Arch. Math. 110 (2018), 413-419

© 2018 The Author(s).

This article is an open access publication
0003-889X/18/040413-7

published online January 18, 2018 I N .
https: //doi.org/10.1007/s00013-017-1139-8 Archiv der Mathematik

@ CrossMark

Some tight contact foliations can be approximated by
overtwisted ones
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Abstract. A contact foliation is a foliation endowed with a leafwise contact
structure. In this remark we explain a turbulisation procedure that allows
us to prove that tightness is not a homotopy invariant property for contact
foliations.
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1. Statement of the results. Let M/2"T1*9 be a closed smooth manifold. Let
F?+1 be a smooth codimension—q foliation on M. We say that (M, F) can be
endowed with the structure of a contact foliation if there is a hyperplane field
&2 C F such that, for every leaf £ of F, (£,&|.) is a contact manifold.

In [2, Theorem 1.1] it was shown that (M*, F3) admits a leafwise contact
structure if there exists a 2—plane field tangent to F. This was later extended
in [1] to foliations of any dimension, of any codimension, and admitting a
leafwise formal contact structure. In both cases, the foliations produced have
all leaves overtwisted; therefore, the meaningful question is whether one can
construct and classify contact foliations with tight leaves.

1.1. Instability of tightness under homotopies. If the foliation F is fixed,
the parametric Moser trick [2, Lemma 2.8] implies that any two homotopic
contact foliations (F, &) and (F, &) are actually isotopic by a flow tangent to
the leaves. In particular, if F is fixed, tightness is preserved under homotopies.
Our main result states that this is not the case anymore if F is allowed to
move:

Theorem 1. Let N be a closed orientable 3—manifold. There is a path of contact
foliations (N x S', Fy, &) seqo,1), satisfying:

® Birkhduser


http://crossmark.crossref.org/dialog/?doi=10.1007/s00013-017-1139-8&domain=pdf
http://orcid.org/0000-0001-7938-6548

414 A. DEL P1vO Arch. Math.

o the leaves of (N x S, Fy, &) are tight,
o the leaves of (N x S, F, &) are overtwisted for all s > 0.

1.2. Foliations transverse to even—contact structures. Given a codimension—
1 contact foliation (M?2n+2 F2n+l ¢2n) and a line field X transverse to F,
it is immediate that the codimension—1 distribution £& = £ @ X is maximally
non—integrable. Such distributions are called even—contact structures.

The kernel or characteristic foliation of £ is a line field W C & uniquely
defined by the expression [W, ] C €. Given an even—contact structure &, any
codimension—1 foliation transverse to its kernel is imprinted with a leafwise
contact structure. It is natural to study the moduli of contact foliations arising
in this manner from £. Our second result states:

Theorem 2. Let N be a closed orientable 3—manifold. There are foliations Fy
and F1 and an even—contact structure £ such that:

e the leaves of (N x S*, Fo, &0 = ENFy) are tight,

o the leaves of (N x SY, F1,& = ENFy) are overtwisted.

Proof. During the proof of Theorem 1 we shall see that the contact foliations
(Fsy&s)sefo,1) are imprinted by the same even-contact structure &. O

This result is in line with the theorem of McDuff [6] stating that even—
contact structures satisfy the complete h—principle: one should expect this
flexibility to manifest in other ways.

2. Turbulisation of contact foliations. In this section we explain how to tur-
bulise a contact foliation along a loop of legendrian knots.

2.1. Local model around a loop of legendrian knots. Let (IV,£) be a contact
3-manifold. Any legendrian knot K C (N,¢) has a tubular neighbourhood
with the following normal form:

(Op(K) € N,€) = (D x S, €ieg = ker(cos(=)da + sin(z)dy)),
where (x,v,2) are the coordinates in D? x S'. A convenient way of thinking
about the model is that it is the space of oriented contact elements of the disc.

In particular, any diffeomorphism ¢ of D? relative to the boundary induces a
contactomorphism C(¢) of the model, also relative to the boundary, as follows:

C(9)(z,y,2) = (¢(z,y),do(z)).
Here we think of z as an oriented line in T, (ga)y)]D)2 and we make d¢ act by
pushforward.
We can now define a contact foliation in the product with S

(Mleg =D? x S' x S!, Fiog = [[ D* x S* x {t},gleg) :
t

Given a contact foliation (M, F,¢) and an embedded torus K : St x St — M
such that each Ky = K (¢, —) is a legendrian knot in a leaf of F, it follows that
there is an embedding (Micg, Fieg; §leg) — (M, F,&) providing a local model
around K. It is therefore sufficient to describe the turbulisation process in
(Mleg; ~7:leg7 gleg) .
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FI1GURE 1. The solid lines represent (the foliations induced
by) the path of line fields (F%)sejo,1)- The dotted ones with
arrows on top represent the line field L

2.2. Fixing the even—contact structure. Our aim now is to fix an even—contact
structure Eieg in (Mieg, Fieg) imprinting ieg. The reason why we do not simply
choose &ieg @ (0%) is that Eeg should allow us to turbulise.

