Correction

Correction to: An elementary proof that the triharmonic Green function of an eccentric ellipse changes sign

Guido Sweers(D)

Correction to: Arch. Math. 107 (2016), 59-62
https://doi.org/10.1007/s00013-016-0909-z.
The note added in proof of [1] is false. The function

$$
\begin{equation*}
u(x, y)=\left(1-x^{2}-144 y^{2}\right)^{m}\left(1-x+200(1-x)^{2}-21 y^{2}-\varepsilon\right) \tag{1}
\end{equation*}
$$

on $\Omega=\left\{(x, y) \in \mathbb{R}^{2} ; x^{2}+144 y^{2}<1\right\}$, with ε positive and small enough, produces a counterexample concerning the claim ' $f \geq 0 \Longrightarrow u \geq 0$ ' for

$$
\left\{\begin{array}{c}
(-\Delta)^{m} u=f \quad \text { in } \Omega \tag{2}\\
\partial_{\nu}^{k} u= \\
0 \text { for } 0 \leq k \leq m-1 \text { on } \partial \Omega
\end{array}\right.
$$

only when $m=2$ or $m=3$. Indeed, $f=(-\Delta)^{m} u$ is positive while u changes sign for $m=2,3$. However, the function u fails to produce a counterexample for $4 \leq m \leq 8$ as claimed in the note, since both functions u and $(-\Delta)^{m} u$ change sign.

It seems possible to construct counterexamples for $m \geq 4$, but a straightforward generalisation from (1) is not obvious. For example, when $m=4$, the following combination gives a counterexample on the same domain, again for small positive ε :

$$
\begin{equation*}
u(x, y)=\left(1-x^{2}-144 y^{2}\right)^{4}\left(w(x, y)\left(\frac{1}{10}+w(x, y)\right)-\varepsilon\right) \tag{3}
\end{equation*}
$$

[^0]with $w(x, y)=1-x+200(1-x)^{2}-18 y^{2}$ and
\[

$$
\begin{align*}
f(x, y)= & 690278247678673728-2802269782743715008 x \\
& +4266136671660720000 x^{2}-2886586302976634880 x^{3} \\
& +732441198825538560 x^{4}+11199653433588055680 y^{2} \\
& -22525165747433064960 x y^{2}+11325749053509181440 x^{2} y^{2} \\
& +3221858435872642560 y^{4}-17406092393856 \varepsilon . \tag{4}
\end{align*}
$$
\]

Some tedious computations show u, f satisfy (2) and, for ε small and positive, that f in (4) is positive while u in (3) changes sign on Ω.

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Reference

[1] Sweers, G.: An elementary proof that the triharmonic Green function of an eccentric ellipse changes sign. Arch. Math. 107, 59-62 (2016)

Guido Sweers
Mathematical Institute
University of Cologne
Cologne
Germany
e-mail: gsweers@math.uni-koeln.de

[^0]: The original article can be found online at https://doi.org/10.1007/s00013-016-0909-z.

