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1. Introduction. A Finsler metric F is called Douglas if there exists an affine
connection Γ = (Γi

jk) such that each geodesic of F , after some
re-parameterisation, is a geodesic of Γ. We assume without loss of general-
ity that Γ is torsion free. Such Finsler metrics were considered by Douglas in
[7,8] and were named Douglas metrics (or metrics of Douglas type) in [2].

Though results of our paper are local, let us note that a partition of unity
argument shows that the existence of such a connection locally, in a neighbor-
hood of any point, implies its existence globally.

Prominent examples of Douglas metrics are Riemannian metrics (with Γ
being the Levi–Civita connection), Berwald metrics (in this case, as Γ, we can
take the associated connection), and locally projectively flat metrics (in this
case, in the local coordinates such that the geodesics are straight lines, one
can take the flat connection Γ ≡ 0).

In the present paper, we study the following question: can two conformally
related Finsler metrics F and eσ(x)F both be Douglas? We do not require that
the connection Γ is the same for both metrics, in fact, by [3], two conformally
equivalent metrics can not have the same (unparameterized) geodesics unless
the conformal coefficient is constant.

Of course two conformally related Riemannian metrics are both Douglas.
Another trivial example is as follows: let F be Douglas and σ be a constant.
Then eσF is also Douglas.

Let us give a less trivial example:
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Example 1.1. Consider the Randers metric F = α + β, where
α(x, y) =

√
gijyiyj for a Riemannian metric g and β is a 1-form. Assume in

addition that β is closed, locally it is equivalent to the condition that β = df
for a function f on the manifold. Then the metric F is Douglas since adding
the closed 1-form β does not change the geodesics, so the geodesics of F are
(up to a re-parameterisation) geodesics of the Levi–Civita connection of g.

Next, for any function γ of one variable, the conformally related metric
F̃ = eγ(f(x))F = eγ(f(x))α+eγ(f(x))β is also Douglas. Indeed, since the 1- form
eγ(f(x))β is closed, the geodesics of F̃ are geodesics of eγ(f(x))α, i.e., geodesics
of the Levi–Civita connection of the Riemannian metric e2γ(f(x))g.

It is easy to see (see e.g. [4, Theorem 3.1]) that in the class of Randers
metrics the above example is the only possible example (of conformally re-
lated Douglas metrics with nonconstant conformal coefficient). Indeed, Dou-
glas metrics are geodesically-reversible, in the sense that for any geodesic, its
certain orientation-reversing unparameterisation is also a geodesic. Now, it is
known (see e.g. [10, Theorem 1]) that for a geodesically reversible Randers
metric α + β, the 1-form β is necessary closed. Thus, if two conformally re-
lated Randers metrics α + β and eγ(x)α + eγ(x)β are both Douglas, then both
1-forms β and γ(x)β are closed, which locally implies that β = df and γ is a
function of f as we claimed.

Our main result is that in dimension two only this example is possible:

Theorem 1.2. Let F be a Douglas 2-dimensional metric such that the confor-
mally related eσ(x)F is also Douglas. Assume dσ �= 0 at a point p. Then, in a
neighborhood of p, the metrics F and eσ(x)F are as in Example 1.1 above: F
is Randers, F = α + β, the 1-form β is the differential of a function f , and σ
is a function of f .

Statements similar to Theorem 1.2 appeared in literature before. In most
cases, one considered special Finsler metrics though. In particular, [4] proves
the analogous statement for (α, β) metrics in dimension n ≥ 3. Conformally
related Douglas (α, β) metrics were also considered in [13]. The question when
conformally related Kropina metrics are Douglas was studied in [9, Theorem 9],
where it was shown that if the conformal transformation of a Kropina metric
α2/β is Douglas, then β ∧ dβ = 0, and vice versa. Note that as it follows from
[5], if a Kropina metric is Douglas, then β ∧ dβ = 0.

Related results are [16, Theorem 5], [15, Theorem 3], and [15, Theorem 5],
where it is proved that nontrivially conformally related Berwald metrics are
Riemannian, and also [12, Theorem 8.1], where an analogous statement was
proved for Minkowski metrics.

