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On pair correlation and discrepancy

Sigrid Grepstad and Gerhard Larcher

Abstract. We say that a sequence (xn)n≥1 in [0, 1) has Poissonian pair
correlations if

lim
N→∞

1

N
#

{
1 ≤ l �= m ≤ N : ‖xl − xm‖ <

s

N

}
= 2s

for all s > 0. In this note we show that if the convergence in the above
expression is—in a certain sense—fast, then this implies a small discrep-
ancy for the sequence (xn)n≥1. As an easy consequence it follows that
every sequence with Poissonian pair correlations is uniformly distributed
in [0, 1).
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1. Introduction. The concept of Poissonian pair correlations for a sequence
(xn)n≥1 in [0, 1) was introduced by Rudnick and Sarnak [5], and has been
intensively studied by several authors over the last years (see, for instance, [2,
3,6–8]). Let ‖·‖ denote distance to the nearest integer. We say that a sequence
(xn)n≥1 of real numbers in [0, 1) has Poissonian pair correlations if

lim
N→∞

1
N

#
{

1 ≤ l �= m ≤ N : ‖xl − xm‖ <
s

N

}
= 2s (1.1)

for every s > 0.
In this note we are concerned with the relation between the Poissonian pair

correlation property and the notion of uniform distribution. We say that the
sequence (xn)n≥1 is uniformly distributed, or equidistributed, in [0, 1) if
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lim
N→∞

1
N

# {1 ≤ n ≤ N : xn ∈ [a, b)} = b − a

for all 0 ≤ a ≤ b ≤ 1. It is well known that uniform distribution does not
necessarily imply Poissonian pair correlations. One example confirming this
is the Kronecker sequence ({nα})n≥1, which is uniformly distributed for ev-
ery irrational α, but does not have Poissonian pair correlations for any value
of α. Whether the converse implication holds has until recently remained an
open question: is every sequence in [0, 1) with Poissonian pair correlations uni-
formly distributed? We answer this question in the affirmative by establishing
a quantitative result connecting the speed of convergence in (1.1) to the star-
discrepancy D∗

N of the sequence. We recall that the star-discrepancy D∗
N of

(xn)n≥1 is defined as

D∗
N = sup

0≤a≤1

∣∣∣∣
1
N

· AN ([0, a)) − a

∣∣∣∣ ,

where AN ([0, a)) := #{1 ≤ n ≤ N : xn ∈ [0, a)}, and that (xn)n≥1 is uniformly
distributed in [0, 1) if and only if limN→∞ D∗

N = 0 (see, for example, [4]).
The main result of this paper is the following.

Theorem 1.1. Let (xn)n≥1 be a sequence in [0, 1), and suppose that there ex-
ists a function F :N × N → R

+ which is monotonically increasing in its first
argument, and which satisfies

max
s=1,...,K

∣∣∣∣
1
2s

#
{

1 ≤ l �= m ≤ N : ‖xl − xm‖ <
s

N

}
− N

∣∣∣∣ ≤ F (K,N) (1.2)

for all N ∈ N and all K ≤ N/2. One can then find an integer N0 > 0 such
that for N ∈ N, N ≥ N0, and arbitrary K satisfying

min
(

1
2
N2/5,

N

F (K2, N)

)
≤ K ≤ N2/5, (1.3)

we have
ND∗

N ≤ 5 · max
(
N4/5,

√
N · F (K2, N)

)

where D∗
N is the star-discrepancy of (xn)n≥1.

The next result is an easy consequence of Theorem 1.1.

