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Abstract. We study the minimally displaced set of irreducible automor-
phisms of a free group. Our main result is the co-compactness of the
minimally displaced set of an irreducible automorphism with exponential
growth φ, under the action of the centraliser C(φ). As a corollary, we
get that the same holds for the action of < φ > on Min(φ). Finally, we
prove that the minimally displaced set of an irreducible automorphism of
growth rate one consists of a single point.
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1. Introduction. In this paper, we study the minimally displaced set of an
irreducible automorphism of a free group FN . Our goal is to produce an essen-
tially elementary proof that an irreducible automorphism acts co-compactly on
its minimally displaced set (equivalently, the train track points) in the Culler-
Vogtmann space. We note that stronger results were produced in [15], where
it was shown that the action on the axis bundle is co-compact, from which one
easily deduces the result. However, their result only holds for non-geometric
iwip automorphisms, and we believe our argument to be significantly simpler.

Irreducible automorphisms of FN play a central role in the study of the
outer automorphism group Out(FN ), as they can be studied using the powerful
train track machinery, which has been introduced by Bestvina and Handel in
[3]. Also, they are generic elements of Out(FN ) in the sense of random walks
(see [20]).

The Culler-Vogtmann outer space CVN is considered a classical method to
understand automorphisms of free groups by studying the action of Out(FN )
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on CVN . More recently, there is an extensive study of the so-called Lipschitz
metric on CVN and it seems that it has interesting applications (for example,
see [1], [2,11,19]).

In particular, given an automorphism φ, we can define the displacement
of φ in CVN as λφ = inf{Λ(X, (X)φ) : X ∈ CVN} (where we denote by Λ
the asymmetric Lipschitz metric). The set of minimally displaced points (or
simply Min-Set) Min(φ) has interesting properties. For instance, the first two
authors studied the Min-Set in [14] (in the context of general deformation
spaces), where they proved that it is connected. As an application, they gave
solutions to some decision problems for irreducible automorphisms.

For an automorphism φ, the centraliser C(φ) preserves the Min-Set Min(φ).
Our main result is the following:

Theorem 3.1. Let φ be an irreducible automorphism of FN with λφ > 1. The
quotient space Min(φ)/C(φ) is compact.

As we have already mentioned, Handel and Mosher prove the previous
theorem (under some extra hypotheses) in [15]. It is worth mentioning that
some of the main ingredients of their proof is generalised by Bestina, Guirardel,
and Horbez in the context of deformation spaces of free products (see [5]).

We then collect known results, showing that the centraliser of an irreducible
automorphism with λφ > 1 is virtually cyclic, and deduce the following:

Theorem 3.3. Let φ be an irreducible automorphism of FN with λφ > 1. Then
Min(φ)/ < φ > is compact.

Remark. Note that centralisers for iwip automorphisms are well known to be
virtually cyclic, but the more general statement is also true since irreducible
automorphisms of infinite order which are not iwip are geometric, and their
centralisers are also geometric, hence virtually cyclic. We collect these obser-
vations in more detail in the proof of Theorem 3.3.

In order to have a complete picture for irreducible automorphisms of a free
group, we study irreducible automorphisms of growth rate one (all of these
have finite order). In this case, we have the following:

Theorem 3.9. Let φ be an irreducible automorphism of FN with λφ = 1. There
is a single point T ∈ CVN so that Min(φ) = Fix(φ) = {T}.

As an application, we get the following corollary:

Corollary 3.10. Let φ be an irreducible automorphism of FN with λφ = 1.
There is some T ∈ CVN so that C(φ) fixes T . In particular, C(φ) is finite.

2. Preliminaries.

2.1. Culler-Vogtmann space. For the rest of the paper, we will denote by FN

the free group on N generators for some N ≥ 2. Firstly, we will describe
the construction of the Culler-Vogtmann space which is denoted by CVN and
which is a space on which Out(FN ) acts nicely.

Let us fix a free basis x1, . . . , xN of FN . We denote by RN the rose with
n-petals where we identify each xi with a single petal of RN (the petals are
still denoted by x1, . . . , xN ).
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Definition 2.1. A marked metric graph of rank n is a triple (T, h, �T ) so that:
• T is a graph (without valence one or two vertices) with fundamental

group isomorphic to FN .
• h : RN → T is a homotopy equivalence, which is called the marking.
• �T : E(T ) → (0, 1) is a metric on T , which assigns a positive number on

each edge of T , with the property
∑

e �T (e) = 1.

