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Homotopy classes of proper maps out of vector bundles
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Abstract. In this paper, we classify the homotopy classes of proper maps
E → R

k, where E is a vector bundle over a compact Hausdorff space. As
a corollary, we compute the homotopy classes of proper maps R

n → R
k.

We find a stability range of such maps. We conclude with some remarks
on framed submanifolds of non-compact manifolds, the relationship with
proper homotopy classes of maps, and the Pontryagin–Thom construc-
tion.
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1. Introduction. A continuous map f : X → Y is called proper if f−1(C) is
compact for all compact subsets C of Y . A homotopy of proper maps is a
homotopy F : [0, 1] × X → Y such that F is a proper map. The assumption
that a homotopy is a homotopy of proper maps is stronger than the assumption
that the homotopy is homotopy through proper maps, i.e. the assumption that
the maps Ft : X → Y are proper for every t ∈ [0, 1]. A simple example of a
homotopy through proper maps that is not a homotopy of proper maps is the
map F : [0, 1] × R → R defined by F (t, x) = tx2 + x. To see this, note that
the sequence ( 1

n ,−n) is unbounded, but F ( 1
n ,−n) = 0. This example is closely

related to the compactness issues discussed in [5].
We denote by [X,Y ] the set of (unbased) homotopy classes of maps from

X to Y and with [X,Y ]prop the set of (unbased) homotopy classes of proper
maps. For the set of homotopy classes of based maps between pointed spaces
we write 〈X,Y 〉.

In [1], we classified the homotopy classes of proper Fredholm maps of
Hilbert manifolds into its model (real and separable) Hilbert space in terms of
a suitable notion of framed cobordism. This classification uses an infinite di-
mensional and proper analogue of the Pontryagin–Thom collapse map, which is
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due to Elworthy and Tromba [3], see also the paper of Gęba [4]. The existence
of the collapse map hinges on the fact that an infinite dimensional Hilbert
space is diffeomorphic to the Hilbert space minus a point. This is of course
not true for a finite dimensional vector space and the construction does not
work in this setting. As we will discuss in Section 4, even though the framed
cobordism class of a regular value is an invariant of the homotopy class of a
proper map in the finite dimensional setting, the framed cobordism class is not
able to distinguish all proper homotopy classes of proper maps into R

k, nor
do all framed submanifolds come from proper maps. Thus there does not exist
a finite dimensional proper Pontryagin–Thom construction, which is why we
are not able to compute [E,Rk]prop for all open finite dimensional manifolds
E using a Pontryagin–Thom collapse map. In this paper, we are content with
the classification of [E,Rk]prop where E is a real vector bundle over a com-
pact Hausdorff space M . This classification does not use a Pontryagin–Thom
collapse map.

Theorem 1.1. Let E → M be a normed real vector bundle over a compact
Hausdorff space M . Denote by S(E) → M the associated sphere bundle of unit
vectors. Then the set [E,Rk]prop is in bijective correspondence with
[S(E), Sk−1].

We have the following corollary of Theorem 1.1 by taking M to be a point
and using the fact that based and unbased homotopy classes of maps from
spaces to positive dimensional spheres coincide, cf. [6, Section 4A].

Corollary 1.2. [Rn,Rk]prop is in bijective correspondence with [Sn−1, Sk−1].
Thus if n > 1 and k > 1, we have that [Rn,Rk]prop is in bijection with
πn−1(Sk−1). The set [Rn,R]prop has two elements if n > 1 and four elements
if n = 1.

A proper map between non-compact and locally compact Hausdorff spaces
extends to a continuous map between the one point compactifications by send-
ing infinity to infinity. Similarly a homotopy of proper maps induces a homo-
topy in the one point compactification.

