this upper
bound to 28 in 2016. In the other direction, Shahsavari and Khosravi [13,
Theorem 3.7] proved in 2017 that diam(ΔG) � 3.

In this paper, we significantly reduce the previously known upper bound of
28 for diam(ΔG), and show that the new bound is best possible. In particular,
we prove the following theorem, which resolves Shen’s second question with a
negative answer.

Theorem 1.1. Let G be a non-abelian finite simple group.
(i) ΔG is connected with diameter at most 5.
(ii) If G is the baby monster group B, then diam(ΔG) = 5.
(iii) If diam(ΔG) = 5 and G �∼= B, then G is a unitary group Un(q), with n

an odd prime and q a prime power.

Remark 1.2. Using information from the Atlas [4], we can show that if S1

and S2 are vertices of ΔB with d(S1, S2) = 5, then |S1| = |S2| = 47.

Remark 1.3. If G ∈ {U3(3),U3(5),U5(2)}, then G has no maximal subgroup
of odd order [11, Theorem 2]. As we will explain in the proof of Theorem
1.1, this implies that diam(ΔG) � 4. Indeed, we can use information from the
Atlas [4] to show that diam(ΔU3(3)) = 3. Furthermore, even though U3(7)
has a maximal subgroup of odd order, we deduce from calculations in Magma
[2] that diam(ΔU3(7)) = 4. On the other hand, we can adapt the proof of
Theorem 1.1(ii), with the aid of several Magma calculations, to show that
diam(ΔU7(2)) = 5.

It is an open problem to classify the finite simple unitary groups G with
diam(ΔG) = 5.

2. Proof of Theorem 1.1. In order to prove Theorem 1.1 in the unitary case,
we will require the following proposition. For a prime power q, let f be the
unitary form on the vector space V := F

3
q2 whose Gram matrix is the 3 × 3

identity matrix, and let SU3(q) be the associated special unitary group. Then
the standard basis for (V, f) is orthonormal, and a matrix A ∈ SL3(q2) lies in
SU3(q) if and only if A−1 = AσT, where σ is the field automorphism α �→ αq

of Fq2 . For a subspace U of V , we will write SU3(q)U to denote the stabiliser
of U in SU3(q).

Proposition 2.1. Let q be a prime power greater than 2, and let X and Y be
one-dimensional subspaces of the unitary space (V, f), with X non-degenerate.
Then SU3(q)X ∩ SU3(q)Y contains a non-scalar matrix.
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Proof. We may assume without loss of generality that X contains the vector
(1, 0, 0). Let (a, b, c) be a non-zero vector of Y . In addition, let ω be a primitive
element of Fq2 , and let λ := ωq−1. Then |λ| = q + 1 > 3. If at least one
of a, b, and c is equal to 0, then SU3(q)X ∩ SU3(q)Y contains a non-scalar
diagonal matrix with two diagonal entries equal to λ and one equal to λ−2

(not necessarily in that order).
Suppose now that a, b, and c are all non-zero, and let μ := b−1c. We may

assume that a = 1. The trace map α �→ α + αq from Fq2 to Fq is Fq-linear, and
hence has a non-trivial kernel. In particular, there exists β ∈ Fq2 such that
β �= 1 and β + βq = 2. It follows from simple calculations that if μq+1 = −1,
then SU3(q)X ∩ SU3(q)Y contains

⎛
⎝

1 0 0
0 β μ(1 − βq)
0 μ−1(1 − β) βq

⎞
⎠ .

If instead μq+1 �= −1, then we can define γ := λ−2(λ3 + μq+1)(1 + μq+1)−1. In
this case, SU3(q)X ∩ SU3(q)Y contains

⎛
⎝

λ 0 0
0 γ μ(λ − (γλ)q)
0 μ−1(λ − γ) (λγ)q

⎞
⎠ .

Note that λ �= γ since |λ| > 3. �

Proof of Theorem 1.1. Let S1 and S2 be proper non-trivial subgroups of G,
and let M1 and M2 be maximal subgroups of G that contain S1 and S2,
respectively. Since d(M1,M2) � d(S1,M2) � d(S1, S2), we may assume that
S1 and S2 are not maximal in G. We may also assume that M1 �= M2, as
otherwise S1 ∼ M1 ∼ S2 and d(S1, S2) � 2.

Suppose first that |M1| and |M2| are even. Then, as observed in the proof
of [7, Proposition 3.1], there exist involutions x ∈ M1 and y ∈ M2, with 〈x, y〉
equal to a (proper) dihedral subgroup D of G (with |D| = 2 allowed). Hence
S1 ∼ M1 ∼ D ∼ M2 ∼ S2, and so d(S1, S2) � 4. In particular, if every
maximal subgroup of G has even order, then diam(ΔG) � 4, as noted in the
proof of [12, Lemma 2.3].

