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Unmixedness and arithmetic properties of matroidal ideals

Hero Saremi and Amir Mafi

Abstract. Let R = k[x1, . . . , xn] be the polynomial ring in n variables over
a field k and let I be a matroidal ideal of degree d. In this paper, we study
the unmixedness properties and the arithmetical rank of I. Moreover, we
show that ara(I) = n − d + 1. This answers the conjecture made by
Chiang-Hsieh (Comm Algebra 38:944–952, 2010, Conjecture).
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Introduction. Throughout this paper, we assume that R = k[x1, . . . , xn] is
the polynomial ring in n variables over a field k with the maximal ideal m =
(x1, . . . , xn), I a monomial ideal of R, and G(I) the unique minimal monomial
generators set of I.

A monomial ideal I generated in a single degree is a polymatroidal ideal
when it satisfies the following conditions: for all monomials u, v ∈ G(I) with
degxi

(u) > degxi
(v), there exists an index j such that degxj

(v) > degxj
(u)

and xj(u/xi) ∈ I (see [10] or [8]). A square-free polymatroidal ideal is called
a matroidal ideal. The product of polymatroidal ideals is again polymatroidal
(see [6, Theorem 5.3]). In particular, each power of a polymatroidal ideal is
polymatroidal. Also, I is a polymatroidal ideal if and only if (I : u) is a poly-
matroidal ideal for all monomials u (see [1, Theorem 1.1]). If I is a matroidal
ideal of degree d, then depth(R/J) = d− 1 and pd(R/I) = n− d+1 [5, Theo-
rem 2.5]. A monomial ideal I is called unmixed if all prime ideals in Ass(R/I)
have the same height. If I is Cohen-Macaulay, i.e., the quotient ring R/I is
Cohen-Macaulay, then I is unmixed.

Herzog and Hibi [9] proved that a polymatroidal I is Cohen-Macaulay if
and only if I is a principal ideal, a Veronese ideal, or a square-free Veronese
ideal. They gave a counterexample which is an unmixed matroidal ideal but
which is not Cohen-Macauly in the case n = 6. Herzog and Hibi [9] leave as
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a problem the classification of all unmixed polymatroidal ideals. After that,
Vlǎdoiu [16] studied the unmixed polymatroidal ideals and he showed that an
ideal of Veronese type is unmixed if and only if it is Cohen-Macaulay. The
arithmetical rank of I is defined as follows:
ara(I) := min{t ∈ N : there exist a1, . . . , at ∈ R such that

√
(a1, . . . , at) =√

I}.
Note that ideals with the same radical have the same arithmetical rank. It

is well-known that ht(I) ≤ ara(I) ≤ µ(I), where µ(I) is the minimal number
of generators of I and ht is the height of I. If I is a square-free monomial ideal
in R, then by using [12] and the Auslander-Buchsbaum formula, we have the
following well-known inequalities: ht(I) ≤ pd(R/I) ≤ ara(I) ≤ µ(I), where pd
is the projective dimension of I. In particular, I is Cohen-Macaulay if and only
if ht(I) = pd(R/I). An ideal I is called a set-theoretic complete intersection
when ara(I) = ht(I).

Kimura et al. [11] raised the following question: Let I be a square-free mono-
mial ideal in R. When does ara(I) = pd(R/I) hold? In particular, suppose
that R/I is Cohen-Macaulay. When is I a set-theoretic complete intersection?
A considerable number of studies have been made on this question (see, for
example, [3,4,11], and [5]). The above question does not always hold as was
shown by [17]. Chiang-Hsieh [5] proved that if I is a matroidal ideal of degree
d, then ara(I) = pd(R/I) provided that one of the following conditions holds:
(i) I is square-free Veronese; (ii) I = J1J2 · · · Jd, where each Ji is generated
by h distinct variables; (iii) d = 2. In the end of her article, she proposed the
following conjecture:

Conjecture: Let I be a full-supported matroidal ideal of degree d. Then ara(I) =
n − d + 1.

The main purpose of this note is to study the unmixed properties and
arithmetical rank of matroidal ideals. Also, we give an affirmative answer to
the above conjecture. For any unexplained notion or terminology, we refer the
reader to [8,15]. Several explicit examples were performed with help of the
computer algebra systems Macaulay2 [7].

1. Unmixed matroidal ideals. Let I be a monomial ideal of R and G(I) =
{u1, . . . , ut}. Then we set [n] = {x1, . . . , xn} and supp(I) = ∪t

i=1 supp(ui),
where supp(u) = {xi : u = xa1

1 · · ·xan
n , ai �= 0}. Throughout this paper, we

assume that all polymatroidal ideals are full-supported, that is, supp(I) = [n].

Lemma 1.1. Let I be a matroidal ideal of degree d and let x, y be two variables
in R such that xy � u for all u ∈ G(I). Then I : x = I : y. In particular, if
xu ∈ G(I) for some monomial element u of degree d − 1, then yu ∈ G(I).