The one point compactification of a real vector bundle E → M over a com-
pact Hausdorff space M equals the Thom space Th(E) of the vector bundle
and the one point compactification of R

k is homeomorphic to Sk by stere-
ographic projection. Thus we obtain a map Q : [E,Rk]prop → 〈Th(E), Sk〉.
In Section 3, we show that the map Q is bijective if k is sufficiently large.
If E = R

n, the map Q is nothing but the suspension πn−1(Sk−1) → πn(Sk)
under the identification of [Rn,Rk]prop and πn−1(Sk−1) of Corollary 1.2.

For l sufficiently large, the sets [E⊕R
l,Rk+l]prop and [E⊕R

l+1,Rk+l+1]prop
are in bijection. Thus it makes sense to define the stable proper homotopy
classes as

[E,Rk]Sprop = lim
l→∞

[E ⊕ R
l,Rk+l]prop,

which are in bijection with the stable cohomotopy groups πk
S(Th(E)), cf. Corol-

lary 3.2. Using Atiyah duality, we obtain the following result.
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Theorem 1.3. Let M be an m-dimensional compact manifold with boundary
∂M . Let E be the normal bundle of M of some embedding of M into R

m+n.
Then there is a bijection of [E,Rk]Sprop with πS

n+m−k(M/∂M).

In Section 4.4, we speculate on the classification problem in the case that
E is an arbitrary open manifold.

2. The proof of Theorem 1.1. For the remainder of the paper, E → M denotes
a normed real vector bundle over a compact Hausdorff space M . The associated
sphere and disk bundles of radius R > 0 are

SR(E) = {v ∈ E | ||v|| = R} and BR(E) = {v ∈ E | ||v|| < R}.

We write S(E) for S1(E) and B(E) for B1(E).
Given a homotopy F : [0, 1] × S(E) → Sk−1, we define the homotopy

PF : [0, 1] × E → R
k of proper maps by

PF (t, v) =

{
||v||F

(
t, v

||v||
)

, v �= 0,

0, v = 0.

Compact subsets of E are characterized as follows: A subset K ⊆ E is compact
if and only if it is closed and bounded. Here bounded means that K ⊆ BR(E)
for some R > 0. As PF (·, t) is norm preserving for all t, it follows that PF is
proper.

The same construction assigns to a map f : S(E) → Sk−1 a proper map
Pf : E → R

k and it therefore induces a map P : [S(E), Sk−1] → [E,Rk]prop.
We will show that P is bijective. Let us start with the injectivity. We

need to show that f0 and f1 are homotopic if g0 = Pf0 and g1 = Pf1 are
homotopic as proper maps. Let G : [0, 1] × E → R

k be a homotopy of proper
maps between g0 and g1. Then there exists an R > 0 such that G−1(B(Rk)) ⊆
[0, 1] × BR(E). It follows for any v ∈ E with ||v|| = R that G(t, v) �= 0. The
map F : [0, 1] × S(E) → Sk−1 given by

F (t, x) =
G(t, Rx)

||G(t, Rx)||
is a homotopy between f0 and f1, hence P is injective.

To show that P is surjective, we need to show that, given a proper map
g : E → R

k, there exists a homotopy of proper maps from g to Pf , where f
is some map f : S(E) → Sk−1. As g is proper, there exists an R > 0 such
that g−1(B(Rk)) ⊆ BR(E). The sphere bundle SR(E) is compact, hence there
exists an r ≥ 1 such that

1 ≤ ||g(v)|| ≤ r, for all v ∈ SR(E).

Consider the map h : Rk → R
k defined by

h(x) =

⎧⎪⎨
⎪⎩

x, ||x|| ≤ 1,
x

||x|| , 1 ≤ ||x|| ≤ r,
x
r , r ≤ ||x|| ,
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and define g1 : E → R
k by g1(v) = h ◦ g(Rv). As h is homotopic as proper

map to the identity via (t, x) �→ (1 − t)h(x) + x, it follows that the map
g1 is proper homotopic to g. Note that if ||v|| < 1, then ||Rv|| < R and
therefore ||g(Rv)|| < 1. We see that g1(B(E)) ⊆ B(Rk) and similarly that
g1(S(E)) ⊆ Sk−1. Define G1 : [0, 1] × E → E by

G1(t, v) =

⎧⎨
⎩

||g1(v)||
||g1((1−t)v+ t

||v||v)||g1
(
(1 − t)v + t

||v||v
)

, ||v|| ≥ 1,

g1(v), ||v|| ≤ 1.

