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Abstract. We prove a hyperbolic analogue of the Bloch–Ochiai theorem
about the Zariski closure of holomorphic curves in abelian varieties. We
consider the case of non compact Shimura varieties completing the proof
of the result for all Shimura varieties. The statement which we consider
here was first formulated and proven by Ullmo and Yafaev for compact
Shimura varieties.
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1. Introduction. The Bloch–Ochiai theorem [4, Chapter 9, 3.9.19] states that
the Zariski closure of a holomorphic curve in an abelian variety is a coset of
an abelian subvariety.

Theorem 1.1. (Bloch–Ochiai) Let A be an abelian variety and f : C → A a
non-constant holomorphic map. Then the Zariski closure of f(C) is a translate
of an abelian subvariety.

In [12], Ullmo and Yafaev formulate and prove an analogue of this result
for compact Shimura varieties.

Let D be a hermitian symmetric space realised as a bounded symmetric
domain in C

n via the Harish-Chandra embedding,1 G its isometry group, and
Γ ⊂ G(R) an arithmetic lattice. Let S = Γ\D. Assume that S is a component
of a Shimura variety; in particular G is defined over Q and Γ is a congruence
subgroup of G(Q). Finally consider a holomorphic function f : Cm → C

n such
that f(Cm) ∩ D �= ∅.

1See [5, Chapter 4].
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Theorem 1.2. [12, Theorem 1.2] Let π : D → S be the quotient map, f as
above and V = f(Cm) ∩ D. Assume S is compact then the components of the
Zariski closure Zar(π(V )) of π(V ) in S are weakly special subvarieties of S.

For general definitions about Shimura varieties and weakly special subva-
rieties, see [11] and the references contained there.

Along with the Bloch–Ochiai theorem, the above result draws inspiration
from the hyperbolic Ax–Lindemann theorem, first proven by Ullmo and Yafaev
in [11] for compact Shimura varieties and then in general by Klingler, Ullmo,
and Yafaev in [3].

Theorem 1.3. (Ax–Lindemann) Let Y ⊂ D be an algebraic subset of D.2 Then
the components of the Zariski closure Zar(π(Y )) are weakly special.

Our aim is to prove the result analogous to Theorem 1.2 for all Shimura
varieties (not necessarily compact), thus completing the proof of:

Theorem 1.4. (Main Result) Let π : D → S be the quotient map, f as above
and V = f(Cm) ∩ D. Then the Zariski closure Zar(π(V )) of π(V ) in S is a
weakly special subvariety of S.

As in [12], the proof follows the general lines of the proof of the hyperbolic
Ax–Lindemann theorem. In particular, it relies on the theory of o-minimal
structures and specifically on the use of Pila–Wilkie’s theorem on counting
rational points in definable sets (see Theorem 4.2).

The main steps of the proof are as follows. First we reduce to proving
the result separately on several ’branches’ Vi of the portion of the image of
f contained in D in such a way that each Vi is definable in Ran,exp. Then,
we use toroidal compactifcations of Shimura varieties, the Pila-Wilkie and the
Ax–Lindemann–Weierstrass theorem to prove that the Zariski closure of the
image of Ui contains a Zariski dense set of weakly special subvarieties. Here,
the crucial part is Lemma 3.3, which asserts that the volume of the intersection
between one of these definable curves Ui in D and a translate γF of a fixed
fundamental domain F for the action of Γ on D is bounded independently of
γ ∈ Γ. Finally, we conclude the proof of the main result of the paper using a
result of Ullmo [10, Théorème 1.3] and induction on the dimension.

We point out that, although our result is independent of the realisation
of the symmetric domain D uniformising S,3 we use in a crucial way that
there is a bounded realisation. Indeed this allows us to reduce the proof to the
definable sets Vi and is again used in a fundamental way in the proof of the
above cited Lemma 3.3.

To stress further the importance of the boundedness of D, we point out
that questions related to the Bloch–Ochiai theorem in the abelian setting were
investigated using o-minimal techniques by Ullmo and Yafaev in [13]. In this
setting the authors were not able to prove the full Bloch–Ochiai theorem with

2An algebraic subset of D is a component of the intersection of an algebraic subset of Cn

with D.
3See [10] for the definition of realisation of a symmetric domain.
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the present techniques; this is ultimately due to the fact that the symmet-
ric space uniformizing an abelian variety of dimension d is C

d which has no
bounded realisation.