Take polar coordinates (r,6) on D?. Fix a vector field h(r)d, with h(r) < 0
in the region r € (1/2,2/3) and h(r) = 0 everywhere else. Its flow (¢t)ier is
a 1-parameter subgroup of Diff(D?); as explained above, it can be lifted to a
I-parameter subgroup (®;)scr of contactomorphisms of D? x S'. We denote
by X the (unique) contact vector field in D? x S! that generates (®;)icr. By
construction X is a lift of h(r)d, and, in particular, it has a negative radial
component in the region r € (1/2,2/3).

Since X is a contact vector field, the 3-distribution ieg(, Yy, 2,t) = Eleg ®
(O + X(x,y,2)) is an even—contact structure whose kernel is Wies = (0 +
X (x,y,2)) and whose imprint on (Mieg, Fieg) is precisely ieg.

2.3. Turbulisation. Consider the surface S = [0, 1] xS* with coordinates (r, t);
the manifold M., projects onto S in the obvious way. Under this projection the
kernel Wieg is mapped to the line field L = (0;+h(r)0,). Similarly, the foliation
Fieg is the pullback of Fy = (0,). The line fields F; and L are transverse to
one another. We can find a homotopy (F)cjo,1) in S satisfying:

o Fl = <8r>7

e [ is transverse to L, for all s,

e Fy is isotopic to F} for every s > 0,

e [ is as in the last frame of Figure 1: it has a closed orbit bounding a

(half) Reeb component.
This path of line fields lifts to a path of codimension—1 foliations Fieg s in Micg.
The foliation Fieg 1 is precisely Fieg and Fieg, s is isotopic to it for every positive
s. The foliation Feg,0 has a single compact leaf, which is diffeomorphic to T°%;
this leaf bounds a Reeb component whose interior leaves are diffeomorphic to
R? x S'. Transversality of L with respect to F, implies that g imprints a
contact foliation {jeg,s on each Fieg s-
Let us package this construction:

Definition 3. Let (M, F,£) be a contact foliation. Suppose there is a region
U C M such that (U, F,£) is diffeomorphic to the model (Micg, Fieg, leg). We
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say that the homotopy (M, Fs, £s)se0,1] given by the procedure just described
is the turbulisation of (M, F,£) along U.

2.4. Turbulisation preserves tightness.

Lemma 4. Let (M, F,§) be a contact foliation with tight leaves. Denote its tur-
bulisation along U C M by (M, Fs,&s)scjo,1)- Then all the leaves of (M, Fy, &)
are tight.

This lemma can be proven by elementary means, but it is convenient for us
to introduce at this point the following result of V. Colin [3, Théoréme 4.2]:

Proposition 5. Let (N, &) be a 3—dimensional contact manifold. Let S C N be
a quasi pre-lagrangian incompressible torus. Then (N, &) is universally tight if
and only if (N'\ S,€) is universally tight.

As explained in [3], any torus having a linear characteristic foliation T'SN¢
is quasi pre-lagrangian. Incompressibility means that 71 (S) injects into 1 (V).
Finally, we say that (IV,£) is universally tight if the lift of £ to the universal
cover N is tight.

Proof of Lemma 4. Let us write £ for the even—contact structure imprinting
&s and W for its characteristic foliation. £ is chosen arbitrarily away from U,
but in the model it is given by &ieg.

Consider first the case s > 0. The foliations (Fs)c(0,1) are all isotopic to
JF1 = F. This isotopy, by construction, can be realised by a flow tangent to VW
(which in particular preserves £). This immediately induces a contactomor-
phism between any leaf (L, &) of Fy and the corresponding leaf (£, &) of F
to which it is isotopic.

Assume now s = 0. We can argue similarly to show that the open leaves
of Fy can be identified, as contact manifolds, with open subsets of leaves of
F, proving tightness. We claim that the remaining leaf (72, &), bounding the
Reeb component, is also tight. Consider the 2-torus S = T3 N {t = to} C T3.
Due to the rotational symmetry of the model, S is quasi pre-lagrangian and
also incompressible. Using a flow along W again, we can identify the contact
manifold (73\ S, ) with an open subset in LNU, where £ is a leaf of F and U is
the region where the turbulisation takes place. In particular, we are identifying
it with a subset of the local model (D? x S',&eq), which is universally tight.
An application of Proposition 5 concludes the claim. g

In particular, the model (Mieg, Fleg, &leg) and its turbulisation are tight.

Remark 6. There is an alternate way to describe the turbulisation process. The
contact foliation (Mieg, Fieg; Sleg) is the space of oriented contact elements of
the foliation (D? xS, [,c: D? x {t}). Then, the turbulisation process upstairs
amounts to turbulising (D? x S, [],cq: D? x {¢}) and applying the contact el-
ements construction. This construction also works for higher dimensional con-
tact foliations and highlights the fact that the resulting leaves (in the model)
are tight.
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3. Applications.

