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Abstract. We prove Wallen-type formulae for integrated semigroups and
sine functions with values in a unital Banach algebra with unit u. As the
main application, we show that p(t) = tu,t > 0 is an isolated integrated
semigroup and sine function.
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1. Introduction. In 1966 Cox [12] proved that there is no square matrix A
such that

sup A" — 1] < 1, (1)
n>1

where [ is the identity matrix, except for A = I. This result has immediately
been generalized: in 1967 Nakamura and Yoshida showed that (1) implies A = I
in the case where A is a bounded linear operator in a Hilbert space and I
is the identity operator, and one year later Hirschfeld [17] showed the same
implication in the case where A is a member of a normed algebra. Later Wils
[24], Chernoff [8], Nagisa and Wada [21], and Kalton et al. [18] provided further
related results.

The approach of Wallen [23], who treated the case of a normed algebra A,
and published his result even a bit before Hirschfeld, seems to be of particular
simplicity and elegance. He noted that if A is an algebra with unit u, then for
any a € A:

n—1

Z(u — ai), n>1, (2)

i=1

n

a” —u a—1u

a—Uu=

and concluded that if the algebra is normed, then the conditions
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n—1
1 .
=0 and liminf— —d| <1 3
an LHLL%nE [u—a’| < (3)

i=1

e an
n— 00 n
imply a = u. In particular, ¢ = u provided sup,,~ [[a” — u| < 1.

A renewed interest in the theory has been marked by the recent paper [6]
in which, following the companion paper [5] on differences between semigroups
of operators and cosine functions, it has been noted that for any Banach space
X, and any real  the ‘scalar’ cosine function

Cy(t) = cos(kt)Ix, teR,

where Ix is the identity operator in X, is isolated. More specifically, for a
strongly continuous cosine function {C(t),t € R}, the condition

aup C(1) — Cult) < (1)
t>0

implies C(t) = C,(t). Moreover, there are no other isolated cosine functions
but those that are ‘scalar’. Remarkably, the theory for semigroups is not
analogous, especially if X is a real Banach space: although the ‘trivial’ semi-
group T'(t) = Ix is isolated, the ‘scalar’ semigroups T, (t) = e *'Ix,xk > 0 are
not.

The result of [6] has later been improved in various ways. As shown by
Schwenninger and Zwart [22], in the case £ = 0, condition (4) with $ replaced
by 2 still implies that C(t) = Cy(t) = Ix, and the constant 2 is optimal—for
aly Nnon-zero K, sup;s ||Cx(t) — Ix|| = 2. In [11], Chojnacki has proved that
an analogue of Schenninger and Zwart’s result holds for cosine functions in
normed algebras and, remarkably, no assumption of continuity of the families
is required. Also, he established a close link with the related 0 — % law of
Arendt [1]. Furthermore, in [7] and, independently but slightly later, in [14],
it was proved that for k # 0, the constant on the right-hand side of (4) may
be enlarged to 3%5 but not to any greater number. See also, e.g., [10,13,14]
for further results.

Remarkably, despite many efforts to make the proofs less sophisticated,
the (optimal) results for cosine functions described above are proved by quite
involved techniques, coming short of the simplicity of Wallen’s argument. It
appears that while the Wallen formula works well in the case of discrete-
parameter and continuous-parameter semigroups, an analogue for cosine func-
tions that would work as efficiently remains unknown. In particular, Arendt’s
formula [1], though simple and elegant, does not lead to the optimal result.

Nevertheless, as we would like to argue in this article, the potential in the
Wallen formula has not been exploited completely yet. We will show, namely,
that Wallen-type formulae for integrated semigroups and sine functions in
Banach algebras (see Propositions 2.1, 3.1) may be used to prove isolation
results for such functions, and the constants obtained in such analysis (in
both cases equal to 1) are optimal. Our Section 2 is devoted to integrated
semigroups and the main theorems there are Theorems 2.2 and 2.3; Section 3
contains results on sine functions.
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2. Anisolated integrated semigroup. A Banach algebra-valued function [0, co)
St p(t) € A is said to be an integrated semigroup if it is integrable on any
finite interval,

s+t S
p(H)ps) = / p(r) dr - / p(r)dr, s,t>0,
t 0

and p(0) = 0. A typical example of an integrated semigroup is
po(t) = ljo4y € L' (RT), (5)

where L'(R™) is the convolution algebra of (equivalence classes of ) absolutely
integrable functions on [0, c0). In fact, as a result of Kisynski’s theorem (see,
e.g., [20] or [3,4,9]), there is a one-to-one correspondence between Lipschitz
continuous integrated semigroups (i.e. integrated semigroups such that there
is an M such that ||p(t) — p(s)||a < M|t — s|,t,s > 0) and homomorphisms of
the convolution algebra L'(R™). More specifically, each Lipschitz continuous
integrated semigroup is of the form
p=H opo,

where H is the corresponding homomorphism of L!(R"); the norm of H is the
smallest Lipschitz constant for p.