It remains to consider the case where G contains a maximal subgroup
of odd order. Liebeck and Saxl [11, Theorem 2] present a list containing all
possibilities for G and its maximal subgroups of odd order. By the previous
paragraph, we may assume that the maximal subgroup M1 has odd order.
However, |M2| may be even. In what follows, information about the sporadic
simple groups is taken from the Atlas [4], except where specified otherwise.

(i) G = Ap, with p prime, p ≡ 3 (mod 4), and p /∈ {7, 11, 23}. By [5, Theorem
2] (see also [14, Assertion I]), the intersection graph of any simple alternating
group has diameter at most 4.

(ii) G = L2(q), with q a prime power and q ≡ 3 (mod 4). The group G acts
transitively on the set Ω of one-dimensional subspaces of the vector space F

2
q .

Additionally, M1 = GU for some U ∈ Ω, and GU ∩ GW �= 1 for each W ∈ Ω.
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If |M2| is odd, then M2 = GW for some W , and it follows that M1 ∼ M2

and d(S1, S2) � 3. We may therefore assume that M2 contains an involution
g. Then g fixes no subspace in Ω, and so g ∈ G{U,X} for some X ∈ Ω \ {U}.
Since the non-trivial subgroup GU ∩ GX lies in both M1 = GU and G{U,X},
we deduce that S1 ∼ M1 ∼ G{U,X} ∼ M2 ∼ S2. Thus d(S1, S2) � 4.

(iii) G = Ln(q), with n an odd prime, q a prime power, and G �∼= L3(4).
Similarly to the previous case, the group G and its overgroup R := PGLn(q)
act transitively on the set Ω of one-dimensional subspaces of the vector space
F

n
q . Here, M1 = G ∩ NR(K), where K is a Singer subgroup of R, i.e., a cyclic

subgroup of order (qn − 1)/(q − 1) (see [8, §1–2]).
Now, M1 contains a non-identity element m that fixes a subspace X ∈ Ω

[8, p. 497]. Observe that mk ∈ M1 for each k ∈ K. The action of K on Ω is
transitive, and hence each subspace in Ω is fixed by some non-identity element
of M1. Therefore, if a non-identity element of S2 fixes a subspace U ∈ Ω, then
S1 ∼ M1 ∼ GU ∼ S2 and d(S1, S2) � 3. Otherwise, since n is prime, there
exists g ∈ G such that S2 ∩ Mg

1 �= 1. Thus S1 ∼ M1 ∼ GX ∼ Mg
1 ∼ S2 and

d(S1, S2) � 4.

(iv) G = Un(q), with n an odd prime, q a prime power, and G �∼= U3(3), U3(5),
or U5(2). Here, G acts intransitively on the set of one-dimensional subspaces
of the vector space F

n
q2 . Let (q + 1, n) denote the greatest common divisor of

q+1 and n. The maximal subgroup M1 is equal to NG(T ), where T is a Singer
subgroup of G, i.e., a cyclic subgroup of order qn+1

(q+1)(q+1,n) (see [8, §5]). In fact,
each maximal subgroup of G of odd order is conjugate to M1. Similarly to the
linear case, M1 contains a non-identity element that fixes a one-dimensional
subspace X of Fn

q2 [8, p. 512].
Let L := GX . Then M1 ∼ L, and we can calculate |L| using [3, Table 2.3].

In particular, |L| is even. Hence if |M2| is even, then G contains a dihedral
subgroup D such that S1 ∼ M1 ∼ L ∼ D ∼ M2 ∼ S2, and d(S1, S2) � 5. If
|M2| is odd, then there exists an element g ∈ G such that M2 = Mg

1 . Thus Lg ∼
M2. If n = 3 and X is non-degenerate, then it follows from Proposition 2.1
that L ∼ Lg. Therefore, S1 ∼ M1 ∼ L ∼ Lg ∼ M2 ∼ S2 and d(S1, S2) � 5. In
the remaining cases, we will show that |L|2/|G| > 1, and hence |L| |Lg| > |G|.
It will follow that L ∩ Lg �= 1, again yielding d(S1, S2) � 5.

Observe that |L|2/|G| > 1 if and only if log |G|/ log |G : L| > 2. By [6,
Proposition 3.2], if n � 7, then log |G|/ log |G : L| > 2, as required. If instead
n = 3, then we may assume that X is totally singular. Here, q > 2, and hence

|L|2/|G| =
q3(q2 − 1)

(q3 + 1)(q + 1, 3)
� q3(q − 1)

(q3 + 1)
> 1.

