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A Liouville-type theorem for biharmonic maps between
complete Riemannian manifolds with small energies

VOLKER BRANDING

Abstract. We prove a Liouville-type theorem for biharmonic maps from
a complete Riemannian manifold of dimension n that has a lower bound
on its Ricci curvature and positive injectivity radius into a Riemannian
manifold whose sectional curvature is bounded from above. Under these
geometric assumptions we show that if the LP-norm of the tension field
is bounded and the n-energy of the map is sufficiently small, then every
biharmonic map must be harmonic, where 2 < p < n.
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1. Introduction and results. Harmonic maps belong to the most studied vari-
ational problems in differential geometry. They are defined as critical points
of the Dirichlet energy

Ey(9) = / do v, (L1)
M

where ¢: M — N is a map between the two Riemannian manifolds (M, h) and
(N, g). The critical points of (1.1) are characterized by the vanishing of the
so-called tension field, which is given by

0=1(¢) :=tr,Vdo.

This is a semilinear, elliptic second order partial differential equation, for which
many results on existence and qualitative behavior of its solutions have been
obtained. For a recent survey on harmonic maps see [4].

A natural generalization of the harmonic map equation are the so-called
biharmonic maps. These arise as critical points of the bienergy [6], which is
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defined as
Esy(¢) = [ 7(9)]?aV.
/

In contrast to the harmonic map equation, the biharmonic map equation is of
fourth order and is characterized by the vanishing of the bitension field

0 =72(¢) := —A7(¢) + RV (do(eq), 7(¢))d(ea), (1.2)

where e, is an orthonormal basis of TM and RY denotes the curvature tensor
of the target manifold N. We make use of the Einstein summation conven-
tion, meaning that we sum over repeated indices. The connection Laplacian
on ¢*T'N is defined by A := V. V., —Vy, .,. We choose the following con-
vention for the Riemann curvature tensor R(X,Y)Z = [Vx,Vy]Z -V |x y|Z.

Note that the bienergy is conformally invariant in dimension dim M = 4,
whereas the energy for harmonic maps is conformally invariant in dimension
dim M = 2.

As for harmonic maps there exists a large number of results on various
aspects of biharmonic maps, for a survey we refer to [10].

It is obvious that both harmonic maps and trivial maps solve the bihar-
monic map equation (1.2). For this reason it is interesting to find conditions
under which solutions of the biharmonic map equation reduce to harmonic or
trivial maps. Several results in this direction have already been established:

(1) For biharmonic functions on flat space, a Liouville theorem was already
established before the first article on biharmonic maps appeared. Let
M =TR™ and N = R, and consider a solution u: R™ — R of A%y = 0. If
u is bounded from above and below, then u is constant [5].

(2) Already in the first article on biharmonic maps [6] it was shown by a direct
application of the maximum principle that biharmonic maps between
compact Riemannian manifolds and the target having negative curvature
must be harmonic.

(3) If the domain manifold is a complete non-compact Riemannian manifold
with positive Ricci curvature and the target a Riemannian manifold of
non-positive sectional curvature, then every biharmonic map of finite bi-
energy must be harmonic [1].

(4) This result remains true if the condition of positive Ricci curvature on the
domain is replaced by either the map having finite energy or the domain
manifold having finite volume [11].

(5) This result was further generalized in [9]: it is shown that a biharmonic
map from a complete Riemannian manifold to a Riemannian manifold
with non-positive sectional curvature is harmonic if either the tension
field is integrable in L? with p > 2 and the volume of the domain is
infinite or if the tension field is integrable in LP with p > 2 and the
Dirichlet energy of the map is finite.

(6) Further generalizations were given in [7] and [8].

In this article we aim to establish another Liouville type theorem for bihar-
monic maps that does not require any assumption on the curvature of the
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target. To this end let (M, h) and (N, g) be two complete Riemannian mani-
folds.

We will not have to assume that the target manifold has negative curvature,
instead we will demand that the differential of the map is small in a certain
LP-norm.

In the following the positive constant A will denote an upper bound on
the sectional curvature K~ of N. We will denote the dimension of M by
dim M = n. The main result of this note is the following

Theorem 1.1. Let ¢: M — N be a smooth biharmonic map. Suppose that the
Ricci curvature of M is bounded from below and that the injectivity radius of
M is positive. Assume that the sectional curvature KN of N satisfies KN < A.

If
/|T(¢)|pdv <00
M

and

/ dg|"dV < &
M

for2 <p<n and € > 0 sufficiently small, then ¢ must be harmonic.

If ¢: M — N is an isometric immersion, we have 7(¢) = nH, where H
denotes the mean curvature vector of the immersion. The last theorem implies
the following geometric result:

Corollary 1.2. Let ¢: M — N be a smooth biharmonic isometric immersion.
Suppose that the Ricci curvature of M is bounded from below and that the
injectivity radius of M is positive. Assume that the sectional curvature KV of
N satisfies KN < A.

If
/|H|pdV < 00
M
and
/|d¢>|”dV <e
M

for 2 <p <n and e > 0 sufficiently small, then ¢ must be a minimal immer-
ston.