Corollary 1.2. If the sequence (xn)n≥1 in [0, 1) has Poissonian pair correla-
tions, then it is uniformly distributed.1

Proof. Suppose that (xn)n≥1 has Poissonian pair correlations, and fix any
ε > 0. We then have

max
s=1,...,�1/ε5�

∣∣∣∣
1
2s

#
{

1 ≤ l �= m ≤ N : ‖xl − xm‖ <
s

N

}
− N

∣∣∣∣ ≤ εN,

for all sufficiently large N ≥ N(ε). Hence, we may construct a function F
satisfying (1.2) where F (L,N) = εN for N ≥ N(ε) and L ≤ 1/ε5. Without

1Simultaneously with our proof, another elegant proof of this result was given by Aistleitner
et al. [1]. However, their approach is less elementary and does not provide the quantitative
bound on the star discrepancy given by Theorem 1.1.
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loss of generality, we may assume that N(ε) ≥ 1/ε5. If we fix K :=
⌊
1/ε2

⌋
,

then for N ≥ N(ε) we have

N

F (K2, N)
=

N

εN
=

1
ε

≤ K ≤ N2/5,

and accordingly K satisfies (1.3). By Theorem 1.1 it thus follows that

D∗
N ≤ 5

N
· max

(
N4/5, Nε

)
= 5

√
ε

for N ≥ N0 (where in particular N0 ≥ N(ε)). �

2. Proof of Theorem 1.1. For a fixed pair of integers (N,K), where K satisfies
(1.3), we introduce the notation

H(N,K) := 5 · max
(
N4/5,

√
N · F (K2, N)

)
.

Aiming for a proof by contradiction, we assume that ND∗
N > H(N,K) for

infinitely many pairs (N,K). That is, there exist integers 1 < N1 < N2 < · · ·
and corresponding integers K1,K2, . . . satisfying (1.3), as well as real numbers
B1, B2, . . . ∈ (0, 1), such that either

# {1 ≤ n ≤ Nj : xn ∈ [0, Bj)} − NjBj > H(Nj ,Kj) (2.1)

for every j, or

# {1 ≤ n ≤ Nj : xn ∈ [0, Bj)} − NjBj < −H(Nj ,Kj) (2.2)

for every j. We assume in what follows that (2.1) holds (the case when (2.2)
holds is treated analogously). Note that (2.1) implies

Nj − NjBj − H (Nj ,Kj) > 0. (2.3)

Let N := Nj , K := Kj , B := Bj , and H := H(Nj ,Kj) for some fixed j.
We now consider the distribution of the points xn into subintervals of [0, 1) of
length K/N . Let

Ai := #
{

1 ≤ n ≤ N : xn ∈
[
i · K

N
, (i + 1) · K

N

)}

for i = 0, 1, . . . , 	N/K
 − 1, and let

A�N/K� := #
{

1 ≤ n ≤ N : xn ∈
[⌊

N

K

⌋
· K

N
, 1

)}
.

Moreover, for arbitrary positive integers l, let

Al := Almod(�N/K�+1).

If we introduce the notation

HL := #
{

1 ≤ l �= m ≤ N : ‖xl − xm‖ <
LK

N

}

for L = 1, 2, . . . ,K, then∣∣∣∣
1

2LK
HL − N

∣∣∣∣ ≤ F (K2, N). (2.4)
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We have that

HL ≥
�N/K�∑

i=0

(Ai(Ai − 1) + 2Ai (Ai+1 + · · · + Ai+L−1))

=
�N/K�∑

i=0

(
(Ai + · · · + Ai+L−1)

2 − (Ai+1 + · · · + Ai+L−1)
2
)

− N

=: 2LKN · γL − N,

where

γL =
1

2LKN

�N/K�∑
i=0

(
(Ai + · · · + Ai+L−1)

2 − (Ai+1 + · · · + Ai+L−1)
2
)

.

Thus, we get
1

2LKN
· HL ≥ γL − 1

2LK
. (2.5)

Now consider
ΓK := min

x1,...,xN

max
L=1,2...,K

γL, (2.6)

where by minx1,...,xN
we mean the minimum over all configurations of the

points x1, . . . , xN satisfying (2.1). If we define

ZL :=
1

2LKN

�N/K�∑
i=0

(Ai + Ai+1 + · · · + Ai+L−1)
2
,

then

γL = ZL − L − 1
L

· ZL−1,

and thus

ΓK = min
x1,...,xN

max
(

Z1, Z2 − 1
2
Z1, . . . , ZK − K − 1

K
ZK−1

)
.