Proof. Since xy � u for all u ∈ G(I), we have (I : y) = ((I : y) : x) = (I : xy) =
((I : x) : y) = (I : x). This completes the proof. �

The following result was proved in [5, Theorem 3.2], we give an easier proof.

Theorem 1.2. Let I be a matroidal ideal of degree d = 2. Then there are subsets
S1, . . . , Sm of [n] such that the following conditions hold:
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(i) m ≥ 2 and |Si| ≥ 1 for each i;
(ii) Si ∩ Sj = ∅ for i �= j and ∪m

i=1Si = [n];
(iii) xy ∈ I if and only if x ∈ Si and y ∈ Sj for i �= j;
(iv) xy /∈ I if and only if x, y ∈ Si for some i.

Proof. Since m /∈ Ass(R/I), we have I = (I : m). Therefore there exists m ≤ n
such that I = ∩m

i=1(I : xi) is a minimal intersection. For 1 ≤ i ≤ m, we consider
Si = [n]\G(I : xi). Thus m ≥ 2 and |Si| ≥ 1 for each i. Hence (i) holds.
Suppose y ∈ Si∩Sj for i �= j. Then y /∈ G(I : xi)∪G(I : xj) and so yxi, yxj /∈ I
for i �= j. Therefore (I : xi) = (I : xiy) = (I : y) = (I : xjy) = (I : xj) and
this is a contradiction. Thus Si ∩ Sj = ∅ for i �= j. If y ∈ ∩m

i=1G(I : xi), then
y ∈ G(I : xi) for all 1 ≤ i ≤ m and so yxi ∈ I. Therefore y ∈ I = ∩m

i=1(I : xi)
and this is a contradiction. Hence ∩m

i=1G(I : xi) = ∅ and so ∪m
i=1Si = [n]. Thus

(ii) holds. If xy ∈ I, then by definition of Si, it is clear that x ∈ Si and y ∈ Sj

for i �= j. Conversely, let x ∈ Si and y ∈ Sj for i �= j. Then xxi, yxj /∈ I for
i �= j and so (I : xi) = (I : x) and (I : y) = (I : xj). If xy /∈ I, then by Lemma
1.1, (I : x) = (I : y). Therefore (I : xi) = (I : xj) and this is a contradiction.
Thus (iii) holds.
(iv) If x, y ∈ Si for some i, then it is clear that xy /∈ I. Conversely, if xy /∈ I
then by Lemma 1.1, (I : x) = (I : y) and so x, y ∈ Si for some i. This completes
the proof. �

In the following, we assume that m is the number of Si as we use in Theorem
1.2.

Corollary 1.3. Let I be a matroidal ideal of degree d = 2. Then I is an unmixed
ideal if and only if m(n−ht(I)) = n. In particular, if n is a prime number and
I is an unmixed matroidal ideal of degree d = 2, then I is Cohen-Macaulay.

Proof. By using Theorem 1.2, ∪m
i=1Si = [n] and Si = [n]\G(I : xi). Therefore

I is an unmixed ideal if and only if |G(I : xi)| = |G(I : xj)| = ht(I) for
all i �= j. Since |Si| = n − |G(I : xi)|, it follows that if I is unmixed, then
m(n − ht(I)) = n. Conversely, suppose that m(n − ht(I)) = n. It is clear
that ht(I) ≤ |G(I : xi)| for all i. Let us assume the contrary that I is not
unmixed. Then there exists 1 ≤ i ≤ m such that ht(I) < |G(I : xi)|. Since
∪m
i=1Si = [n] and |Si| = n − |G(I : xi)| for all i, we have n < m(n − ht(I))

and this is a contradiction. Therefore I is unmixed. If n is a prime number,
then ht(I) = n−1. Since depth(R/I) > 0, by using the Auslander-Buchsbaum
formula, it follows that ht(I) = pd(R/I). Therefore I is Cohen-Macaulay. �

It is know that for n = 6, there is a counter-example which is an unmixed
matroidal ideal but which is not Cohen-Macaulay. For n = 4, we consider
I = (x1x3, x1x4, x2x3, x2x4) such that I is an unmixed matroidal ideal but it
is not Cohen-Macaulay.

Corollary 1.4. Let I be an unmixed matroidal ideal of degree d = 2. Then
|Ass(R/I)| = m. In particular, if I is a square-free Veronese ideal,
then |Ass(R/I)| = n.
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Proof. By using Theorem 1.2 and Corollary 1.3, it is clear that |Ass(R/I)| =
m. If I is a square-free Veronese ideal of degree d = 2, then ht(I) = pd(R/I) =
n − 1. Thus by Corollary 1.3, we have m = n. This completes the proof. �

Theorem 1.5. Let I be a matroidal ideal of degree d ≥ 2. Then I is an unmixed
ideal if and only if (I : xi) is unmixed and ht(I) = ht(I : xi) for all 1 ≤ i ≤ n.