The equation ||G1(t, v)|| = ||g1(v)|| implies that G−1
1 (Bs(Rk)) ⊆ [0, 1] ×

g−1
1 (Bs(Rk)) for all s and hence that G1 is proper if g1 is. Thus g2 : E → R

k,
given by g2(x) = G1(1, x), is a proper map that is proper homotopic to g. Let
f : S(E) → Sk−1 be the map obtained by restriction of g2. Consider

G2(t, v) = (1 − t)g2(v) + tPf(v).

We want to prove that G2 is proper. Note that G2 sends [0, 1] × B(E) to B(Rk)
and [0, 1]×(E \B(E)) to R

k \B(Rk). The map G2

∣∣
[0,1]×B(E)

: [0, 1] × B(E) →
B(Rk) is proper as the domain is compact. We conclude that G2 is proper if
and only if

G2

∣∣
[0,1]×(E\B(E))

: [0, 1] × (E \ B(E)) → R
k \ B(Rk)

is proper.
For this, it is sufficient to show that for all s > 1, there exists an S > 1

such that G−1
2 (Bs(Rk) \ B(Rk)) ⊆ [0, 1] × (BS(E) \ B(E)). Note that for all

(t, v) ∈ [0, 1] × (E \ B(E)), we have that

G2(t, v) = ((1 − t) ||g1(v)|| + t ||v||) f

(
v

||v||
)

.

Consider all (t, v) ∈ [0, 1]×(E\B(E)) such that ||G2(t, v)|| ≤ s. As
∣∣∣∣∣∣f( v

||v|| )
∣∣∣∣∣∣ =

1, this amounts to

(1 − t) ||g1(v)|| + t ||v|| ≤ s.

Suppose the set of solutions of this equation is not contained in [0, 1]×(BS(E)\
B(E)) for any S. Then we have a sequence (tn, vn) of solutions such that
||vn|| ≥ n. Without loss of generality we take a subsequence such that tn
converges to t by the compactness of [0, 1]. This subsequence will also satisfy
||vn|| ≥ n. If t > 0, then there exists an N such that for all n ≥ N , we have
tn > t

2 and

||vn|| ≤ 1
tn

((1 − tn) ||g1(vn)|| + tn ||vn||) ≤ 2s

t
,

which contradicts the unboundedness of vn. If t = 0, then there exists an N
such that for all n ≥ N , the sequence satisfies tn < 1

2 and

||g1(vn)|| ≤ 1
(1 − tn)

((1 − tn) ||g1(vn)|| + tn ||vn||) ≤ 2s.
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The sequence g1(vn) is therefore bounded and as the map g1 is proper, it
follows that the sequence vn is also bounded. This contradicts the assumption
that vn is unbounded. This means that G2

∣∣
[0,1]×(E\B(E))

is proper. Thus Pf

is proper homotopic to g and P : [S(E), Sk−1] → [E,Rk]prop is surjective. We
have already shown that P is injective and Theorem 1.1 follows.

3. The one point compactification and stable (co)homotopy. Recall that the
one point compactification of a non-compact, locally compact Hausdorff space
X is the space X∗ = X ∪ {∞} equipped with the following topology. All open
sets U of X are declared open in X∗ along with all sets of the form (X\C)∪{∞}
for all compact sets C in X. Proper maps between non-compact, locally com-
pact Hausdorff spaces induce continuous maps between the one point compact-
ifications by imposing that ∞ is mapped to ∞. A homotopy of proper maps
F : [0, 1] × X → Y induces a continuous map F ∗ : ([0, 1] × X)∗ → Y ∗. But
([0, 1]×X)∗ ∼= ([0, 1]×X∗)/[0, 1]×{∞}. By the universal property of the quo-
tient topology, we therefore also obtain a continuous map F ∗ : [0, 1]×X∗ → Y ∗