2. Proof of the Theorem. In order to prove Theorem 1.1 we extend the ideas
developed in [9] and [11]. First, we need to establish some technical lemmas.
We choose a cutoff function 0 <7 <1 on M that satisfies

n(x) =1 for z € By(xg), n(z)=0for x € Ba.(x9), |Vn|< ¢ for z € M,
r

where B, (z) denotes the geodesic ball around zy with radius 7.
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Lemma 2.1. Let ¢: M — N be a smooth biharmonic map. Suppose that the
sectional curvature KV of N satisfies KN < A. Then the following inequality
holds

5 [ PIVOPIr@P2av < a [ iroplastav + o [Ir@ray
M M

2 M
-2 / PTr(0). 7)) 2l (6) [P~ 4aV.

(2.1)

Proof. We test the biharmonic map equation (1.2) with n?7(¢)|7(¢)[P~2 and
find

P (@) *(A7(9), 7(0)) = n?|7(9)["*(RY (dd(ea), T(¢))db(ea), 7(6)).

Integrating over M and using integration by parts, we obtain

/ 0?7 (0) [P 2 (AT(9), T(¢))dV = — / (V7(8), (@) ()P~ *nVndV

M M

—(p-2) / P HVT(@), 7)) (@) AV

M

- [Vt
< [Ir@rav =5 [er@Pire)rtav

~(0-2) [T @) v,
M
where we used Young’s inequality and the properties of the cutoff function 7.
Combining both equations we find

5 [PV OPIr@r2ay < £ AZ [r@Pav = (o-2) [PUT7(@), T (@) av

2M M
—/TIQ\T(@I”’Q(RN(M(%LT(¢>))d¢(6a),7(¢)>dV~
M

The result follows by estimating the last term on the right-hand side. 0

Now we recall the following fact: let (M, g) be a complete Riemannian man-
ifold whose Ricci curvature is bounded from below and with positive injectivity
radius. Then for f € W1*(M) with compact support the following Gagliardo-
Nierenberg type inequality holds

1 1 1
Ifller < Clldflles;, —=—-—-, 1<s<mn, (22)
ros n

see [3, Corollary 3.19]. This inequality allows us to give the following
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Lemma 2.2. Let (M, g) be a complete Riemannian manifold whose Ricci cur-
vature is bounded from below and with positive injectivity radius. For p < n
the following inequality holds
2
[r@plaopav < c | [ idopav

M

1 »

2 [Ir@rav+ [ Plame)srav) (23)
M M

where the positive constant C' depends on n,p, and the geometry of M.

Proof. We set f := |7(¢)|2, which allows us to write

/ w7 ()I7|del*dV = / n* f*|dof*dV.
M M
By Holder’s inequality we find

r—1

[ siasrav < | fanzav) | [la#av

M

3
3

Note that we may now apply the Gagliardo-Nierenberg type inequality (2.2)

since nf has compact support. Consequently, we find
27‘+n

(N/,Wrdv <C (M/m nf)| 7 en dv .

Now, we choose r = ~"5 and obtain

n—2

n

/ mpE=av | <c / d(nf) 2V,
M

1

Using the properties of the cutoff function n, we find

/17 fPldof*dv < © (M/|d¢|"dV gldnl deVJr/ *|df[*dV

The result follows by using that f = |7(¢) O

Lemma 2.3. Let ¢: M — N be a smooth biharmonic map. Suppose that the
Ricci curvature of M is bounded from below and that the injectivity radius of
M is positive. Moreover, assume that the sectional curvature KN of N satisfies
KN < A.

If

/|T(¢)|pdv < oo
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and

/ dg|"dV < &
M

for 2 <p<n and e > 0 sufficiently small, then |7(9)| is constant.

Proof. First of all, we note that
(VT (9), T(e) I ()P~ =
= ldr @) i@~ = ldir(@)/*

Combining (2.1) with (2.3) and making use of the smallness assumption of the
energy of the map, we find

5 [ FIvr@Pr@r2a < o [r@pray
M

M
" (C“ 4(pp§2)> A{ Pld|r(9)| [2av.

Choosing ¢ sufficiently small, making use of the finiteness assumption of the
tension field and taking the limit R — oo we get

/ V(&) Plr(@)r 2V = 0,
M

which implies that 7(¢) is a parallel vector field and thus has constant norm.
O

In the following we will make use of the following result due to Gaffney [2]:

Theorem 2.4. Let (M,h) be a complete Riemannian manifold. If a C* one-
form w satisfies

/|w|dV <o and /|5w|dV < 00
M M

or, equivalently, a C* vector field X defined by w(Y) = h(X,Y), satisfies

/\X|dV <oo and /diV(X)dV < 00,
M M
then

/(Jw)dV = /div(X)dV =0.

M M

Making use of Gaffney’s result we can now prove Theorem 1.1.
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Proof of Theorem 1.1. We define a one-form w as follows

W(X) = (@)™ Hdd(X), T(9)).

Note that

wldV < [ |r(¢)]" |delav < (M |dg|"dV ( T<¢>|”dv)n<oo,
Jrar] / /

where we made use of the finiteness assumptions of both energy and bienergy
of the map ¢. We fix an orthonormal basis of TM denoted by e,,a =
1,...,dim M and compute

—dw =V, w(ey)

—Vea(IT( >|“" P d(en), T(9)))
= ()| (Ve do(ea), 7(6))
= |r(¢ >\”‘" B

where we used that Vx7(¢) = 0 for all vector fields X and that |7(¢)]| is
constant. Due to the assumptions we have that @ + 1 > 0. Again, since

|T(¢)] is constant and [,, [7(¢)[?dV is bounded by assumption we can apply
Theorem 2.4 and conclude that 7(¢) = 0. O
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