If A is a Banach algebra with unit «, then the map [0,00) 3 t +— tu is
arguably the simplest integrated semigroup. Our main goal is to prove that
this integrated semigroup is isolated. We will prove two versions of this result:
Theorems 2.2 and 2.3. The former theorem hinges crucially on the Wallen-type
formula for integrated semigroups presented in Proposition 2.1.

Throughout the remainder of this section, {p(t),t > 0} is an integrated
semigroup in a unital Banach algebra A with unit w. Unless stated otherwise,
the integrated semigroup need not be continuous in any sense.

Proposition 2.1 (Wallen’s formula for integrated semigroups). For s > t,
(s7'p(s) —w)(t™'p(t) — u)

s+t t
= (st [ plrdr = (507 [ ) dr =57 pl) — ¢ ple) 4

Proof. The left-hand side equals (st)~*p(s)p(t) — s 1p(s) —t~'p(t) +u. By the
integrated semigroup defining property, the first summand here equals
s+t s s+t t

(st)~! / p(r) dr — / p(r)dr| = (st)~! / p(r) dr — (st)~? / p(r) dr,
t 0 s 0
completing the proof. O

We are ready to present our main results:

Theorem 2.2. Suppose that the following conditions are satisfied.
(a) liminf, o [|s7p(s) —ulla =t a < 1.
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(b) For each t > 0, limg_ o s 1t 7! f:H p(r)dr —p(s)|ja = 0.

Then p(t) = tu,t > 0.

Theorem 2.3. Suppose p is continuous (but not necessarily Lipschitz continu-
ous), and

[t~ p(t) —ulla <o, >0, (6)
holds for some a < 1. Then p(t) = tu,t > 0.

Before continuing, let us comment on the relation between these two theo-
rems. Certainly, condition (a) in Theorem 2.2 is similar, but weaker than the
main assumption of Theorem 2.3. Condition (b) in Theorem 2.2 then corre-
sponds to continuity assumption in Theorem 2.3. Indeed, it may be proved
(compare Corollary 2.6, later on) that if the integrated semigroup is Lipschitz
continuous, (b) is automatically satisfied. (Hence, for Lipschitz continuous in-
tegrated semigroups, (a) alone implies the thesis.) On the other hand, this
condition is an analogue of the first condition in (3), and so in a sense restricts
the growth of the integrated semigroup (or rather of the semigroup involved,
if the latter exists, see Corollary 2.7).

Proof of Theorem 2.2. By assumption (b), there exists a sequence (s;), -,
converging to infinity such that

lsn " plsn) =l <

1
—12—a<1, n > 1.

Replacing s by s, in Proposition 2.1, we obtain the following estimate, valid
for all £ > 0, and almost all n > 1,

_ l+a, _
[t~ p(t) —ul| < — |t 'p(t) —

Sn+t t
+ sttt / p(r)dr — p(sp)|| + (s,1) 7! /p(r) dr
Sn 0

By assumption (b), the second summand on the right-hand side converges to
0, and so does the third. Thus, letting n — oo yields
_ 1+a,
1t p(t) = ull < <=1t p(t) —ull
Since HTO‘ <1, p(t) = tu,t > 0, as desired. O

Proof of Theorem 2.3. Assumption (6) implies
lp®)lla < (X +a)t, t>0,

and so ry := A [~ e Mp(t) dt, A > 0, are well-defined.