which sends every (t,∞) to ∞. A homotopy of proper maps between unbased
spaces is mapped to a based homotopy between the based spaces. The one point
compactification of a vector bundle E → M over a compact Hausdorff space
M is called the Thom space of the bundle and we will write Th(E) := E∗.
Stereographic projection shows that (Rk)∗ ∼= Sk and in more generality, it
holds that Th(E) ∼= B(E)/S(E). As was mentioned in the introduction, the
map that forgets the basepoint induces a bijection between 〈Th(E), Sk〉 and
[Th(E), Sk] if k ≥ 1. Thus from the one point compactification we obtain a
map Q : [E,Rk]prop → [Th(E), Sk].

In our setting there are three suspension maps, which we all denote by S.
To a map g : S(E) → Sk−1 we associate the map Sg : S(E ⊕ R) → Sk by

Sg(v, s) =

{
(||v|| g

(
v

||v||
)

, s), v �= 0,

(0, s), v = 0,

where we have normed the vector bundle E⊕R via the formula ||(v, t)|| = ||v||+
|t|. To a map f : Th(E) → Sk we associate the map Sf : Th(E ⊕ R) → Sk+1

via the same formula and to a proper map f : E → R
k we associate the proper

map Sf : E ⊕ R → R
k+1 by Sf(x, s) = (f(x), s). The following diagram is

commutative

[S(E), Sk−1]

S

��

P �� [E,Rk]prop

S

��

Q
�� [Th(E), Sk]

S

��

[S(E ⊕ R), Sk] P �� [E ⊕ R,Rk+1]prop
Q

�� [Th(E ⊕ R), Sk+1].

(1)

In the proof of Theorem 1.1, we saw that the maps P are bijections. We now
investigate when the other maps in the diagram are bijective.

Let us now assume that k ≥ 2, that M is a finite connected CW-complex
of dimension m, and that E is a normed real vector bundle of rank n. Since
k ≥ 2, based and unbased homotopy classes into Sk−1 and Sk coincide, as well
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as based or unbased proper homotopy classes into R
k and R

k+1. We denote
by

πk−1(S(E)) := 〈S(E), Sk−1〉
the (k − 1)-th cohomotopy set of S(E). We refer to [7, Chapter VII] for infor-
mation on the cohomotopy sets we use below. The cohomotopy set πk−1(S(E))
is not always a group, but it is if m+n ≤ 2k−3. We investigate the long exact
sequence of the pair (B(E), S(E)) if m + n ≤ 2k − 3:

πk−1(B(E)) → πk−1(S(E)) δ−→ πk(B(E), S(E)) → πk(B(E)). (2)

Since B(E) deformation retracts to M and Sk−1 is (k − 2)-connected, we see
that if m ≤ k − 2, there are isomorphisms

πk−1(B(E)) ∼= πk−1(M) ∼= 0 and πk(B(E)) ∼= πk(M) ∼= 0.

Thus we conclude that for 2k ≥ m + 3 + max(n,m + 1), there is an iso-
morphism πk−1(S(E)) ∼= πk(B(E), S(E)). The relative cohomotopy set is
the cohomotopy set of the quotient for nice spaces, thus πk(B(E), S(E)) =
πk(B(E)/S(E)) = πk(Th(E)). The coboundary map is an isomorphism
πk−1(S(E)) ∼= πk(Th(E)) in the dimension range. Let us consider the based
version of Diagram (1)

πk−1(S(E))

S

��

QP
�� πk(Th(E))

S

��

πk(S(E ⊕ R))
QP

�� πk+1(Th(E ⊕ R)).