All objects in our paper are assumed to be sufficiently smooth; Finsler
mertics are assumed to be strictly convex.

2. Proof of Theorem 1.2.

2.1. Necessary conditions on F|TxM implied by the assumption that F and

eσ(x)F are both Douglas. Recall that (arc-length parameterised) geodesics of
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a Finsler metric F are solutions of the differential equation

ẍi + 2Gi = 0. (2.1)

Here Gi = G(x, ẋ)i are the so-called spray coefficients. They are given by

Gi =
1
4
gil

([
F 2

]
xkyl − [

F 2
]
xl

)
, (2.2)

where gij(x, y) :=
1
2
[F 2]yiyj (x, y) and (gij) := (gij)−1. The notation [F 2]xkyj

and later Fyiyj means the partial derivative with respect to the indicated vari-
ables. The condition that geodesics of F are geodesics of the affine connection
Γ is therefore equivalent to the condition

2Gi(x, y) = Γi
jkykyj + P (x, y)yi, (2.3)

which should be fulfilled for some function P and for any y ∈ TxM .
Next, by replacing F by F̃ = eσ(x)F in (2.2), we obtain the following known

relation (see e.g. [6, Equation (9.8)]) between the spray coefficients Gi of F

and G̃i of F̃ :
G̃i = Gi + σ0y

i − F 2

2 σi, (2.4)

where σi = gi�σ�, σi = ∂
∂xi σ, and σ0 = σiy

i. In view of this, the condition
that the metric F̃ is Douglas ensures the existence of a function P̃ and of a
torsion-free affine connection Γ̃ such that

2Gi(x, y) = Γ̃i
jkykyj + F 2σi + P̃ (x, y)yi. (2.5)

Combining (2.3) and (2.5), we obtain

T i
jkykyj = F 2σi + P̂ (x, y)yi, (2.6)

where T = Γ− Γ̃ and P̂ = (P̃ −P ). Let us now multiply the equation (2.6) by
gis: we obtain

T i
jkgisy

kyj = F 2σs + P̂ (x, y)yigis.

In view of gis = 1
2 [F 2]yiys = FFyiys + FyiFys , this equation is equivalent to

T i
jkFFyiysykyj + T i

jkFyiFysykyj = F 2σs + P̂ (x, y)yiFyiFys + P̂ (x, y)yiFFyiys .

Because F is 1-homogeneous, yiFyiys = 0 and yiFyi = F . Using these relations
and rearranging the terms, we obtain

T i
jkFFyiysykyj + Fys

(
T i

jkFyiykyj − P̂ (x, y)F
)

− F 2σs = 0. (2.7)

We apply to the above equation the linear operation ξs �→ ξs − 1
F yiξiFys . This

formula defines a (linear) mapping from covectors to covectors; the equation
(2.7) is of the form “certain covector is zero”. We apply the mapping to the
covector staying in the left hand side of (2.7), the result must be equal to the
zero covector.

In view of FFys − yiFyiFys = 0, after such operation, the middle term of
the left hand side of (2.7) disappears. The first term remains unchanged in
view of yiFyiys = 0. After dividing the result by F , we obtain

T i
jkFyiysykyj = Fσs − σ0Fys . (2.8)
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Remark 2.1. We see that (2.8) does not contain derivatives with respect to
the x-variables. Thus, for a fixed x ∈ M , it is a system of partial differential
equations on F restricted to TxM .

Remark 2.2. We see that the PDE-system (2.8) is linear in F . In fact, linearity
was clear in advance because of the following geometrical argument: if the
metrics F1 and F2 are Douglas with respect to the same connection Γ, and
the conformally related metrics F̃1 = eσF1 and F̃2 = eσF2 (with the same
conformal factor eσ) are also Douglas with respect to the same connection Γ̃,
then any linear combination λ1F1 + λ2F2 and the conformally related metric
(λ1F1 + λ2F2)eσ are also Douglas with respect to Γ and Γ̃, respectively. We
assume that λ1, λ2 ∈ R are such that λ1F1 + λ2F2 is a Finsler metric.