3.1. Proof of Theorems 1 and 2. In [4] K. Dymara proved that there are leg-
endrian links in overtwisted contact manifolds that intersect every overtwisted
disc; that is, their complement is tight. Such a link is said to be non-loose.
Let (N, &) be an overtwisted contact manifold with K a non-loose legendrian
link. Consider the contact foliation

(M, Fy,&) = <N xSYTT N x {t},f) ,
test
where we abuse notation and write £ for the leafwise contact structure lifting
(N,€). Take U to be the tubular neighbourhood of K x S* ¢ M and apply
the turbulisation process to (M, Fi1,£1) (on each component) to yield a path
of contact foliations (M, Fy,&s)sefo,1)- It is immediate that (M, F;, &) is dif-
feomorphic to (M, F1,&;) if s is positive, because the foliations themselves are
isotopic and Gray’s stability applies. In particular, the leaves of all of them
are overtwisted. We claim that (M, Fy, &) has all leaves tight. This is clear for
the leaves in the Reeb components we have introduced, as shown in Lemma
4. Similarly, the leaves outside of the Reeb components are tight because a
neighbourhood of the non—loose legendrian link has been removed. We con-
clude by recalling that every closed overtwisted 3—manifold admits a non—loose
legendrian link: the legendrian push—off of the binding of a supporting open
book [5]. O

Remark 7. The foliation (M, F;) is taut, since it admits a transverse S!. As
pointed out by V. Shende during a talk of the author: we are trading tautness
of the foliation to achieve tightness of the leaves.

3.2. A more general statement. A slightly more involved argument shows:

Theorem 8. Let M be a 4-manifold. Suppose that M admits a contact folia-
tion (F, &) with tight leaves. Then M admits a contact foliation (Fo, &) with
tight leaves that can be approximated by contact foliations (F,&s)se(0,1] with
overtwisted leaves.

Proof. Fix v : S — M an embedded curve transverse to F. Such a curve
always exists in a neighbourhood of an open leaf. If F has no open leaves,
then it is immediate that it must be the foliation by fibres of some submersion
M — S!, so a transverse curve exists as well. We can find an S'-family of
Darboux balls (D?, £q) along 7:

(Mstdvfstdafstd) = <D3 X Sla H ]DS X {t};fstd> - (MJ:,f)
teSt
This allows us to choose a legendrian knot K C (D?, £sq) and lift it to K xSt C
(Mg, Fetd, Esta) C (M, F,€). Turbulisation in a neighbourhood of K x S!
yields a contact foliation (M, F’, &) whose leaves are still tight due to Lemma 4.
The interior of the Reeb component we just inserted is diffeomorphic, as a
contact foliation, to the model (Mieg, Fieg, &leg)- Given a homotopically essen-
tial transverse knot n C (D? x S, &leg), we may perform a Lutz twist along 7
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to yield an overtwisted contact structure £o7 in D? x S'. The resulting local
model along 7 reads:

(D? x S, &put, = ker(f(r)dz + g(r)df))

where (1,6, z) are the coordinates in a neighbourhood of n = {r = 0} and
— (f(r),g(r))/|f,g| is an immersion of [0,1] onto S! that is injective for
€ 0,1 —¢) and satisfies:

) ifre[0,d]
f( ) 0 ifre{l/4,3/4}

=0 ifre{0,1/2,1-6}

(f(r),g(r) =1, (r—=1+8)%) ifrel-05/21].
The Lutz twist can be introduced parametrically in the ¢—coordinate [2] to
replace (Mieg, Fieg, &leg) C (M, F',£") by a contact foliation (Mieg, Fieg, EOT)
which has all leaves overtwisted. This produces a new contact foliation (M, Fi,
&) from (M, F',&).
We claim that K'(z) = (1/4,0,z) € (D* x S',&puts) € (D? x SY,&or) is

non—loose. The quasi—prelagrangian tori

{T =19 > 1/4} C (D2 X SlaéLutz) C (D2 X Sla&OT)

are incompressible in (D? x S, o) \ K’ due to our choice of  and K'.
Choose the tori at radii 7 = 1/2,1 — §. The reader can check that the pieces
{r <1/2}, {1/2 <7 <1 — 4} have standard tight R3 as their universal cover.
The remaining piece, which intersects the Lutz twist model (ID)2 x St, ELutz) In
{r > 1— 4}, is contactomorphic to the complement of 7 in (D? x S', §¢y) and
is therefore universally tight as well.

Proposition 5 shows that K’ is non-loose in (D? x S!,&pu,). We then
turbulise in a neighbourhood of

K/ X Sl C (Mleg7«7:leg7§OT) C (Ma ]:1351)
to produce the claimed family (M, Fs, £s)seo,1] and conclude the proof. O

The reader can check that the resulting foliation (M, Fy, &) is in the same
formal class as (M, F, §), since Fy is obtained from F by turbulising twice and
the even—contact structures inducing £ and &y differ from one another by a
parametric (full) Lutz—twist.

A natural question to pose in light of Theorem 8 is whether any M* ad-
mitting a formal contact foliation admits a foliation with tight leaves; the
fundamental geometric issue towards achieving this is that it seems extremely
delicate to ensure that no overtwisted disc is really present. For Theorem 8
the main idea was to introduce the overtwisted discs in a controlled fashion so
that they could later be destroyed.
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