Now, a calculation presented in [2, proof of Proposition 3.2.4] reveals that,
since p is an integrated semigroup, ry, A > 0, is a pseudo-resolvent, i.e. the
Hilbert equation is satisfied:

A=p)rary=ry—ry, A p>0.
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On the other hand, since A [~ e dt = A2 [ e Mtdt =1,

oo

IAry — ul| = )\2/ )\Z/e_mtudt
0

0

gﬁ/&“@@-w%t

0

oo
< al? /e_’\ttdt = .
0

Therefore, Ary is invertible and so is 7y, A > 0.
Multiplying the Hilbert equation by T;l from the left, and by r;l from the

right yields Au — pu = ry" — 7. It follows that

o —1
a:=u—ry

does not depend on A > 0. Let

Then, for A > ||al|4,

)\/eMﬁ
0

showing that the Laplace transforms of the continuous functions p and p

coincide. Thus
t
/ e’*ds, t>0. (7)
0

Finally, we recall that for a Banach algebra element b, the inequality ||b —
ulla < 1 implies not only existence of b= but also the estimate |[b~1 — ul[4 <

e Meldt = (Mu—a) L =7y, A>0,

%. Therefore, for b = Ary, we obtain (note b= = A" (\u — a))
AMu—a [[Ara — ulla «
A A l=|Ara—ufla T 1-a’
or

(0%
< —
lafla < +—

Since this holds for all A > 0, we must have ||a||4 = 0. Formula (7) now yields
p(t) = tu,t > 0. O
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Example 2.4. This example shows that the requirement o < 1 in Theorems 2.2
and 2.3 is optimal for a = 1 the result is false. For, if the integrated semigroup
p is given by p(t fo Asuds, where A > 0, then on the one hand,
t
-1 _ } A= As
sup [ 1p(t) — ulls < sup+ [ (1—e)ds <1,
>0 t>0 T
0
and on the other hand

1—
sup ||t p(t) — ul[p > lim ’
t>0 t—oo

Therefore, sup;~g ||t 'p(t) — ul|la = 1 (and similarly liminf; . [t~ 'p(t) —
ul|la = 1) while p(t) # tu.

Before completing this section, we note - without proof - the following
strong topology companion to Theorem 2.3, and two of its corollaries.

Theorem 2.5. Let {P(t),t > 0} be an integrated semigroup of operators in the
Banach algebra L(X) of linear operators on a Banach space X. Suppose that
the following conditions are satisfied.

(a) liminf, o [|s7 1 P(s) — Ix| ox) = o < 1.

(b) For each t > 0, limg_oo st 7! fss+t P(r)dr — P(s)] = 0 (strongly).
Then P(t) = tIx,t > 0.
Corollary 2.6. Suppose {P(t),t > 0} is an integrated semigroup of operators.

If condition (a) of Theorem 2.5 is satisfied, and for each x € X there ewists
M(z) > 0 such that ||P(t)x — P(s)x|| < M(z)[t — s|, then P(t) = tIx,t > 0.

Proof. (By the uniform boundedness principle, our assumption implies exis-
tence of M > 0 such that || P(t) — P(s)||z(x) < M|t—s|, but we will not use this
information.) It suffices to show that our assumptions imply (b) in Theorem
2.5. To this end we note that

s+t s+t

t_l/P(r)mdr—P(s)x = t_l/[P(r)x—P(s)x]dr

s
s+t

<t” 1/HP x — P(s)x| dr

s+t
< M(z)t! / (r— 8)dr = M(2)t/2.
The last quantity does not depend on s, and so (b) holds. O
Corollary 2.7. Suppose {T(t),t > 0} is a strongly measurable semigroup of
operators in a Banach space X, such that
(a) T(0) = Ix and the (strong) integral fo s)ds ewists for all t > 0,
(b) liminf; .. [[t7! fo s)ds = Il ox) = < 1,
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(¢) limy_oo t~YT(t) = 0 in the strong topology.
Then T(t) = Ix,t > 0.
Proof. This theorem may be deduced from the following Wallen-type identity:
for s,t > 0,

S

st /T(r) dr — Ix | (T(t) — Ix)

0
t+s s
=51 / T(r)ydr —s* /T(T) dr —T(t) + Ix.
t 0

However, we will deduce it from Theorem 2.5, by introducing
t

P(t) = / T(s)ds, t>0; (8)
0
these operators are well-defined by assumption (a). By assumption (b) in turn,
condition (a) in Theorem 2.5 is fulfilled, and all we need to show is that
condition (b) in the latter theorem holds.
Changing the order of integration yields

s+t s+t r s+t s+t
/ P(r)dr = / /T(u) dudr = / / T(u)drdu
s s 0 0 sVu
s s+t s+t s+t
= / / T(u)drdu+ / /T(u) drdu
0 s s u
s+t