Proof. (=⇒): Let I be an unmixed matroidal ideal. By using [1, Corollary 1.2],
(I : xi) is a matroidal ideal. From the exact sequence

0 −→ R/(I : xi)
xi−→ R/I −→ R/(I, xi) −→ 0,

we have Ass(R/(I : xi)) ⊆ Ass(R/I). Since I ⊆ (I : xi), it follows that (I : xi)
is unmixed and ht(I) = ht(I : xi) for all 1 ≤ i ≤ n.
(⇐=): Let p ∈ Ass(R/I). By using [14, Lemma 11], we have Ass(R/I) =
∪n
i=1 Ass(R/(I : xi)). Then p ∈ Ass(R/(I : xi)) for some i and so ht(I : xi) =

ht(p). Therefore ht(I) = ht(p) and so I is an unmixed ideal, as required. �

Example 1.6. Let n = 5 and I = (x1x3, x1x4, x1x5, x2x3, x2x4, x2x5). Then I
is a matroidal ideal such that all (I : xi) unmixed ideals for 1 ≤ i ≤ 5 but I is
not unmixed.

The following result extends [2, Lemma 2.2].

Proposition 1.7. Let I be a polymatroidal ideal of degree d = 2. If Ass(R/I) =
min Ass(R/I), then I is a matroidal ideal or I = m2.

Proof. If m ∈ Ass(R/I), then
√
I = m. Thus by using [1, Lemma 2.2], we have

I = m2. If m /∈ Ass(R/I), then I = (I : m) and so I = ∩n
i=1(I : xi). By [1,

Theorem 1.1], (I : xi) is polymatroidal of degree d = 1. Therefore all (I : xi)
are square-free and so I is square-free. This completes the proof. �

Example 1.8. Let n = 3 and I = (x1x2, x1x3). Then I is a matroidal ideal of
degree 2 such that Ass(R/I) = min Ass(R/I) but I is not unmixed.

Example 1.9. Let n = 3 and I = (x2
1x2, x

2
1x3). Then I is a polymatroidal ideal

of degree d = 3 such that Ass(R/I) = min Ass(R/I) but neither I is matroidal
nor I = m3.

2. Arithmetical rank of matroidal ideals. We start this section by the following
lemma which is proved by Schmitt and Vogel [13].

Lemma 2.1. Let P be a finite subset of R and let P0, P1, . . . , Pr be subsets of
P such that the following conditions hold:
(a) ∪r

i=0Pi = P ;
(b) P0 has exactly one element;
(c) If p and p′′ are different elements of Pi (0 < i ≤ r), then there is an

integer j with 0 ≤ j < i and an element p′ ∈ Pj such that pp′′ ∈ (p′).

Let qi =
∑

p∈Pi
p. Then

√
(P ) =

√
(q0, . . . , qr).

Lemma 2.2. Let I be a square-free monomial ideal of R. If d = min{deg(u) :
u ∈ G(I)} ≥ 2, then ara(I) ≤ n − d + 1.
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Proof. Let Mi = {u ∈ I : u is a square-free element and deg(u) = d + i − 1}
for all i = 1, 2, . . . , n − d + 1. Then Mn−d+1 = {x1 · · ·xn}. Now, we put

Pn−d+1−i = Mi for all i = 1, 2, . . . , n − d + 1. Since
√
I =

√
(∪n−d

j=0 Pj), by
using Lemma 2.1, we have ara(I) ≤ n − d + 1. �

The following result answers the conjecture made by H.J. Chiang-Hsieh in
[5, Conjecture].

Theorem 2.3. Let I be a matroidal ideal of degree d. Then ara(I) = n− d+1.

Proof. By Lemma 2.2 and [12], we have pd(R/I) ≤ ara(I) ≤ n − d + 1. Since
I is a matroidal ideal of degree d, we have pd(R/I) = n − d + 1. Therefore
ara(I) = n − d + 1, as required. �
Corollary 2.4. Let I be a matroidal ideal of degree d. Then I is square-free
Veronese if and only if I is a set-theoretic complete intersection.

Proof. If I is a set-theoretic complete intersection, then I is Cohen-Macaulay
and so by [9, Theorem 4.2], I is square-free Veronese. Conversely, let I be
square-free Veronese. Then I is Cohen-Macaulay and so ht(I) = pd(R/I). By
Theorem 2.3, we have ht(I) = ara(I), as required. �
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[16] Vlǎdoiu, M.: Equidimensional and unmixed ideals of Veronese type. Comm.

Algebra 36, 3378–3392 (2008)

[17] Yan, Z.: An étale analog of the Goresky–MacPherson formula for subspace ar-

rangements. J. Pure Appl. Algebra 146, 305–318 (2000)

Hero Saremi
Department of Mathematics
Sanandaj Branch
Islamic Azad University
Sanandaj
Iran
e-mail: hero.saremi@gmail.com

Amir Mafi
Department of Mathematics
University of Kurdistan
P.O. Box 416
Sanandaj
Iran
e-mail: a mafi@ipm.ir

Received: 7 May 2019


	Unmixedness and arithmetic properties of matroidal ideals
	Abstract
	Introduction
	1. Unmixed matroidal ideals
	2. Arithmetical rank of matroidal ideals
	Acknowledgements
	References