We are now in position to define the Culler-Vogtmann space:

Definition 2.2. CVN is the space of equivalence classes, under ∼, of marked
metric graphs of rank n. The equivalence relation ∼ is given by (T, h, �T ) ∼
(S, h′, �S) if and only if there is an isometry g : T → S so that gh is homotopic
to h′.

In order to simplify the notation, whenever �T , h are clear by the context,
we can simply write T instead of the triple (T, h, �T ).

Remark. Equivalently, one may take universal covers to get a different formu-
lation of the Culler-Vogtmann space; as the space of free, minimal, simplicial
FN trees of volume 1, up to equivariant isometry.

Action of Out(FN ). Let φ ∈ Out(FN ) and (T, h, �T ) be a marked metric
graph. We define ((T, h, �T ))φ = (T, h′, �T ) where h′ = hφ (here we still denote
by φ the natural representative of φ as a homotopy equivalence from RN to
RN ).

Simplicial structure. If we fix a pair (T, h) of a topological marked graph
(without metric) and we consider all the different possible metrics on E(T ) (i.e.
assignments of a positive number on each edge so that the volume of T is one),
we obtain an (open) simplex in CVN with dimension |E(T )|−1. Given a point
X ∈ CVn, we denote by ΔX the (open) simplex that contains X. However,
if we allow some edges to have length 0, then it is not always true that the
new graph will have rank n, so the resulting simplex is not necessarily in CVN

(note that some faces could be in CVN ). Therefore, CVN is not a simplicial
complex, but it can be described as a union of open simplices. Note that it
follows immediately by the definitions that Out(FN ) acts simplicially on CVN .
In the following theorem, we list some more properties which are proved in [6].
Theorem ([6]).

(i) CVN is contractible.
(ii) The maximum dimension of a simplex is 3N − 4. In other words, the

maximum number of edges in a marked metric graph with rank N is
bounded above by 3N − 3.

iii) Out(FN ) acts on CVN by finite point stabilisers and the quotient space
consists of finitely many open simplices.

Translation length. Given a marked metric graph T , we would like to define
the translation length of the conjugacy class of a non-trivial group element a
with respect to T . It is natural to define the length of a as the sum of lengths
of the edges that a crosses when it is realised as a reduced loop in T . We
define the translation length of the conjugacy class of a ∈ FN as �T ([a]) =
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inf{lenT (a′) : [a′] = [a]}. It is easy to see that any group element is freely
homotopic to an embedded loop which realises the minimum.

Remark. This translation length is the same as the translation length - in the
sense of the minimum distance moved by the group element - of the corre-
sponding action of the group element on the universal cover, a tree.

Thick part. We can now define the thick part of CVN , which will be essential
in our arguments:

Definition 2.3. Let ε > 0. We define the thick part of CVN , and we denote it by
CVN (ε), as the subspace of CVN which consists of all the points T ∈ CVN with
the property that every non-trivial conjugacy class α of FN has translation
length at least ε, i.e. �T (α) ≥ ε.

Centre of a simplex. We will need the notion of a special point of a simplex,
the centre, so we give the following definition:

Definition 2.4. Let Δ be a simplex of CVN . The point of Δ where all the edges
have the same length is called the centre of Δ and we will denote it by XΔ.

Remark 2.5. By the definition of the action of Out(FN ) on CVN , for any
automorphism ψ, X(Δ)ψ = (XΔ)ψ, i.e. the centre of Δ is sent to the centre of
(Δ)ψ.

2.2. Stretching factor and automorphisms. We define a natural notion of dis-
tance on CVN , which has been studied in [10].

Definition 2.6. Let T, S ∈ CVN . We define the (right) stretching factor as

Λ(T, S) = sup
{

�S([a])
�T ([a])

: 1 �= a ∈ FN

}

.

In the following proposition, we state some important properties of the
stretching factor.

Proposition 2.7 ([10]).
(i) For any two points T, S ∈ CVN , Λ(T, S) ≥ 1, with equality if and only if

T = S.
(ii) For any T, S,Q ∈ CVN , the (non-symmetric) multiplicative triangle in-

equality for Λ holds. In other words, Λ(T, S) ≤ Λ(T,Q)Λ(Q,S).
(iii) For any ψ ∈ Out(FN ) and for any T, S ∈ CVN , Λ(T, S) = Λ((T )ψ, (S)ψ).