=tP(s)+ /(s +t—u)T(u)du.
Hence, it remains to show that for any y € X, y(s) := s~} f;“(s +t—

uw)T'(u)y du, converges to 0, as s — oo. However, given ¢ > 0, for sufficiently
large s, ||T(uw)y| < eu for u > s. Therefore, ||y(s)| does not exceed

s+t
es! /(s+t—u)udu =€

S

3st? + 3
6s

We see that limsup,_, . [|y(s)|| < €t?, implying the claim, since € is arbitrary.
0

3. An isolated sine function. A Banach algebra-valued function [0,00) 3 ¢ —
p(t) € A is said to be a sine function if it is integrable on any finite interval,
s+t |s—t]
2p(0p(s) = [ pr)dr— [ pryar sezo.

0 0
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and p(0) = 0. A typical example of a sine function is

1
po(t) = 51(—t,t) € Lé(RL 9)

where L!(R) is the convolution algebra of even, absolutely integrable functions
on R. In fact (see [3, Section 5]), each Lipschitz continuous sine function is of
the form

p=Hopo
where H is a related homomorphism of L!(R).

We start with the following Wallen-type formula for sine functions, while
omitting its proof since it is very similar to the proof of Proposition 2.1.

Proposition 3.1 (Wallen’s formula for sines). For s > ¢,
s+t

! / p(r)dr — p(s) | — [t~ 1p(t) — ).

(s7'p(s) — W p() —w) =57 | o

s—t

This proposition combined with the argument presented in Theorem 2.2
leads to the following result.

Theorem 3.2. Let {p(t),t > 0} be a sine function in a unital Banach algebra
A with unit w. Suppose that the following conditions are satisfied:

(a) liminfs_ o [|s71p(s) — ul|a = @, where a < 1.
(b) For each t > 0, limg_, s_1||% Isj:p(r) dr —p(s)||a = 0.
Then p(t) = tu,t > 0.

Remark 3.3. If A possesses non-trivial idempotents of norm 1 (in particular,
if A is the Banach algebra of operators on a Banach space of dimension > 2),
then the constant in condition (a) in Theorem 3.2 is optimal in the following
sense. Let j € A be a non-trivial idempotent with norm 1. Then, i = v — j is
also an idempotent, and p(t) = ti is a sine function satisfying (b). Moreover,
for any t > 0, t1p(t) — u = j so that ||t~ 1p(t) — u|| = 1. Therefore (a) holds
with a = 1, and yet p(t) = tu for no t > 0.

Theorem 3.2 combined with the remark given above should be compared
with the main result of [22] where it was proved that for a cosine function
{C(t),t € R} on a Banach space X, condition sup,~ ||C(¢t) — Ix| < 2 implies
C(t) = Ix, and the constant 2 is optimal. The fact that, as our results show, for
sine functions the constant involved is smaller (1 as opposed to 2) agrees with
the intuition that there are many more sine functions than there are cosine
functions. The same intuition is supported by Kéyantuo’s paper [19, Section
5], where it is shown that on L!(R%) the Laplacian generates a cosine function
in one dimension, and merely a sine function in dimensions two and three,
see also [16] cited in [19] as Theorem 5.1. (This is a reflection of the classical
result of Hadamard, see [15, Section 2.4.1 c].) On L?(R?) one has always a
cosine function in any dimension. These results show that at least outside of
a Hilbert space there are few cosine functions only, and more sine functions,
indeed. (I am grateful to the referee for pointing these last references to me.)
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In the case of sine functions in the algebra of operators, condition (b) in
Theorem 3.2 may be a bit relaxed, as in Theorem 2.5. We omit the proof of
the following result.

Theorem 3.4. Let {P(t),t > 0} be a sine function of operators in the Ba-
nach algebra L(X) of linear operators on a Banach space X. Suppose that the
following conditions are satisfied.

(a) liminf, o ||s71P(s) — Ix||z(x) < 1.
(b) For eacht >0, limy_oc 5~ *[3 Ssj: P(r)dr — P(s)] =0 (strongly).
Then P(t) = tIx,t > 0.

Remark 3.5. Condition (b) is automatically satisfied if for each x € X there is
M(x) > 0 such that ||P(¢t)x — P(s)z|| < M(z)|s — t|, for s,t > 0.

We refrain from stating sine function analogues of Theorem 2.3 and Corol-
lary 2.7.
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