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Non-nudgable subgroups of permutations

Tim Netzer

Abstract. Motivated by a problem from behavioral economics, we study
subgroups of permutation groups that have a certain strong symmetry.
Given a fixed permutation, consider the set of all permutations with dis-
joint inversion sets. The group is called non-nudgable if the cardinality
of this set always remains the same when replacing the initial permu-
tation with its inverse. It is called nudgable otherwise. We show that
all full permutation groups, standard dihedral groups, half of the alter-
nating groups, and any abelian subgroup are non-nudgable. In the right
probabilistic sense, it is thus quite likely that a randomly generated sub-
group is non-nudgable. However, the other half of the alternating groups
are nudgable. We also construct a smallest possible nudgable group, a
6-element subgroup of the permutation group on 4 elements.
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1. Introduction. Let X be a finite set, whose elements represent certain al-
ternatives that an individual may choose from. A total linear order on X then
represents the preferences of an individual as to the given alternatives. Let
O(X ) be the set of all total orders on X . Certain decision processes from be-
havioral economics are modeled in this setup, see, for example, [3,5]. Assume
the real preferences of an individual are not known, only a subset G ⊆ O(X )
of possible preferences is revealed. Certain mechanisms may prompt the indi-
vidual to behave like it has a certain preference from this set (although it is
maybe not the real preference). Such methods are often subsumed under the
notion of nudging [6]. When designing such a mechanism, it might be interest-
ing to see how far from the real preference it makes the individual deviate. Or,
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when deciding between two possible mechanisms, one would like to see which
one will make the individual deviate less from his real preference.

So we would like to compare certain orders to each other, and in particular
ask whether one order is closer to a first than to a second one. For this let
π1, π2, π ∈ G and say that π is closer to π1 than to π2 if whenever π1 and
π2 order two alternatives differently, then π orders them just as π1 does. As a
formula, where orders are understood as binary relations on X , this means

π1\π2 ⊆ π.

In this way we obtain two sets, namely the set C1 of orders from G that are
closer to π1 than to π2, and the set C2 of those orders that are closer to π2

than to π1. Note that not every order necessarily belongs to either C1 or C2.
The size of C1 compared to the size of C2 shows the probability that π1 will
inforce less deviations from the real preference than π2.

It has been observed in [3] that in many cases the two sets C1 and C2 are of
the same cardinality, meaning that no mechanism is predominant in pairwise
comparison. This happens for many of the relevant models from the litera-
ture, see, for example, [3] and the references therein. Since the question is well
motivated from the economical applications, it clearly asks for a systematic
mathematical treatment. It can be formulated in terms of permutation groups
and inversions, which we will explain in the following. Our main section then
proves several results on whether subgroups of permutation groups fulfill this
property of non-nudgability. Among them are all full permutation groups, half
of the alternating groups, all standard dihedral groups, and all abelian sub-
groups. But there are also groups which are nudgable, for example the other
half of all alternating groups. The smallest example of a nudgable group is
a 6-element subgroup of S4. In a suitable formulation, a randomly generated
subgroup of Sn is more likely to be non-nudgable than nudgable if n is large.

2. Preliminaries. Let us first translate the initial problem from the intro-
duction into a question about subgroups of permutation groups. For a general
background on permutation groups we recommend [2,4] or any other introduc-
tory text to algebra. Assume without loss of generality X = {1, . . . , n}. Then
the set O(X ) of total orders on X can be identified with the permutation group
Sn; we will identify the total order i1 < i2 < . . . < in with the permutation

π =
(

1 2 · · · n
i1 i2 · · · in

)
,

i.e. π maps j to ij . Any subset G ⊆ O(X ) then becomes a subset G ⊆ Sn. In
most of the applications, the set G will even be a subgroup (see, for example,
[3] and the references therein). Since this assumption is natural from a mathe-
matical point of view as well, we will restrict to subgroups from now on. Now
let π1, π2, π ∈ O(X ) and consider the condition π1\π2 ⊆ π. It means

i <π1 j ∧ j <π2 i ⇒ i <π j

or, in the language of permutations,

π−1
1 (i) < π−1

1 (j) ∧ π−1
2 (j) < π−1

2 (i) ⇒ π−1(i) < π−1(j).
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By setting k = π−1
1 (i) and l := π−1

1 (j) this becomes

k < l ∧ π−1
2 (π1(l)) < π−1

2 (π1(k)) ⇒ π−1(π1(k)) < π−1(π1(l)). (1)

Now recall the notion of an inversion of a permutation σ. It is a pair whose
order is reversed by σ:

inv(σ) := {(i, j) | 1 ≤ i < j ≤ n, σ(j) < σ(i)} .