2.2. Proof of Theorem 1.2. We assume that the function σ(x) equals x1 (so
in the coordinates dσ = (1, 0)), one can always achieve this by a coordi-
nate change. Next, we fix a point x and work at the tangent space TxM =
R

2(y1, y2) at this point. Because of homogeneity, in the polar coordinates
y1 = r cos(θ), y2 = r sin(θ), the function F (y1, y2) is given by rf(θ). The
PDE-system (2.8) reduces in this setting to one ODE on the function f ; let us
find this ODE. By direct calculations, we see that the Hessian (with respect
to the coordinates y1, y2) of the function F is given by

(
Fy1y1 Fy1y2

Fy2y1 Fy2y2

)
=

f(θ) + f ′′(θ)
r

(
sin(θ)2 − cos(θ) sin(θ)

− cos(θ) sin(θ) cos(θ)2

)
. (2.9)

Combining this with (2.8), we see that (2.8) is equivalent to the ODE

(f ′′(θ) + f(θ)) P (θ) = f(θ) sin(θ) + cos(θ)f ′(θ), (2.10)

where

P (θ) = K0 cos(θ)3 + K1 cos(θ)2 sin(θ) + K2 cos(θ) sin(θ)2 + K3 sin(θ)3

and where the constants K0, . . . ,K3 are given by

K0 = −T 2
11,K1 = T 1

11 − 2T 2
12, K2 = 2T 1

12 − T 2
22, K3 = T 1

22.

Thus is a linear ODE of 2nd order, so its solution space is at most two-
dimensional. Actually, locally, near the points where P (θ) �= 0, it is precisely
two-dimensional, but not all local solutions can be extended to global solutions.
Indeed, since the variable θ “lives” on the circle, we are only interested in 2π-
periodic solutions. Besides, since the highest derivative of f comes with the
nontrivial coefficient P (θ), a solution can approach infinity when θ approaches
θ0 such that P (θ0) = 0.

By direct calculations, we see that the function cos(θ) is a solution.

Remark 2.3. Geometrically, the addition of the function cos(θ) to a solution
f corresponds to the addition of the closed 1-form dx1 to F = rf ; this oper-
ation does not change unparameterized geodesics of the metrics F and of the
conformally related metric eσF + eσdx1, see the explanation in Example 1.1.

Our goal is to find all constants K0, . . . ,K3 such that there exists a 2π-
periodic bounded solution f of (2.10) such that f is positive and f ′′ + f is
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positive (the last condition corresponds to the condition that F is strictly
convex, see e.g. (2.9)). We formulate the answer in the following lemma:

Lemma 2.4. For the constants K0, . . . ,K3, there exists a bounded solution f(θ)
of ODE (2.10) such that it is 2π-periodic and such that f and f ′′+f are positive
at all θ if and only if

K0 =
g12g11

g11g22 − g212
, K1 = 1 +

3g212
g11g22 − g212

, (2.11)

K2 =
3g22g12

g11g22 − g212
, K3 =

g222
g11g22 − g212

(2.12)

for a certain positively definite symmetric (constant) 2 × 2-matrix gij. In this
case, the general solution of (2.10) is given by

f(θ) = const1
√

cos(θ)2g11 + 2 cos(θ) sin(θ)g12 + sin(θ)2g22 + const2 cos(θ).
(2.13)