(3)

The horizontal maps can be identified with the coboundary map δ in (2)
and therefore the horizontal maps are isomorphisms in the right dimension
range. Freudenthal’s suspension theorem, cf. [8], states that if m+n ≤ 2k − 2,
the suspension map πk(Th(E)) → πk+1(S Th(E)) ∼= πk+1(Th(E ⊕ R)) is an
isomorphism. Combining all this information gives us the following theorem.

Theorem 3.1. Let M be a finite CW complex of dimension m and E a normed
real vector bundle over M of rank n. Let k ≥ 2 and suppose that 2k ≥ m+3+
max(n,m + 1). Then all maps in Diagram (1) are bijections.

This theorem expresses a stability phenomenon: For all l sufficiently large,
the map Q induces bijections [E ⊕R

l,Rk+l]prop → [E ⊕R
l+1,Rk+l+1]prop. We

define the stable homotopy classes of proper maps as

[E,Rk]Sprop = lim
l→∞

[E ⊕ R
l,Rk+l]prop.

Recall that the stable homotopy and cohomotopy groups of a space X are
similarly defined

πS
k (X) = lim

l→∞
〈SlSk, SlX〉 and πk

S(X) = lim
l→∞

〈SlX,SlSk〉.
A direct corollary of Theorem 3.1 is then
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Corollary 3.2. Let M be a finite CW complex of dimension m and E a normed
real vector bundle of rank n. Then Q induces a bijection of [E,Rk]Sprop with
πk

S(Th(E)).

Stable homotopy and cohomotopy groups are related via Spanier–White-
head duality, which we recall now. We refer to the original references [11,12]
for these statements. Let i : X → SN be a sufficiently nice embedding of a
sufficiently nice space X into a sphere (e.g. a smooth embedding of a com-
pact manifold, or the inclusion of a CW complex as a subcomplex). Then the
space DNX = SN \ i(X) is a Spanier–Whitehead dual of X. The stable homo-
topy type of DNX is well defined: It is independent of the dimension N and
the choice of embedding. The fundamental result is that liml→∞[SlX,SlY ] is
in bijection with liml→∞[SlDNY, SlDNX]. In particular, the stable cohomo-
topy groups of X are the stable homotopy groups of DNX with a dimension
shift. Now let us assume that M is a compact manifold with boundary ∂M .
There is a unique (up to isotopy) embedding of M into R

m+n for n suffi-
ciently large. Let E be the normal bundle of such an embedding, i.e. let E
be the stable normal bundle of M . Atiyah [2, Proposition 3.2] showed that
SDm+n(M/∂M) � Th(E). If the boundary ∂M is empty, we should interpret
M/∂M as M with a disjoint basepoint added. The Spanier–Whitehead dual
of a sphere is Dn+mSn+m−k = Sk−1. We have

πS
n+m−k(M/∂M) := lim

l→∞
〈SlSn+m−k, SlM/∂M〉

= lim
l→∞

〈SlDn+m(M/∂M), SlDn+mSn+m−k〉
= lim

l→∞
〈Sl−1 Th(E), SlSk−1〉

= lim
l→∞

〈Sl Th(E), SlSk〉
= πk

S(Th(E)).

Theorem 3.1 states that πk
S(Th(E)) is in bijection with [E,Rk]Sprop. We have

proven Theorem 1.3.

4. Framed submanifolds and cobordisms. Pontryagin [10] showed that homo-
topy classes of maps M → Sk, where M is a closed manifold, are in one to one
correspondence with framed cobordism classes of (n − k)-dimensional mani-
folds in M . Framed cobordism classes are also invariants of homotopy classes
of proper maps E → R

k but they are not complete, nor is every cobordism
classed realized by some proper map. In this section, we discuss this.