2. Preliminaries. First we fix some notation.
• Let (G,D) be a connected Shimura datum. In particular, D is a hermitian

symmetric domain, which we realise as a bounded hermitian symmetric
domain in the holomorphic tangent space p ∼= C

n at a point x ∈ D via
the Harish-Chandra embedding.

• Let G(Q)+ be the stabiliser of D in G(Q) and Γ ⊂ G(Q)+ a neat arith-
metic subgroup; we may assume there is a faithful finite dimensional
representation ρ : G → GL(E) defined over Q and a lattice EZ ⊂ E such
that Γ = G(Z) = G(Q) ∩ GL(EZ).

• Let Σ ⊂ D be a Siegel set for the action of Γ such that there exists a finite
set J ⊂ G(Q) such that J.Σ = F is a fundamental set for the action of
Γ.

Let f : Cm → C
n be a holomorphic map such that f(Cm) ∩ D �= ∅. We

decompose
f−1(f(Cm) ∩ D) =

∐

i∈I

Ui (2.1)

as a disjoint union of connected components. By definition of Ui,
¯f(Ui) ∩ ∂D �= ∅; (2.2)

hence there exist a point x0 ∈ Ūi and a positive real number Ri such that
¯f(Ui ∩ B(xi, Ri)) ∩ ∂D �= ∅ and f(x0) ∈ ∂D.

By analytic continuation, it follows that the Zariski closures Zar(π ◦f(Ui))
and Zar(π ◦ f(Ui ∩ B(xi, Ri))) are equal. Let Vi = f(Ui ∩ B(xi, Ri)) and
Wi = Zar(π(Vi)) ⊂ S. Following [12], we will deduce our Main Result 1.4
from the following theorem.

Theorem 2.1. There exists a positive dimensional semialgebraic set X in G(R)
containing at least two elements of Γ such that

X · Vi ⊂ π−1(Wi). (2.3)

Following [12], we now briefly describe how the main result follows from
the above theorem. Let P ∈ Vi, and let X ⊂ G(R) be a maximal semialgebraic
subset such that X · P ⊂ π−1(Wi). By the above theorem X has positive
dimension and contains at least two elements of Γ; this plus the assumption
that Γ is neat implies that X does not stabilise any point of D; so that P.X
has positive dimension. By [7, Lemma 4.1], it is a complex algebraic subset.
By the Ax–Lindemann Theorem 1.3, the Zariski closure Zar(π(X · P )) ⊂ Wi

is a union of weakly special subvarieties. Hence for each point of P ∈ π(Vi)
there is a weakly special subvariety Y such that P ∈ Y ⊂ Wi. This proves the
following

Theorem 2.2. Wi = Zar(π(Vi)) contains a Zariski dense subset of weakly
special subvarieties.
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Now we proceed by induction on the dimension of Wi to show that The-
orem 2.2 implies the main result. The case of dimension zero is trivial since
all points are weakly special. If Wi is special, we are done, otherwise by [10,
Théorème 1.3], it follows that the smallest special subvariety S′ ⊂ S contain-
ing Wi can be decomposed as a product S′ = S1 × S2, with both factors non
trivial, such that

Wi = S1 × V ′ (2.4)

for some subvariety V ′ ⊂ S2.
Let (G′,X ′) be the sub-Shimura datum of (G,X) associated to S′. The

above decomposition induces a decomposition of the adjoint datum (G′ad,X ′ad)
as a product (G1,X1) × (G2,X2) such that, for i = 1, 2, Si = Γi\Di for some
suitable arithmetic subgroup Γi of Gi(Q)+. We can realise both Di as bounded
symmetric domains inside their holomorphic tangent spaces pi. Then we can
write f : Cm → p1 × p2 ⊂ p as f = (f1, f2). It now follows that V ′ is exactly
the Zariski closure of π ◦ f2(Ui). By Theorem 2.2, V ′ contains a Zariski dense
set of weakly special subvarieties and by the inductive hypothesis it is weakly
special.

We have proven that for a fixed i the Zariski closure of Wi is weakly special.
Now recall that the weakly special subvarieties are bialgebraic.4 This means
that Vi is contained in an algebraic subvariety Ṽ of Cn such that the image
under π of Ṽ ∩D is exactly Wi. By analytic continuation we see that the whole
image of f is contained in Ṽ . Hence the Zariski closure of f(Cn∩D) is a weakly
special subvariety.5

We now recall two results about the structure of D at the boundary which
we will need later.