Note that Λ is not symmetric, i.e. there are points T, S of CVN so that
Λ(T, S) �= Λ(S, T ). In fact, it is not even quasi-symmetric in general. However,
it is proved in [1] that for any ε > 0, its restriction on the ε-thick part CVN (ε)
induces a quasi-symmetric function. More specifically, we have the following:

Proposition 2.8 ([1, Theorem 24]). For every ε > 0 and for every T, S ∈
CVN (ε), there is a uniform constant K (depending only on ε and N) so that
Λ(T, S) ≤ Λ(S, T )K .
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One could consider the function dR(T, S) = ln Λ(T, S), which behaves as
an asymmetric distance, or even the symmetrised version d(T, S) = dR(T, S)+
dR(S, T ), which is a metric on CVN . We choose to work with Λ, as it is more
naturally related to the displacement of an automorphism which is defined in
the next subsection. However, as we will only work with some fixed ε-thick
part of CVN , it follows by the quasi-symmetry of Λ that we could use exactly
the same arguments using d instead.

Balls in outer space. The asymmetry implies that there are three different
types of balls that we can define, which are different in general.
(1) The symmetric closed ball with centre T ∈ CVN and radius r > 0:

B(T, r) = {X ∈ CVN : Λ(X,T )Λ(T,X) ≤ r}.

(2) The in-going ball with centre T ∈ CVN and radius r > 0:

Bin(T, r) = {X ∈ CVN : Λ(X,T ) ≤ r}.

(3) The out-going ball with centre T ∈ CVN and radius r > 0:

Bout(T, r) = {X ∈ CVN : Λ(T,X) ≤ r}.

Proposition 2.9. Let T ∈ CVN and r > 0.
(i) The symmetric ball B(T, r) is compact.
(ii) Then in-going ball Bin(T, r) is compact.

Proof. (i) The statement is proved in [10, Theorem 4.12].
(ii) Let T, r be as before. Firstly note that there is some C (the injective

radius of T ) for which �T ([g]) ≥ C > 0 for every non-trivial g ∈ FN .
Therefore, for every non-trivial g ∈ FN and for every X ∈ Bin(T, r), it
holds that:

�T ([g])
�X([g])

≤ Λ(X,T ) ≤ r ⇒ �X([g]) ≥ �T ([g])
r

≥ C

r
.

As a consequence, it follows that Bin(T, r) ⊂ CVN (C/r). By the quasi-
symmetry of Λ when it is restricted on the thick part (Proposition 2.8),
we have that there is some M so that

Bin(T, r) ⊆ B(T, r2M ).

The result now follows by i), as Bin(T, r) is a closed subset of the compact
set B(T, r2M ) and therefore compact. �

Note that it is not difficult to find an out-going ball Bout(T, r), for some
T ∈ CVN , r > 0, which is not compact. It is worth mentioning that Bout is
weakly convex, while Bin is not in general (as is proved in [19]).

In [10], it is proved that the supremum in the definition of the stretching
factor Λ(T, S) is the maximum as there is a hyperbolic element that realises
the supremum. Even more, such a hyperbolic element can be chosen from a
finite list of candidates of T .

Definition 2.10. Let T ∈ CVN . A hyperbolic element a of FN is called a can-
didate with respect to T if the realisation of a as a loop in T is either:
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• an embedded circle,
• a figure eight,
• a barbell.

The set of candidates with respect to T is called the set of candidates and it
is denoted by Cand(T ).

Proposition 2.11 ([10, Proposition 3.15]). For any T, S ∈ CVN , there is a
candidate a ∈ Cand(T ) so that

Λ(T, S) =
�S([a])
�T ([a])

.

Displacement. Now let’s fix an automorphism φ ∈ Out(FN ). The displace-
ment of φ is λφ = inf{Λ(X, (X)φ) : X ∈ CVN}.

Definition 2.12. Let φ be an outer automorphism of FN . Then we define the
Min-Set of φ as Min(φ) = {T ∈ CVN : Λ(T, (T )φ) = λφ}.