Clearly, the solution (2.13) corresponds to F = const1α + const2β, with
α =

√
gijyiyj and β = dσ = dx1; so Lemma 2.4 together with the explanation

after Example 1.1 imply Theorem 1.2.
Let us prove Lemma 2.4. The direction “⇐=” (that for K0, . . . ,K3 given

by (2.12) the function (2.13) with const1 > 0 and const2 = 0 is a 2π-periodic
solution of (2.10) satisfying the assumptions in Lemma 2.4) is geometrically
clear and can be checked by calculations. Let us prove the other (difficult)
direction: we need to show that the existence of such a solution f implies that
K0, . . . ,K3 are as in (2.12). We first replace the solution f by the function
fs(θ) := f(θ)+f(θ+π). Since the function P (θ) satisfies P (θ+π) = −P (θ), and
also the functions cos(θ) and sin(θ) satisfy cos(θ + π) = − cos(θ), sin(θ + π) =
− sin(θ), all coefficients in the equation (2.10) change the sign after the addition
of π to the coordinate, so the function f(θ + π), and therefore the function
fs(θ) is also a solution. If f is positive, fs is positive; if f ′′ + f is positive,
f ′′

s + fs is positive. If f is 2π-periodic, fs is π-periodic since fs(θ + π) =
f(θ + π) + f(θ + 2π) = fs(θ).

Without loss of generality, we may and will think that f = fs, i.e., in
addition to the above assumptions, we also think that f is π-periodic.

Remark 2.5. The operation f −→ fs corresponds geometrically to the “sym-
metrisation” F (x, y) −→ F (x, y)+F (x,−y). This operation is compatible with
the conformal change of the metric and with the property of the metric to be
Douglas with respect to a connection Γ.

Observe that (f ′ cos(θ)+ f sin(θ))
′
= cos(θ)(f + f ′′). Denoting (f ′ cos(θ)+

f sin(θ)) by H, we obtain H′(t)
cos(θ) = H

P (θ) .

Since H′(θ)
cos(θ) = f ′′(θ) + f(θ) and f ′′ + f > 0, we see that

G(θ) :=
H ′(θ)
cos(θ)

=
H(θ)
P (θ)

(2.14)



226 V.S. Matveev and S. Saberali Arch. Math.

is a smooth positive π-periodic function. Its derivative satisfies

G′(θ) =
H ′(θ)P (θ) − H(θ)P ′(θ)

P (θ)2
(2.14)
=

G cos(θ) − G(θ)P ′(θ)
P (θ)

.

Which implies

(ln(G(θ)))′ =
cos(θ) − P ′(θ)

P
. (2.15)

By our assumptions, the function ln(G(θ)) is smooth and π-periodic, so the
following two conditions are satisfied:

(A)
∫ π/2

−π/2
cos(θ)−P ′(θ)

P (θ) dθ = 0 and

(B) cos(θ)−P ′(θ)
P (θ) is bounded.

Our next goal is to see that the existence of a solution of (2.15) satisfying
(A,B) is a strong condition on K0, . . . ,K3. In fact, we show that K0, . . . ,K3

are given as in (2.12) provided that there exists a solution of (2.15) satisfying
(A,B) .

First, by direct calculations, we observe
cos(θ) − P ′(θ)

P (θ)
=

1 − K1 − 2K2 tan(θ) − 3K3 tan2(θ)

(K0 + K1 tan(θ) + K2 tan2(θ) + K3 tan3(θ)) cos2(θ)
+ 3 tan(θ).

(2.16)
We consider this function restricted to the interval

(−π
2 , π

2

)
. There, tan(θ)

runs over all real values, and the condition (B) implies that the real roots of
the polynomial K0 +K1t+K2t

2 +K3t
3 counted with their multiplicities must

be roots of the polynomial 1−K1 −2K2t−3K3t
2. Since it is at most of degree

2, the cubic polynomial K0 + K1t + K2t
2 + K3t

3 has precisely one real root.
Thus,

K0 + K1 tan(θ) + K2 tan2(θ) + K3 tan3(θ) = (C + D tan(θ)
+ tan2(θ))(B − tan(θ))E,

1 − K1 − 2K2 tan(θ) − 3K3 tan2(θ) = 3(A − tan(θ))(B − tan(θ))E

(for some constants A,B,C,D,E). Then the condition (A) reads (we make the
substitution t = tan(θ) in the integral and also use that the function tan(θ) is
odd so

∫ r

−r
3 tan(θ)dθ = 0 for each r ∈ (−π

2 , π
2

)
.)