4.1. Invariants of proper maps: framed submanifolds and cobordisms. Let M
be a smooth m-dimensional manifold and N be a connected oriented smooth k-
dimensional manifold. Every continuous proper map is homotopic as a proper
map to a smooth proper map, hence we can consider only proper smooth
maps in the proper homotopy classification of proper maps. Suppose that
f : M → N is a smooth map that is proper. Proper maps between manifolds
are closed maps. The set of critical points is closed, hence the set of regular
values of a proper map is open. By Sard/Brown’s theorem, regular values of
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f are residual, and by Baire’s category theorem, it follows that the regular
values are dense. Thus the set of regular values of a proper map is open and
dense. An example of a smooth function R>0 → R whose set of regular values
is not open is x �→ 1

x(2+sin(x)) , but of course this map fails to be proper and
closed. The preimage of a regular value y is a closed submanifold X = f−1(y)
of dimension m − k. Such a manifold can be framed : Let e1, . . . , ek be a basis
of TyN that is compatible with the orientation of N . Then for every x ∈ X,
the differential of f induces an isomorphism dfx : NxX → TyN of the normal
space NxX to X at x with TyN . Then (νf )x = ((dfx)−1(e1), . . . , (dfx)−1(ek))
is an ordered basis of the normal space NxX at x. Letting x vary, this patches
together to a map νf that trivializes the normal bundle of X. The map νf is
called the framing of X. We call (X, νf ) a Pontryagin manifold of f and it
depends on the choices we made.

Let F : [0, 1] × M → N be a homotopy of proper maps between f0 =
F (0, ·) and f1 = F1(1, ·). By a reparametrization of the homotopy variable,
we may assume that F (t, x) = f0(x) and F (1 − t, x) = f1(x) for t small.
If y is a regular value of the maps F, f0, and f1 simultaneously, then (W =
F−1(y), νF ) is a framed compact submanifold with framed boundary (X0 =
f−1
0 (y), νf0) and (X1 = f−1

0 (y), νf1). The framed manifold (W, νF ) is a framed
cobordism between the framed manifolds (X0, νf0) and (X1, νf1). Being framed
cobordant, defines an equivalence relation on the set of framed submanifolds
and the framed cobordism class of a Pontryagin manifold of a proper map
f : M → N does not depend on the choice of the regular value y and the
choice of the oriented basis of TyN and is an invariant of the proper homotopy
class of f . We denote the set of framed (m−k)-dimensional closed submanifolds
of M up to framed cobordism by Ωfr

m−k(M).

4.2. The Pontryagin–Thom construction. The framed cobordism class of the
preimage of a regular value is in some cases enough to recover the homotopy
class of the map: Suppose M is closed and (X, ν) is a (m − k)-dimensional
framed submanifold. Out of this data we can construct a (proper) map f :
M → Sk, for which (X, ν) is a Pontryagin manifold: We define f to map X to
the northpole y of Sk and describe what happens in a tubular neighborhood
of X. The framing ν defines, for each point x ∈ X, a diffeomorphism of the
normal space around x to a neighborhood of y. We use this to extend the map
to the tubular neighborhood of X in M . One can arrange this in such a way
that if one approaches the boundary of the tubular neighborhood, the image
under f converges to the south pole. The map f can now be extended to the
whole of M by mapping everything outside the tubular neighborhood to the
south pole. The northpole is a regular value for f and the Pontryagin manifold
at the north pole is exactly the framed manifold (X, ν). This construction also
works for framed cobordisms. This proves the following theorem.

Theorem 4.1. The Pontryagin–Thom construction gives a one to one corre-
spondence between the set Ωfr

m−k(M) of framed cobordisms in M and the set
[M,Sk] of homotopy classes of maps from M to Sk.
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For more details of the Pontryagin–Thom construction in this classical set-
ting, we refer to Milnor [9] and Pontryagin [10].

4.3. How good of an invariant is the framed cobordism class of the Pontryagin
manifold of a proper map? A proper map f : Rn → R

k is proper homotopic to
a map Pg, where g : Sn−1 → Sk−1 is a smooth map. The map Pg fails to be
smooth at the origin, but can be smoothed without affecting the Pontryagin
manifolds below. Let y ∈ Sn−1 be a regular value of g, and (X, νg) be the
Pontryagin manifold of g at y. The value y ∈ Sk−1 ⊆ R

k is also a regular value
for the map Pg. The Pontryagin manifold of Pg at x is (X, (νg, μ)), where μ
is the last component of the framing which points radially outward from the
sphere. So a framed submanifold cannot occur as a Pontryagin manifold if it
is not framed cobordant to a framed submanifold that lies on a sphere where
the last component of the framing is radially pointing outward.