Proposition 2.3. [1, Chapter III.4]
Given a boundary component F ⊂ D̄, its normaliser N(F ) in G is a para-

bolic subgroup and can be decomposed as follows

N(F ) = (Gh(F )Gl(F )M(F ))(V (F )U(F )),

where

• R(F ) = (Gh(F )Gl(F )M(F )) is a Levi factor of N(F ) and the product is
direct modulo a finite central group,

• W (F ) = (V (F )U(F )) is the unipotent radical of N(F ),
• U(F ) is the center of W (F ) and is a real vector space,
• V (F ) = W (F )/U(F ) is also a real vector space of even dimension 2l,
• Gh(F ) modulo a finite center is Aut0(F ), all the other factor act trivially,
• Gl(F ) modulo a finite center acts on U(F ) by inner automorphisms, the

other factors commute with U(F ),
• M(F ) is compact.

4This follows for example from the Ax–Lindemann theorem.
5The proof in this last paragraph was suggested to the author by Jacob Tsimerman.
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Proposition 2.4. [3, Proposition 3.2 and Lemma 4.2] Fix a boundary component
F ⊂ D̄. Define

DF =
⋃

g∈U(F )C

g.D ⊂ Dc.

There is a holomorphic semialgebraic isomorphism j : DF → U(F )C ×C
l ×F .

This isomorphism realises D as a Siegel domain of the third kind

D j
 {
(x, y, t) ∈ U(F )C × C

l × F | Im(x) + lt(y, y) ∈ C(F )
}

,

where C(F ) is a self-adjoint convex cone in U(F ) homogeneous under Gl(F )
and lt : Cl ×C

l → U(F ) is a symmetric bilinear form varying real-analytically
with t ∈ F .

Let Σ ⊂ D be a Siegel set for the action of Γ, as above. Then Σ is covered
by a finite number of open subsets Θ having the following properties. For each
Θ there is a cone σ with σ ⊂ ¯C(F ), a point a ∈ C(F ), relatively compact
subsets U ′, Y ′, and F ′ of U(F ), Cl, and F , respectively, such that the set Θ
is of the form

Θ
j
{

(x, y, t) ∈ U(F )C × C
l × F | Re(x) ∈ U ′, y ∈ Y ′, t ∈ F ′ and

Im(x) + lt(y, y) ∈ σ + a} .

3. Holomorphic curves and fundamental domains. In this section we restrict
attention to holomorphic curves; hence, we set m = 1 and consider holomorphic
maps f : C → C

n = p. Maintaining the same notation as in the last section,
we fix some i ∈ I and let C = f(Ui ∩ B(xi, Ri)). Note that up to restricting
to a smaller ball B(xi, R

′
i), we may assume that the image f(B(xi, Ri) ∩ Ui)

is an analytic curve.

Definition 3.1. Recall we fixed a faithful finite dimensional representation ρ :
G → GL(E); for any γ ∈ Γ write ρ(γ) = (γi,j)i,j . For any φ ∈ End(ER) define

|φ|∞ = max
i,j

|φi,j | . (3.1)

Moreover, define the height of γ ∈ Γ as

H(γ) = max(1, |γ|∞).

Finally, let T > 0, and define

NC(T ) = # {γ ∈ Γ | γF ∩ C �= ∅ and H(γ) ≤ T} .

The aim of this section is to prove the following result.

Theorem 3.2. There exist constants c1, c2 > 0 such that for all T > 0 suffi-
ciently large

NC(T ) ≥ c1T
c2 .

In the proof of Theorem 3.2 for algebraic curves given in [3], the only part
that relies on the curve being algebraic is the analogue of the following lemma.
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Lemma 3.3. There exists a positive constant c3 such that for any γ ∈ Γ

V olγC(γC ∩ F ) ≤ c3, (3.2)

where VolγC is the volume with respect to the Riemannian metric on γC in-
duced by the metric on D.