π/2∫

−π/2

(A − tan(θ))
(C + D tan(θ) + tan2(θ)) cos2(θ)

dt =

∞∫

−∞

(A − t)
(C + Dt + t2)

dt = 0. (2.17)

Clearly, the above integral is zero if and only if C+Dy+y2 = (N +(A−y)2)
for some constant N . In addition, in order for (N + (A − y)2) to be nonzero
(which is necessary by the condition (B)), we have N = C − A2 > 0 (which in
particular implies C > 0). Thus,

K0 + K1t + K2t
2 + K3t

3 = ((C − A2) + (A − t)2)(B − t)E, (2.18)
1 − K1 − 2K2t − 3K3t

2 = 3(A − t)(B − t)E. (2.19)

Analyzing these two equations, we obtain A = B and E = 1
A2−C .
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Combining the formulas for E,N,B as functions of A,C obtained above
with (2.18, 2.19), we see that K0,K1,K2,K3 are given by the following for-
mulas:

K0 =
AC

A2 − C
, (2.20)

K1 = 1 − 3A2

A2 − C
, (2.21)

K2 =
3A

A2 − C
, (2.22)

K3 =
−1

A2 − C
. (2.23)

By direct calculations, we see that the set of quadruples (K0, . . . ,K3) given
by the formulas (2.20–2.23) coincides with the set of quadruples (K0, . . . ,K3)
given by the formulas (2.11). Indeed, for each A and C, if we substitute in
(2.11)

gij =
(

C −A
−A 1

)
, (2.24)

we obtain (2.20–2.23). Note that the condition C − A2 = N > 0 implies
that (2.24) is positively definite. Thus, the set of “admissible” quadruples
(K0,K1,K2,K3) (such that (2.15) has a solution satisfying (A,B)) is precisely
the set of quadruples (K0,K1,K2,K3) obtained by a symmetric positive defi-
nite matrix gij by (2.20–2.23). Lemma 2.4 and Theorem 1.2 are proved. �

3. Prolongation of (2.8) in higher dimensions and conclusion. Our initial goal
was to describe all nontrivially conformally related Finsler metrics such that
both are Douglas. We achieved this goal in dimension 2; Theorem 1.2 gives
a complete answer. In higher dimension, we do not know whether examples
other than constructed in Example 1.1 exist. In this section, we would like to
explain a way to approach a general problem (or to tackle the dimension 3
case). We start with the following remark:

Remark 3.1. Suppose a function F = F (y) on R
n satisfies the following condi-

tions: it is positive, positively 1-homogeneous, strictly convex, and there exists
a constant tensor T i

jk, symmetric with respect to the lower indexes, and a
nonzero constant covector σi such that (2.8) are fulfilled. Then we can build
a pair of nontrivially conformally related Douglas metric: the first one is the
Minkowski metric given by FM (x, y) = F (y), and the conformally related one
is e

∑
i σix

i

FM (x, y) (the function σ(x) =
∑

i σix
i is chosen such that its dif-

ferential is the constant covector σi). The associated connection of the metric
FM is the flat one Γ ≡ 0, and of the metric σ(x)FM is given by Γ̃i

jk = −T i
jk.

The proof of the statement formulated in the remark is straightforward
and follows from the calculations in §2.1: one simply needs to reverse all the
arguments. The only place where reversing the arguments may require addi-
tional comments (because all others are in fact algebraic manipulations) is
the transition from (2.8) to (2.7). Comparing these two formulas, we see that
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they are equivalent if
(
T i

jkFyiykyj − P̂ (x, y)F
)

= −Fσ0; one can achieve it

by choosing the appropriate function P̂ (x, y).
Note that the Minkowski metric FM is clearly Douglas with Γ ≡ 0. Now,

by the construction of the equations (2.8), we see that the difference between
the spray coefficients of F and of eσF is equal, up to the addition of the
appropriate term of the form P̌ (x, y)yi (the addition of this term does not
change the geodesics), to T i

jk so the metric F̃ = eσF is also Douglas with
Γ̃i

jk = −T i
jk.