We have

max
(

Z1, Z2 − 1
2
Z1, . . . , ZK − K − 1

K
ZK−1

)
≥ 2

K + 1
ZK .

To see this, assume to the contrary that Z1 and ZL − (L − 1)ZL−1/L are all
less than 2ZK/(K +1). Then by successive insertions we get the contradiction
ZK < ZK . Hence, we have

ΓK ≥ min
x1,...,xN

2
K + 1

· ZK . (2.7)

Let us now estimate

min
x1,...,xN

ZK =
1

2K2N
min

A0,A1,...,A�N/K�

�N/K�∑
i=0

(Ai + Ai+1 + · · · + Ai+K−1)
2
,

where the minimum on the right-hand side is taken over all possible values
of A0, A1, . . . , A�N/K� provided that the points x1, . . . , xN satisfy (2.1). By
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definition, we have A0 + · · · + A�N/K� = N . Introducing the notation Gi =
Ai + Ai+1 + · · · + Ai+K−1, we thus get

�N/K�∑
i=0

Gi = K ·
�N/K�∑

i=0

Ai = KN. (2.8)

Moreover, by invoking condition (2.1) on the distribution of x1, . . . , xN , we
have

�NB/K�∑
i=−K+1

Gi ≥ K

�NB/K�∑
i=0

Ai ≥ K(NB + H), (2.9)

and consequently
�N/K�−K∑

i=�NB/K�+1

Gi ≤ K (N(1 − B) − H) . (2.10)

We get

min
x1,...,xN

ZK ≥ 1
2K2N

min
G0,G1,...,G�N/K�

�N/K�∑
i=0

G2
i , (2.11)

where the minimum on the right-hand side is taken over all positive reals
G0, G1, . . . , G�N/K� satisfying (2.8)–(2.10). It is an easy exercise to verify that
this minimum is attained when

Gi =
K(NB + H)
K + 	NB/K
 for i = −K + 1, . . . ,

⌊
NB
K

⌋
,

and

Gi =
K (N(1 − B) − H)

	N/K
 − K − 	NB/K
 for i =
⌊
NB
K

⌋
+ 1, . . . ,

⌊
N

K

⌋
− K.

Note that since K ≤ N2/5 and H ≥ 5N4/5, we have K2 ≤ H/5, and hence by
(2.3) both the numerator and the denominator of these Gi are positive. Thus,
we get

1
2K2N

min
G0,G1,...,G�N/K�

�N/K�∑
i=0

G2
i

≥ 1
2K2N

(
K2(NB + H)2

K + 	NB/K
 +
K2 (N(1 − B) − H)2

	N/K
 − K − 	NB/K


)

≥ K

2

(
1 +

H2

2N2

)
(2.12)

for all N > N0. For the final inequality in (2.12), we have again used that
H ≥ 5N5/4 and K2 ≤ H/5.

Finally, by combining (2.12), (2.11), and (2.7), we find the lower bound

ΓK ≥ K

K + 1

(
1 +

H2

2N2

)
.
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From the definition (2.6) of ΓK and (2.5), it follows that

max
L=1,...,K

1
2LKN

HL > ΓK − 1
2K

≥ 1 +
H2

4N2
− 2

K
,

and recalling (2.4), we get

1
N

F (K2, N) + 1 ≥ max
L=1,...,K

1
2LKN

HL > 1 +
H2

4N2
− 2

K
.

This implies that

H2 <
8N2

K
+ 4NF (K2, N)

≤ 12max
(

N2

K
,NF

(
K2, N

))

< 25max
(
N8/5, NF

(
K2, N

))
= H2,

which is a contradiction. Thus, our assumption (2.1) must be incorrect, and
the proof of Theorem 1.1 is complete. (Note that the last inequality above
is trivially true if N2/K ≤ NF (K2, N); in the opposite case we have K <
N/F (K2, N), and by the condition (1.3) imposed on K, we then get K ≥
N2/5/2, and consequently N2/K ≤ 2N8/5.)
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