Now Eq. (1) becomes

inv(π−1
2 π1) ∩ inv(π−1π1) = ∅.

With this formulation we define the sets C1, C2 from above as follows:

C1 =
{
π ∈ G | inv(π−1

2 π1) ∩ inv(π−1π1) = ∅}
and

C2 =
{
π ∈ G | inv(π−1

1 π2) ∩ inv(π−1π2) = ∅} .

Now finally note that π−1
1 π2 is the inverse of π−1

2 π1, and with π running
through the full subgroup G, so do π−1π1 and π−1π2. So we set

DG(π) := {σ ∈ G | inv(σ) ∩ inv(π) = ∅}
and define:

Definition 2.1. A subgroup G ⊆ Sn is called non-nudgable if for all π ∈ G we
have

|DG(π)| = |DG(π−1)|.
Otherwise G is called nudgable.

3. Main results. Our first result is a straightforward observation, but will
already cover a large class of groups. For this let

ω0 =
(

1 2 · · · n
n n − 1 · · · 1

)
∈ Sn

denote the permutation that has all ordered pairs as inversions.

Theorem 3.1. If G ⊆ Sn is a subgroup that contains ω0, then G is non-
nudgable.

Proof. We prove that for σ ∈ DG(π) we have ω0σπ−1 ∈ DG(π−1). Then clearly
the mapping

DG(π) → DG(π−1)

σ 
→ ω0σπ−1

is a bijection. Since multiplying with ω0 from the left just exchanges inversions
and non-inversions, it remains to prove that

inv(π−1) ⊆ inv(σπ−1).

But this is clear, since (i, j) ∈ inv(π−1) just means (π−1(j), π−1(i)) ∈ inv(π),
and thus (π−1(j), π−1(i)) /∈ inv(σ). �
Corollary 3.2. The following subgroups of Sn are non-nudgable:
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(i) The full group Sn.
(ii) The alternating group An if �n

2 � is even.
(iii) The dihedral group Dn, generated by ω0 and the cycle (12 · · · n).

Proposition 3.3. If n ≥ 6 and �n
2 � is odd, then An is nudgable.

Proof. Consider the permutation

π =

(
1 2 3 · · · n − 5 n − 4 n − 3 n − 2 n − 1 n
n n − 1 n − 2 · · · 6 5 3 1 4 2

)
.

The only ordered pairs that are not inversions of π are

(n − 3, n − 1), (n − 2, n − 1), (n − 2, n).

From this we see that π belongs to An precisely in the cases considered here.
It is now also not hard to explicitly compute

DAn
(π) = {id, (n − 2, n, n − 1), (n − 3, n − 2, n − 1)} .

On the other hand, the only ordered pairs that are not inversions of π−1 are

(1, 2), (1, 4), (3, 4).

From this we compute

DAn
(π−1) = {id, (12)(34)} .

So |DAn
(π)| = 3 > 2 = |DAn

(π−1)|. �

For our next result we will need the following straightforward observations:

inv(π−1) = π inv(π)
inv(σπ) = inv(π) � π−1 inv(σ)

where � denotes the symmetric difference. Here we use the notation σ inv(π)
for the set we obtain by applying σ to both entries of each (i, j) from inv(π),
and permute (if necessary) to make the first entry smaller than the second
one.

Theorem 3.4. Any abelian subgroup G ⊆ Sn is non-nudgable.

Proof. We claim that σ ∈ DG(π) implies σ−1 ∈ DG(π−1), which will prove
the claim. By definition, σ ∈ DG(π) means inv(σ)∩ inv(π) = ∅, which implies

∅ = σ inv(σ) ∩ σ inv(π) = inv(σ−1) ∩ σ inv(π).