Note that Min(φ) could be empty in general. However, it is non-empty
when φ is irreducible (see [12] for more details).

Definition 2.13. Let φ be an automorphism of FN . Then φ is called reducible
if there is a free product decomposition of FN = A1 ∗ · · · ∗ Ak ∗ B (where B
could be empty) so that every Ai, i = 1, . . . , k, is a proper free factor and the
conjugacy classes of Ai’s are permuted by φ. Otherwise, φ is called irreducible.

We note that by [12, Theorem 8.19], Min(φ) coincides with the set of train
track points of φ when φ is irreducible. That is, the points of CVN that admit
a (not necessarily simplicial) train track representative of φ.

2.3. Properties of the thick part. In this subsection, we list some properties
of the thick part that we will need in the following section.

Proposition 2.14. Let φ be an irreducible automorphism of FN . Then there
is a positive number ε1 (depending only on N and on φ) so that Min(φ) ⊂
CVN (ε1). One could take ε1 = 1/((3N − 3)μ3N−2) for any μ > λφ.

Proof. For a proof, see [2, Proposition 10]. �

Lemma 2.15. Let Δ be a simplex of CVN and T, S be two points of Δ. If we
further suppose that T ∈ CVN (ε), then Λ(T, S) ≤ 2

ε .

Proof. The proof is an immediate corollary of the candidates theorem (see
Proposition 2.11). Firstly, note that the candidates depend only on the simplex
and so for any T, S ∈ Δ, Cand(T ) = Cand(S) = C. The result now follows by
the remark that for every g ∈ C, we have �S([g]) ≤ 2, while for every 1 �= g,
�T ([g]) ≥ ε as T ∈ CVN (ε). �

Remark 2.16. Let Δ be any simplex of CVN , then there is some uniform pos-
itive number ε2 (depending only on N), so that the centre of Δ is ε2-thick.
One could take ε2 = 1/(3N − 3). Therefore, it is easy to see that ε1 < ε2 and
so the centre of any simplex is ε1-thick.
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Proof. The number of edges in any graph is bounded above by 3N −3. There-
fore the length of each edge with respect to the centre of a simplex is bounded
below by 1/(3N − 3). The same number gives us an obvious lower bound for
the translation length of any hyperbolic element. �

2.4. Connectivity of the Min-set. In this subsection, we will state some results
from [13] and [14] that we will need in the following section.

Definition 2.17. Let T, S ∈ CVN . A simplicial path between T, S is given by:
(1) A finite sequence of points T = X0,X1, . . . , Xk = S such that for every

i = 1, . . . , k, there is a simplex Δi such that the simplices ΔXi−1 and ΔXi

are both faces of Δi.
(2) Euclidean segments Xi−1Xi.

The simplicial path is then the concatenation of these Euclidean segments.

The following results were proved in [13] and [14] in the more general con-
text of deformation spaces of free products.

Theorem 2.18. Let φ be an automorphism of FN .
(1) Let Δ be a simplex of CVN . If X,Y ∈ Min(φ) ∩ cl(Δ), where cl(Δ) is

the closure of Δ in CVN . Then the Euclidean segment XY is contained
in Min(φ).

(2) If φ is an irreducible automorphism of FN , then Min(φ) is connected
by simplicial paths in CVN ; that is, for every T, S ∈ Min(φ), there is a
simplicial path between T and S, which is entirely contained in Min(φ).

Proof. (1) This is an immediate consequence of the quasi-convexity of the
displacement function, see [13, Lemma 6.2].

(2) This follows by the main theorem of [14] (see Theorem 5.3.) which im-
plies that the set of minimally displaced points for φ as a subset of the
free splitting complex (i.e. the simplicial boardifiaction of CVN ) of FN is
connected by simplicial paths, combined with the fact that the Min-Set of
an irreducible automorphism does not enter some thin part of CVN (see
the previous subsection). It is easy to see now that, by the connectivity, it
is not possible to have minimally displaced points in the boundary with-
out entering any thin part. As a consequence, any minimally displaced
point of the free splitting complex must be a point of CVN and the result
follows. �

3. Results.

3.1. Exponential growth. Firstly, we will concentrate on the case where φ
is irreducible with exponential growth. In this case, we have the following
theorem:

Theorem 3.1. Let φ be an irreducible automorphism of FN with λφ > 1. The
quotient space Min(φ)/C(φ) is compact.