Suppose finally that n = 5. If X is totally singular, then |L|2/|G| is equal to

q10(q2 − 1)3(q3 + 1)
(q4 − 1)(q5 + 1)(q + 1, 5)

>
q10

(q4 − 1)(q5 + 1)
=

q10

q9 − q5 + q4 − 1
> 1.
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If instead X is non-degenerate, then

|L|2/|G| =
q2(q + 1)

∏4
i=1(q

i − (−1)i)
(q5 + 1)(q + 1, 5)

>
q2(q4 − 1)

q5 + 1
=

q6 − q2

q5 + 1
> 1.

(v) G = M23. In this case, M1 has shape 23:11. We argue as in the proof of
[14, Assertion I]. There exists a maximal subgroup L of G isomorphic to M22,
and |M1| |L| and |M2| |L| are greater than |G| (for any choice of M2). It follows
that S1 ∼ M1 ∼ L ∼ M2 ∼ S2, and so d(S1, S2) � 4.

(vi) G = Th. Here, M1 has shape 31:15. If the proper non-trivial subgroup
S1 of M1 has order 31, then S1 lies in a maximal subgroup of shape 25·L5(2).
Otherwise, |CG(S1)| is even. Therefore, in each case, S1 lies in a maximal
subgroup of even order. The same is true for S2, and thus d(S1, S2) � 4.

(vii) G = B. In this case, M1 has shape 47:23. Additionally, G has a maximal
subgroup K ∼= Fi23, which has even order, and M1 ∼ K. Hence if |M2| is
even, then S1 ∼ M1 ∼ K ∼ D ∼ M2 ∼ S2 for some dihedral subgroup D
of G, yielding d(S1, S2) � 5. Otherwise, there exists an element g ∈ G such
that M2 = Mg

1 , and hence Kg ∼ M2. As |K|2/|G| > 1, we conclude that
S1 ∼ M1 ∼ K ∼ Kg ∼ M2 ∼ S2 and d(S1, S2) � 5. Thus diam(ΔG) � 5.

We now show that diam(ΔG) is equal to 5. Let H be a subgroup of M1

of order 23. Then H is a Sylow subgroup of G. It follows from [15, p. 67]
that each maximal subgroup of G that contains H is conjugate either to M1,
to K, or to a subgroup L of shape 21+22·Co2. We may assume that H �
M1∩K ∩L. Additionally, NG(H) has shape (23:11)×2 and NL(H) = NG(H),
while |NG(H) : NM1(H)| = 22. Since the 22 non-identity elements of H fall
into two K-conjugacy classes and CK(H) = H, we conclude that NK(H) has
shape 23:11, and so |NG(H) : NK(H)| = 2.

Consider the pairs (H ′,M ′), where H ′ is a G-conjugate of H, M ′ is
a G-conjugate of M1, and H ′ � M ′. As any two G-conjugates of H
appear in an equal number of such pairs, we deduce that H lies in exactly
|NG(H) : NM1(H)| = 22 G-conjugates of M1. Similarly, H lies in two G-
conjugates of K and one G-conjugate of L.

As M1 has shape 47:23, it contains a subgroup S of order 47. In fact, M1

is the unique maximal subgroup of G that contains S. Hence if J is a maximal
subgroup of G satisfying J �= M1 and J ∩ M1 �= 1, then J contains a G-
conjugate of H. Let U be the set of G-conjugates of H that lie in at least one
such maximal subgroup J , or in M1. There are 47 subgroups of order 23 in
M1, each of which lies in two G-conjugates of K, and there are |K : NK(H)|
subgroups of order 23 in K. Therefore, there are fewer than 47 · 2|K : NK(H)|
subgroups in U that lie in at least one G-conjugate of K. By considering the
G-conjugates of M1 and L similarly, we conclude that

|U| < 47(2|K : NK(H)| + 22 · 47 + |L : NL(H)|) < |G : M1|/22.

Hence there exists g ∈ G such that no subgroup of Mg
1 lies in U . This means

that M1 and Mg
1 are not adjacent in ΔG and have no common neighbours,
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and so d(M1,M
g
1 ) > 2. As M1 and Mg

1 are the unique neighbours of S and
Sg, respectively, it follows that d(S, Sg) > 4. Therefore, diam(ΔG) = 5.

(viii) G = M. Liebeck and Saxl list two possible maximal subgroups of odd
order (up to conjugacy), of shape 59:29 and 71:35, respectively. However, these
subgroups are not, in fact, maximal: the former lies in the maximal subgroup
L2(59) constructed in [9], and the latter lies in the maximal subgroup L2(71)
constructed in [10]. Hence G has no maximal subgroup of odd order, and so
diam(ΔG) � 4. �
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