From this we obtain

inv(πσ−1) = inv(σ−1) � σ inv(π) = inv(σ−1) ∪̇ σ inv(π).

On the other hand, by commutativity, we obtain

inv(πσ−1) = inv(σ−1π) = inv(π) � π−1 inv(σ−1).

Now note that inv(π) and σ inv(π) have the same cardinality, and similar with
π−1 inv(σ−1) and inv(σ−1). We conclude inv(π) ∩ π−1 inv(σ−1) = ∅, and so

∅ = π inv(π) ∩ inv(σ−1) = inv(π−1) ∩ inv(σ−1),

which means σ−1 ∈ DG(π−1). �
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Example 3.5. The groups A2,A3 are non-nudgable, since they are abelian.
Thus we have fully classified nudgability of alternating groups.

Before we give a list of more examples, we note how new non-nudgable
subgroups can be constructed from known ones. The case of a product Sn1 ×
· · · × Snr

is one of the important cases in [3].

Proposition 3.6. For n = n1 + · · · + nr decompose

{1, . . . , n} = {1, . . . , n1} ∪ {n1 + 1, . . . , n1 + n2} ∪ · · ·
and embed Sn1 × · · · × Snr

into Sn by letting Sni
permute the numbers in the

i-th subset. If Gi ⊆ Sni
are non-nudgable subgroups, then so is

G1 × · · · × Gr ⊆ Sn.

Proof. This is clear, since for π = (π1, . . . , πr) ∈ G := G1 × · · · × Gr, we have
π−1 = (π−1

1 , . . . , π−1
r ) and

DG(π) = DG1(π1) × · · · × DGr
(πr).

�
Remark 3.7. In Theorem 3.1, the condition ω0 ∈ G can clearly be weakened to
the existence of some permutation τ ∈ G, whose inversion set contains all other
inversions sets of group elements. However, we where not able to produce an
example of such a group, which does not arise as a product (as in Proposition
3.6) of groups to which Theorem 3.1 applies directly. However, one can even
weaken the condition to the following one:

∀π ∈ G ∃τ ∈ G ∀σ ∈ DG(π) : σ inv(π) ⊆ inv(τ). (2)

In this case, a bijection from DG(π) to DG(π−1) is given by

σ 
→ τσπ−1,

as is proven similar to the proof of Theorem 3.1. One example of such a group,
which is not covered by any of the other results, is given in Example 3.8 (iv)
below.

Now let us give more explicit examples:

Example 3.8. (i) Any subgroup of S1,S2, and S3 is non-nudgable. In fact
all nontrivial subgroups are abelian, so Corollary 3.2 and Theorem 3.4
apply.

(ii) Proposition 3.6 does not hold for ”non-diagonal” embeddings. For n ≥ 4
we embed Sn−1 into Sn by fixing 2. This leads to a nudgable subgroup
G. For the element

π =
(

1 2 3 4 · · · n − 3 n − 2 n − 1 n
n 2 n − 1 n − 2 · · · 5 4 1 3

)

one computes, in a similar fashion as in Proposition 3.3
|DG(π)| = 2 > 1 = |DG(π−1)|.

For n = 4 we obtain a 6-element subgroup of S4 that is nudgable. Since
all smaller subgroups are abelian, this is the smallest possible example of
a nudgable subgroup.
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(iii) The group G ⊆ S5 generated by (12)(34) and (15)(23) has 10 elements, is
non-abelian, and does not contain an element with largest inversion set.
So none of the above main results apply. However, condition (2) from
Remark 3.7 is fulfilled, and G is thus non-nudgable. This can easily be
verifed.

Remark 3.9. If a subgroup G ⊆ Sn is generated by one permutation, it is
abelian and thus non-nudgable by Theorem 3.4. If two permutations are chosen
independently uniformly at random, the probability that they generate Sn goes
to 3/4 for n → ∞. The probability that either Sn or An is generated even goes
to 1. These are the main results of [1]. So the probability that a randomly
generated subgroup of Sn is non-nudgable goes to at least 3/4 for n → ∞.
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