Proof. We will prove that there is a compact set K of CVN so that Min(φ) ⊆
KC(φ) and the theorem follows as Min(φ) is closed. Therefore as in-going
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balls are compact (by Proposition 2.9), the compact set K can be chosen to be
an in-going closed ball. Let us fix a point T ∈ Min(φ). It is then sufficient to
prove that there is some positive radius L so that for any X ∈ Min(φ), there
is some element α of C(φ) which satisfies Λ(X, (T )α) ≤ L.

We will argue by contradiction. Let us suppose that there is a sequence
of points Xm ∈ Min(φ),m = 1, 2, 3, . . ., so that Λ(Xm, (T )α) ≥ m for every
m = 1, 2, . . . and α ∈ C(φ).

Note that there are finitely many Out(FN )-orbits of open simplices on CVN .
Therefore, up to taking a subsequence of Xm, we can suppose that there is an
(open) simplex Δ and a sequence of (difference of markings) ψm ∈ Out(FN )
so that Xm ∈ (Δ)ψm.

Firstly, we apply Proposition 2.14 for φ and we get a constant ε (depending
on N and on φ), so that Min(φ) ⊂ CVN (ε). Also, by Remark 2.16, the centre
of any simplex is ε-thick. In particular, the centre XΔ of Δ belongs to CVN (ε)
and (Xm)ψm ∈ Δ, so by Lemma 2.15, there is a constant M = M(ε) (which
doesn’t depend on Δ or m) which satisfies Λ(XΔ, (Xm)ψ−1

m ) ≤ M . Similarly,
it follows from Lemma 2.15 and the fact that Xm ∈ Min(φ) ⊂ CVN (ε) that
Λ(Xm, (XΔ)ψm) ≤ M for every m.

In addition, by assumption, Xm ∈ Min(φ) which is equivalent to
Λ(Xm, (Xm)φ) = λφ = λ. Therefore, as an easy application of the multi-
plicative triangle inequality for Λ and the fact that Out(FN ) acts on CVN by
isometries with respect to Λ, the previous relations imply that

Λ((XΔ)ψm, (XΔ)ψmφ) ≤ Λ((XΔ)ψm,Xm)Λ(Xm, (Xm)φ)Λ((Xm)φ, (XΔ)ψmφ)
= Λ(XΔ, (Xm)ψ−1

m )Λ(Xm, (Xm)φ)Λ(Xm, (XΔ)ψm)
≤ M2λ.

The previous inequality is equivalent to Λ(XΔ, (XΔ)ψmφψ−1
m ) ≤ M2λ for

every m. Note that by Remark 2.5, (XΔ)ψmφψ−1
m are the centres of the cor-

responding simplices (Δ)ψmφψ−1
m for every m.

As CVN is locally finite, there are finitely many simplices so that their cen-
ters have bounded distance from XΔ. Therefore, it follows that infinitely many
of the simplices (Δ)ψnφψ−1

n , n = 1, 2, . . ., must be the same, which means
that after possibly taking a subsequence of ψn, we have that (XΔ)ψnφψ−1

n =
(XΔ)ψmφψ−1

m for every n,m. As a consequence, the automorphisms (ψnφψ−1
n )

(ψ1φ
−1ψ−1

1 ) fix XΔ for every n.
On the other hand, the stabiliser of any point of CVN is finite and so

infinitely many of these automorphisms are forced to be the same or, in other
words, after taking a subsequence, we can suppose that ψmφψ−1

m = ψnφψ−1
n

for every n,m. This is equivalent to ψ−1
m ψn ∈ C(φ) for every n,m and in

particular, by fixing one of the indices to be m = 1, we get that for every n,
there is some αn ∈ C(φ), so that ψn = ψ1αn.