Proof. By definition, F = J.Σ for a finite subset J ⊂ G(Q) and some Siegel
subset Σ ⊂ D. Hence it is sufficient to prove the theorem for the Siegel set Σ.
In turn, every Siegel set is covered by a finite number of open subsets Θ as in
Proposition 2.4, so it is sufficient to prove that

VolγC(γC ∩ Θ) ≤ c4 (3.3)

for some constant c4 > 0.
Let ω be the natural Kähler form on D, then

V olγC(γC ∩ Θ) =
∫

γC∩Θ

ω. (3.4)

On DF we have the Poincaré metric defined by

ωF =
∑ dx1 ∧ dx̄i

Im(xi)2
+

∑
dyj ∧ dȳj +

∑
dfk ∧ df̄k. (3.5)

By a result of Mumford [6, Theorem 3.1], there is a constant c5 such that on
D

ω ≤ c5ωF . (3.6)

Hence

V olγC(γC ∩ Θ) ≤
∫

γC∩Θ

ωF . (3.7)

Now let w be a coordinate between xi, yj , or fk, denote by pw : DF → C

the projection to the w axis. Let w0 ∈ C and g ∈ G(R), and define

ng.C,w(w0) = number of points in g.C ∩ p−1
w (w0) counted with multiplicity.

(3.8)
Consider the set

W =
{
(z0, g, w0) ∈ (Ui ∩ B(xi, Ri)) × G(R) × C | g.f(z0) ∈ p−1

w (w0)
}

. (3.9)

Note that the map pw is the projection on one component from the semi-
algebraic set DF , hence is definable; moreover, from [11, Proposition 4.1] the
action of G on D is definable; finally, by construction, the function f |U∩B(xi,Ri)

is definable. This implies the definability of the set W . Now we consider W as
a definable family over G(R) × C. It is a consequence of the cell decomposi-
tion theorem (cf. [14, Chapter 3, Corollary 3.6]) that the number of definably
connected components of the fibres of a definable set, hence, in this case, their
cardinality, is uniformly bounded by a constant cw. We now observe that the
fibre of W over a point (g, w0) ∈ G(R)×C is the set f−1(p−1

w (w0)∩g.C) whose
cardinality is exactly ng.C,w(w0). Hence

nγC,w(w0) ≤ cw (3.10)
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for all w0 ∈ C and all γ ∈ Γ. Let c6 be the maximum of cw with w equal to
xi, yj or fk, then

VolγC(γC ∩ Θ) ≤ c5

⎛

⎜⎝
∑ ∫

pxi
(Θ)

nγC

(
p−1

xi
(xi)

) dxi ∧ dx̄i

Im(xi)2
+

∑ ∫

pyj
(Θ)

nγC

(
p−1

yj
(yj)

)
dyj ∧ dȳj +

∑ ∫

pfk
(Θ)

nγC

(
p−1

fk
(fk)

)
dfk ∧ df̄k

⎞

⎟⎠ .

≤ c5c6

⎛

⎜⎝
∑ ∫

pxi
(Θ)

dxi ∧ dx̄i

Im(xi)2
+

∑ ∫

pyj
(Θ)

dyj ∧ dȳj

+
∫

pfk
(Θ)

dfk ∧ df̄k

⎞

⎟⎠

(3.11)

Now we observe that from the description of Θ, the projection pxi
(Θ) is con-

tained in a finite union of usual fundamental domains in the upper half plane,
which have finite hyperbolic area. Moreover, if w is one of yj or fk, then, again
from the description of Θ, it follows that pw(Θ) is relatively compact in the
plane and hence has finite Euclidean area. �

This result allows us to follow the proof used in [3] for algebraic curves and
apply it to our o-minimal setting. For the convenience of the reader, we briefly
recall the proof of Theorem 3.2. First we report some results from [3].

Lemma 3.4. [3, Lemma 5.4] Let x0 ∈ D be a base point. There exists a constant
c7 such that for any g ∈ G(R) the following inequality holds

log (c7 |g|∞) ≤ d(g.x0, x0). (3.12)

Lemma 3.5. [3, Lemma 5.5] Let F be the fundamental domain for the action
of Γ fixed in the previous section. There exists a positive constant c8 such that
for all γ ∈ Γ and for all u ∈ γF

H(γ) ≤ c8 |u|n∞ . (3.13)

Theorem 3.6. [2] Let C be a complex analytic curve in D. For any point x0 ∈ C
there exist positive constants c9 and c10 such that for any positive real number
R one has

VolC(C ∩ B(x0, R)) ≥ c9 exp (c10R) (3.14)
where VolC is the volume with respect to the Riemannian metric on C induced
by the metric on D and B(x0, R) is the geodesic ball in D of center x0 and
radius R.
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We can now finish the proof of Theorem 3.2.