We see that the difficulty of our problem is in fact located in one tangent
space; the dependence of the metric on the position is not important at least
for the existence statement. Note that many previous researches working in
this topic used the curvature of the metrics and in particular involved the
dependence of the metric on the point in the calculations; as we explained this
is not necessary.

Let us now study the equations (2.8). The system is clearly overdetermined;
let us calculate the first compatibility conditions. It can be done explicitly, the
answer is given in the following proposition.

Proposition 3.2. In dimension n ≥ 3, equations (2.8) are fulfilled (for a cer-
tain 1-homogeneous smooth function F ) if and only if the following system of
equations is fulfilled

FyiysT i
jkyk − Fyiyj T i

skyk = Fyj σs − σjFys . (3.1)

Proof. The direction “⇐=” is easy: if we contract (3.1) with yj , we obtain
(2.8). Let us proof the statement in the direction “=⇒”. Assume that (2.8)
are satisfied. We differentiate them with respect to y� to obtain

Fyiysy�T i
jkykyj + 2FyiysT i

j�y
j = Fy�σs − σ�Fys − σ0Fysy� . (3.2)

Interchanging the indexes 
 and s in (3.2), we obtain

Fyiysy�T i
jkykyj + 2Fyiy�T i

jsy
j = Fysσ� − σsFy� − σ0Fysy� .

Subtracting this equation from (3.2), we obtain

2FyiysT i
j�y

j − 2Fyiy�T i
jsy

j = 2Fy�σs − 2Fysσ�,

which is clearly equivalent to (3.1). Proposition 3.2 is proved. �

Note that the number of equations in (3.1), together with the equations

Fyiysyi = 0 (3.3)

corresponding to the 1-homogeneity of F , is n(n+1)
2 and is precisely the number

of second derivatives of F with respect to y variables. It is easy to see that for
generic T and in a neighborhood of almost every point y, one can solve the
system with respect to the second derivatives and therefore bring the system
in the Cauchy-Frobenius form, that is, all highest derivatives of the unknown
function F = F (y) are given as functions of the lower derivatives and of the
coordinates y. Indeed, since the system is linear, it is sufficient to show this for
one tensor T i

jk (because the determinant of a matrix is an algebraic expression
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in its components), and it is easy to find T i
jk such that the system has only

one solution; one of the simplest examples is:

T i
jk =

⎧
⎨

⎩

0 if i �= 1,
0 if j �= k,
1 if i = 1 and j = k.

(This example corresponds to the flat metric gij = δij and to the 1-form
σi = (1, 0, . . . , 0)). Now, from the general theory, it follows that for T i

jk such
that the solution on the system is unique, the restriction of the Finsler metric
to the tangent space TxM depends on finitely many parameters (which in our
case are the values of the first y-derivatives at one point of TxM).

Combining Proposition 3.2 with Remark 3.1, we obtain:

Proposition 3.3. Assume there exists a strictly convex positively 1-homogeneous
function F : Rn → R satisfying (3.1) such that the level set {y | F (y) = 1}
is not an ellipsoid. Then there exists a non-Randers metric F such that it is
Douglas and a conformal coefficient such that the conformally related metric
is also Douglas.

We do not know whether such functions exist. The system (3.1, 3.3) is a
linear overdetermined system of PDE and in theory, there exists an algorithmic
way to solve it, but we did not managed to go through the algebraic difficulties
in the case of general T i

jk. Besides, it is not clear how to analyze whether the
solution is indeed strictly convex (note that in dimension two, strict convexity
corresponds to the condition f ′′ +f > 0 and was essentially used in the proof),
and also how to analyze the solutions near the points where the solution of the
system (3.1, 3.3) is not unique (in dimension two, the analog of such points
are the points where the coefficient of f ′′ vanishes; they play an important role
in the proof). But for explicitly given “special metrics” (i.e., (α, β) metrics),
in order to understand whether one can construct nontrivially conformally
equivalent Douglas metrics in their class, one should simply put the form of
the metric in (3.1) and then analyze the obtained equations.
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