As a consequence, the Λ-distance from (XΔ)ψn to (T )αn does not depend
on n as

Λ((XΔ)ψn, (T )αn) = Λ((XΔ)ψ1αn, (T )αn) = Λ((XΔ)ψ1, T ) = C.
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Note that as we have already seen that Λ(Xn, (XΔ)ψn) ≤ M for ev-
ery n. Therefore, by applying again the triangle inequality, it follows that
Λ(Xn, (T )αn) ≤ MC for every n. This contradicts our assumption that Λ(Xn,
(T )α) ≥ n for every α ∈ C(φ), as neither M nor C depend on n (by an abuse
of notation, we write Xn for the subsequence Xkn

. Note that the inequality
Λ(Xn, (T )α) ≥ n is still valid after this renumbering since kn ≥ n). �

Remark 3.2. In the previous proof, we used irreducibility only in order to
ensure the condition that there is some uniform ε so that Min(φ) ⊂ CVN (ε)
which follows by Proposition 2.14. Therefore, we could replace the assumption
of irreducibility with this weaker condition.

For the centralisers of irreducible automorphims with exponential growth,
the following theorem holds.

Theorem 3.3. Let φ be an irreducible automorphism of FN with λφ > 1. Then
Min(φ)/ < φ > is compact.

Proof. In light of the previous theorem, it is sufficient to prove that the cen-
traliser of an irreducible automorphism of exponential growth rate is virtually
cyclic.

The case when φ is irreducible with irreducible powers (iwip) this is well
known by the main result of [4]. Note that if φ is atoroidal and irreducible
with λφ > 1, it follows by [16] that φ is iwip.

As a consequence, we suppose for the rest of the proof that φ is toroidal
and irreducible. In this case, φ is a geometric automorphism, i.e. it is induced
by a pseudo-Anosov automorphism f of a surface Σ with p ≥ 1 punctures,
which acts transitively on the boundary components (this was a folk theorem,
until recently where the details appeared in an appendix of [18]). Note that φ
is iwip exactly when p = 1.

It is well known (see [17]) that the centraliser CMCG(Σ)(f) of the pseudo-
Anosov f in MCG(Σ) is virtually cyclic. Therefore, it is enough to prove
that the centraliser C(φ) = COut(Fn)(φ) of φ in Out(Fn) is isomorphic to
CMCG(Σ)(f).

Let us denote by c1, . . . , cp the elements corresponding to the peripheral
curves (a simple curve around each puncture). We also denote by Out∗(Fn) the
subgroup of the automorphisms that preserve the set of conjucacy classes of
simple peripheral curves (which are the ci’s and their inverses). By the Dehn-
Nielsen-Baer theorem for surfaces with punctures (see [9, Theorem 8.8]), we
have that the natural map from MCG(Σ) to Out∗(Fn) is an isomorphism.
In other words, an automorphism ψ of Out(Fn) is induced by an element of
MCG(Σ) exactly when it preserves the set of conjugacy classes of the periph-
eral curves, or equivalently ψ ∈ Out∗(Fn).

We will now show that any element of C(φ) is induced by an element
of CMCG(Σ)(f) and the proof follows as any element of CMCG(Σ)(f) induces
an element of C(φ). We can assume that without loss of generality, after re-
numbering if needed, that [φ(ci)] = [ci+1] (mod p). If ψ ∈ C(φ), then for every
i, [φψ(ci)] = [ψφ(ci)] = [ψ(ci+1)] (mod p). It follows that f preserves the
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closed curves [ψ(ci)] and since f is pseudo-Anosov, we get that any such curve
must be a peripheral curve up to orientation (proper powers can be discounted
as ψ is an automorphism). Therefore, ψ must preserve the set of (conjugacy
classes) of the peripheral curves and so by the previous criterion, it is induced
by an element of MCG(Σ). �

As an immediate application of the previous two theorems, we get the
following statement which seems to be known to the experts, but it doesn’t
appear explicitly in the literature.

Theorem 3.4. Let φ be an irreducible automorphism of FN with λφ > 1. It
holds that Min(φ)/ < φ > is compact.

3.2. Growth rate one. In this subsection, we will cover the case of irreducible
automorphisms of growth rate one (it is known that they have finite order).
This class has been studied by Dicks and Ventura in [8], where they give an
explicit description of any such automorphism.

Notation 3.5. We describe below two types of topological graphs and a graph
map for each case.

• For the first type, let p be an odd prime. In this case, we define a graph Xp

which has rank p−1. This graph consists of two vertices and p edges which
connect them. In order to describe the graph map, it is more convenient
to identify the set of vertices {v0, v1} with the set {0, 1} and the edge
set {e1, ..., ep} with Zp, while all edges are oriented so that their initial
vertex is v0 and their terminal vertex v1. We denote by αp the graph
map, which fixes the vertices and sends ei to ei+1 (mod p).