Let us discuss an explicit example of a framed manifold that does not occur
as the Pontryagin manifold of a map. Consider the submanifold X = {−1, 1} ⊆
R with framing ν−1 = ν1 = ∂

∂t . Then (X, ν) cannot occur as the preimage of
a regular value of a proper map f : R → R. Suppose on the contrary that
such a map exists with f(−1) = f(1). From the framing and the definition of
the derivative, we see that there exists an ε > 0 such that f(−1 + ε) > f(−1)
and f(1 − ε) < f(1). The intermediate value theorem then gives the existence
of another point −1 + ε < p < 1 − ε such that f(p) = f(−1) = f(1). Hence
f−1(f(1)) �= X and we conclude that there does not exist a proper f : R → R

with (X, ν) as a Pontryagin manifold.
But there are also framed submanifolds which are framed cobordant to a

framed submanifold which is contained in the unit sphere and has a framing
with last component pointing radially outward which do not arise from proper
maps. To see this, consider the manifold X = {−2,−1, 1, 2} with framing
ν(−2) = ν(2) = ∂

∂t and ν(−1) = ν(1) = − ∂
∂t . Then (X, ν) is framed cobordant

to the empty set, however it cannot occur as the Pontryagin manifold of a
proper map: If y is the regular value for which (X, ν) is hypothetically the
Pontryagin manifold at y, there must be a point x ∈ (−1, 1) such that f(x) = y
by the same reasoning as above. The framed submanifold (X, ν) does not occur
as the Pontryagin manifold of a proper map, but the empty set, which is framed
cobordant to it, does.

Finally we discuss the fact that the invariant is not complete. The maps
f, g : R → R given by f(x) = x2 and g(x) = −x2 are not proper homotopic.
However as the maps are not surjective the framed cobordism class of both
maps is the empty manifold. Hence the framed cobordism class of a regular
value cannot distinguish these maps. Here is a more complicated example: Let
f, g : S3 → S2 be the Hopf map and the Hopf map precomposed with a degree
−1 map of S3 respectively. These maps represent +1 and −1 in π3(S2) ∼=
Z and are not homotopic. By Theorem 1.1, Pf and Pg are therefore not
proper homotopic, however their Pontryagin manifolds are framed cobordant.
To see this, note that QPf and QPg are the suspensions of f and g and
the Pontryagin manifolds of QPf and QPg can be identified with those of
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Pf and Pg. The suspension map S : π3(S2) ∼= Z → π4(S3) ∼= Z/2Z is the
reduction modulo 2. Therefore the maps QPf and QPg are homotopic, so
their Pontryagin manifolds must be framed cobordant. But this implies that
the Pontryagin manifolds of PF and PG are framed cobordant by general
position.

4.4. Open manifolds and the Pontryagin–Thom construction. In Corollary 3.2,
we have seen that the homotopy classes of proper maps out of vector bundles
stabilize. We expect that if M is an arbitrary open manifold, the homotopy
classes of proper maps [M × R

l,Rk+l]prop stabilize when l → ∞. This sug-
gests that there is a stable Pontryagin–Thom construction for proper maps.
A framed submanifold (X, ν) ∈ Ωfr

m−k(M) gives rise to a framed submanifold
((X, 0), ν⊕μ) ∈ Ωfr

m−k(M×R
l) via stabilization. The framing ν⊕μ extends the

framing ν with a fixed basis μ of Rl. Since we expect that the homotopy classes
of proper maps stabilize, we also expect that there is a well defined stable bi-
jective Pontryagin–Thom construction Ωfr

m−k(M × R
l) → [M × R

l,Rl+k]prop
for l sufficiently large.
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