Proof of Theorem 3.2. Choose a base point x0 ∈ C, let c7 and c8 the constants
given by Lemmas 3.4 and 3.5 and consider the intersection C ∩ B(x0, R) of C

with the geodesic ball of centre x0 and radius R = log
(

c7
c81/n T 1/n

)
. On the

one hand, we have by Theorem 3.6

VolC(C ∩ B(x0, R)) ≥ c7c9

c8
1/n

T
c10
n . (3.15)

On the other hand, by Lemmas 3.4 and 3.5
B(x0, log R) ⊆ {g · x0 | g ∈ G(R), |g|∞ ≤ T

1/n/c1/n

8 }
⊆

⋃

γ∈Γ
H(γ)≤T

γF . (3.16)

Hence, by Lemma 3.3

VolC(C ∩ B(x0, log R)) ≤
∑

γ∈Γ
γF∩C �=∅
H(γ)≤T

Volγ−1C(γ−1C ∩ F) ≤ NC(T )c3. (3.17)

We conclude comparing the lower bound and the upper bound
c7c9

c8
1/n

T
c10
n ≤ NC(T )c3. (3.18)

�
4. Proof of Theorem 2.1. We use the same notation as in Section 2; that is,
we let f : Cm → C

n be a holomorphic map such that f(Cm) ∩ D �= ∅. Ui are
the connected components of f−1(D). Fix an i and set U = Ui; let R > 0
be such that f(U ∩ B(0, R)) ∩ ∂X �= ∅. Let V = f(U ∩ B(0, R)). Finally, let
W = Zar(π(V )) ⊂ S.

First of all we note that, by definition, V is definable in the o-minimal
structure Ran.

Lemma 4.1. Consider the set

Σ(W ) =
{
g ∈ G(R) | dim(g.V ∩ F ∩ π−1(W )) = dim(V )

}
. (4.1)

Then the set Σ(W ) is definable in Ran,exp. For all g ∈ Σ(W ), g.V ⊆ π−1(W ).
Moreover, define

Σ′(W ) =
{
g ∈ G(R) | V ∩ g−1.F �= ∅} . (4.2)

Then
Σ(W ) ∩ Γ = Σ′(W ) ∩ Γ. (4.3)

Proof. The set Σ(W ) is definable in Ran,exp because all sets and maps involved
in its definition are.6 The second assertion follows by analytic continuation.
Finally the equality

Σ(W ) ∩ Γ = Σ′(W ) ∩ Γ (4.4)
follows form the fact that π−1(W ) is Γ-invariant. �
6For the definablility of the uniformisation map, see [3, Section 4].
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We now recall a consequence of the Pila–Wilkie counting theorem.

Theorem 4.2. Let S ⊂ R
n be a set definable in the o-minimal structure Ran,exp.

Denote by NS,Z(T ) the number of points s = (s1, . . . , sn) ∈ S ∩ Z
n such that

max |si| ≤ T . Fix a natural number k. If there exist constants c, ε > 0 such
that NS,Z(T ) > cT ε for all T sufficiently large, then S contains a positive
dimensional semialgebraic set containing at least k points in S ∩ Z

n.

Remark 4.3. The above theorem follows from the version of the Pila–Wilkie
theorem for semialgebraic blocks proven by Pila in [9]. The original version of
the theorem proven in [8] is not strong enough for our purposes because it does
not imply that there is a single semialgebraic set containing many rational or,
in this case, integer points. We use the additional information to prove that
the semialgebraic set we obtain does not stabilise any point.

Let
NΣ(W )(T ) = {γ ∈ Γ ∩ Σ(W ) | H(γ) ≤ T} . (4.5)

From Theorem 3.2, we see that NΣ(W )(T ) ≥ c1T
c2 , for some constants c1, c2 >

0. Combining this with Theorem 4.2, we get a semialgebraic set X ⊂ Σ(W )
containing at least two points in Γ. Finally from Lemma 4.1 we get that X.V ⊂
π−1(W ), thus proving Theorem 2.1.
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