• For the second type, let p, q be two primes where p < q (here we don’t
assume that p is odd). We define a graph Xpq of rank pq−p−q+1 which
consists of p+q vertices and pq edges. More specifically, the set of vertices
consists of two distinct subsets {v1, . . . , vp}, {w1, . . . , wq} which can be
naturally identified with Zp  Zq. Also, for every i ∈ Zp and for every
j ∈ Zq, there is a unique edge ei,j with initial vertex vi and terminal
vertex wj and so we can naturally identify the set of edges with Zp ×Zq.
We denote by αpq the map which sends ei,j to ei+1,j+1 (mod p, mod q,
respectively).

Note that Xp, for an odd prime p, can be seen as an element of CVp−1

by assigning length 1/(p − 1) on each edge and by considering a marking
Rp−1 → Xp. Similarly, Xpq can be seen as an element of CVpq−p−q+1. This is
true even when p = 2, as in this case X2q = Xq (as elements of CVq−1 ). We
consider this case separately, as the maps αq and α2q are different (α2q inverts
the orientation of each edge, while αq preserves it).

We can now state the main result of [8] (it is proved in Proposition 3.6,
even if it is stated in a different form, the following formulation is evident by
the proof).

Proposition 3.6. If φ is an irreducible automorphism of FN with λφ = 1, then
it can be represented by either αp for some odd prime p or αpq for some primes
p < q (see Notation 3.5).
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Definition 3.7. Let f : A → B be a piecewise linear map which is a change
of marking. That is, f is freely homotopic to the map hBh−1

A , where hA, hB

are the markings for A and B, respectively. We say that f is weakly optimal
if Λ(A,B) = Lip(f). Moreover, if f represents an outer automorphism φ ∈
Out(Fn) (i.e. B = (A)φ) and it is weakly optimal, we say that f is a weakly
optimal representative.

Remark. We note that for any two points A,B ∈ CVn, there exists a weakly
optimal map f : A → B. It is worth to mention that maps which in literature
are usually referred to as optimal are weakly optimal maps with the addi-
tional property that, borrowing the language from train track theory, can be
expressed by saying that the tension graph is everywhere at least two-gated
(for more details and the precise definitions, see [10]). The next lemma implies
that that 1-Lipschitz weakly optimal maps are always optimal.

Lemma 3.8. Let φ be an irreducible automorphism of CVN with λφ = 1. Let S
be a point of Min(φ) and f : S → S be a weakly optimal representative of φ.
Then f is an isometry on S, and hence a graph automorphism. Morever, f is
the unique optimal map representing φ on S.

Proof. Note that as λφ = 1, Min(φ) is simply the set of fixed points of φ in
CVN . Hence for any loop γ, the lengths of γ and f(γ) are the same (as loops)
in S, and from there it follows easily that f is an isometry.

We can lift this isometry to the universal cover and invoke [7] to conclude
that this isometry is unique (up to a covering translation), and hence all op-
timal maps are the same on Min(φ).

Alternatively, notice that two graph automorphisms give rise to the same
action on the associated simplex if and only if the graph maps are the same. �
Remark. Note that this uniqueness statement is definitely false when λφ > 1;
see [13, Example 3.14].

We can now prove our result for the finite order irreducible automorphisms
of FN .

Theorem 3.9. Let φ be an irreducible automorphism of FN with λφ = 1. There
is a single point T ∈ CVN so that Min(φ) = Fix(φ) = {T}.

Note that the existence of such a point T is proved in [8]; the content of
this theorem is the uniqueness of such a point.

Proof. As noted above, the fact that λφ = 1 implies that Min(φ) = Fix(φ).
By applying Proposition 3.6, we get that φ can be represented by either

αp or αpq (for some primes p, q) as an isometry of Xp or Xpq (see Notation
3.5), respectively. For the rest of the proof, we will denote the graph map by
α and the graph by T . In particular, ΔT = Δ, then φ fixes the centre (i.e. if
we assign the same length to every edge of T ) of Δ, as an element of CVN . We
will prove that T (with the metric given as above) is the unique fixed point of
CVN for φ.

By the second assertion of Theorem 2.18, Fix(φ) = Min(φ) is connected
by simplicial paths in CVN . Now consider some other point S ∈ CVN fixed by
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φ. If we connect S and T by a (simplicial) path in Fix(φ), we will be able to
produce a point T ′ ∈ Fix(φ) such that either Δ′ is a face of Δ or vice versa
(where Δ′ is the simplex defined by T ′).

However, it is clear that φ cannot fix any other point of Δ; this is because α
acts as a cyclic permutation of the edges of T , and hence the only metric struc-
ture that can be preserved assigns the same length to every edge. Therefore,
Δ must be a face of Δ′.

We will aim to show that Δ must be equal to Δ′, which will prove our
result. (Since then, the only possibilty left is that S = T .)

Since Δ is a face of Δ′, there exists a forest F , whose components are col-
lapsed to produce T from T ′ (as graphs, absent the metric structure). However,
the connectivity of Fix(φ) allows us to connect T to T ′ - as metric graphs - via
a Euclidean segment in the closure of Δ′ (see the first assertion of Theorem
2.18). Thus, without loss of generality, we may assume that the optimal map
representing φ on T ′ - call this α′ - leaves F invariant since α′ is an isometry
(by Lemma 3.8), and so if the volume of F is sufficiently small, it must be sent
to itself.

Our goal is to show that, under the assumption that T ′ has no valence one
or two vertices, each component of F is a vertex. Hence T = T ′.

Now if we ignore the metric structures, we get on collapsing F that α′

induces a graph map on the quotient, which is T (as a graph). Since this must
also represent φ, we deduce that this induced map is equal to α. (Alternatively,
collapse F and assign the same length to the surviving edges. The map α′

induces an isometry of this graph which is equal to α by Lemma 3.8.)
Let G denote the cyclic group generated by α acting on T . By the comments

above, G has an action on T ′ so that collapsing components of F gives rise to
the original action on T .

For the remainder of the proof, the edges of F will be called black, the edges
of the complement of F will be called white and vertices that are incident to
both and white edges will be called mixed. Accordingly, vertices have black
valence and white valence respectively.

Now consider a component C of F . Note that we can think of C as a
vertex of T . Let v1, . . . , vk be the leaves of C; that is, those vertices of C with
black valence equal to 1. Since T ′ can admit no valence one vertices (if we
count both black and white edges), each vi is mixed, incident to both black
and white edges. Let ∂C denote the boundary of C in T ′; that is, the edges
(necessarily white) of T ′ connecting some vi to a vertex not in C.

Since a vertex stabiliser of T in G acts freely and transitively on the edges
incident to it, we deduce that Stab(C) (the set-wise stabiliser) acts freely and
transitively on ∂C. Note that the transitive action on ∂C implies that Stab(C)
must also act transitively on the leaves v1, . . . , vk.

Now Stab(C) has prime order (since vertex stabilisers in T have prime
order), so using the orbit-stabiliser theorem, we deduce that either k = 1 or
Stab(C) acts freely and transitively on v1, . . . , vk. In the former case, C consists
of a single vertex. In the latter case, we get that k = |∂C| = |Stab(C)|. This
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implies that the white valence of each vi is equal to 1. But now the valence of
each vi is exactly 2, leading to our desired contradiction.

Note that this argument does not quite work in the cases where T has a
vertex of valence 2 - in the second case of Notation 3.5 when p = 2. Here we
get vertices of valence 2 since the graph map α acts as a cyclic permutation
on the edges along with an inversion, and we subdivide at the midpoints of
edges which are fixed.

But in this case, the valence 2 vertices are a notational convenience, and we
can omit them from T , and reach the same conclusion with the same argument.

�

The following corollary is now immediate.

Corollary 3.10. Let φ be an irreducible automorphism of FN with λφ = 1.
There is some T ∈ CVN so that C(φ) fixes T . In particular, C(φ) is finite.

Proof. It follows immediately by the previous theorem by noting that Min(φ)
is C(φ)-invariant. �

In fact, the graph T in the previous corollary is some graph as in Notation
3.5, so we can get a much more precise description of the centaliser in each
case.

Corollary 3.11. If φ is an irreducible automorphism of FN of growth rate one,
then C(φ) fixes a point X, where X is as in Notation 3.5. As a consequence,
C(φ) =< φ > × < σ >, where σ is the order two automorphism of FN that is
induced by the graph map of X sending every edge to its inverse.
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