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Fourier multipliers on the real Hardy spaces

Sebastian Król

Abstract. We provide a variant of Hytönen’s embedding theorem, which
allows us to extend and unify several sufficient conditions for a function
to be a Fourier multiplier on the real Hardy spaces.
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1. Introduction. Multipliers on the real Hardy spaces Hp(Rn) (p ∈ (0,∞))
have attracted much attention in the literature. The note continues lines of
research due to Hytönen [5] and Kolomoitsev [6,7] extending earlier pioneer-
ing results, in particular, by Hörmander [4], Calderón and Torchinsky [2],
Kurtz and Wheeden [8], De Michel and Inglis [3], Miyachi [9,10], Baerstein
and Sawyer [1], Stömberg and Torchinsky [12].

The obtained multiplier conditions are two-fold. This corresponds to two
different approaches of measuring the smoothness of multiplier functions which
we apply in the paper. The diverse character is well illustrated by considering
the minimal number of derivatives for checking either of the conditions.

More precisely, as a consequence of Theorem 4.1 which is obtained by adap-
tation of Hytönen’s ∞-norm approach from [5], we get the following sufficient
condition for a function to be a Fourier multiplier on the real Hardy spaces
Hp(Rn) (n ∈ N).

We write χSμ
for the characteristic function of the set Sμ := {x ∈ R

n :
2μ−1 < |x| < 2μ+1} and set

Il,d := {α ∈ N
n
0 : |α|∞ ≤ d and |α|1 ≤ l} (d, l ∈ N).
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Theorem 1.1. Let d ∈ N, t ∈ (1, 2], and l ∈ {�n/t� + 1, . . . , dn}. Let m ∈
L∞(Rn) with Dαm ∈ L1

loc(R
n) for all multi-indices α ∈ Il,d. Suppose that

there exists a constant ρ > 0 such that

sup
μ∈Z,α∈Il,d

‖χSμ
m‖ρ

∞
∥
∥
∥2μ(|α|1−n/t)χSμ

Dαm
∥
∥
∥

t
< ∞. (1)

Then m is a Fourier multiplier on Hp(Rn) for all p ∈ (0, 2] such that

1
p

− 1
2

<
1

1 + ρ

(
l

n2
+

1
2

− 1
tn

)

. (2)

In the case of lim inf |μ|→∞ ‖χSμ
m‖∞ > 0, the condition (1) is equivalent to

the Hytönen-type condition, i.e. supμ∈Z,α∈Il,d

∥
∥2μ(|α|1−n/t)χSμ

Dαm
∥
∥

t
< ∞,

studied in [5]; see also Remark 4.3.
Otherwise, it presents a diverse feature. For instance, if |m(x)| ≤ C(1 +

|x|)−a (x ∈ R
n) for some a > 0 and

sup
μ∈Z,α∈Il,d

min(2−μb, 1)
∥
∥
∥2μ(|α|1−n/t)χSμ

Dαm
∥
∥
∥

t
< ∞ (3)

for some b ≥ 0, then the conclusion of Theorem 1.1 holds with ρ = b/a. This
shows that under an additional information on the decay of a function m, a
weakened Hytönen-type condition still ensures that m is a Fourier multiplier
on Hp(Rn) for some p < 2.

The extension of the classical Hörmander-type condition which involves an
additional analytic behaviour of the multiplier function goes back to [3,9,10].
More recently, such conditions were systematically studied by Kolomoitsev
[6,7].

The Kolomoitsev-type conditions differ from (1) in a few points. For the
convenience of the reader we restate [6, Theorem 2] and a special case of [6,
Theorem 1], which can be reformulated in our setting as follows. Set

Id := {jei : i = 1, . . . , n, j = 0, 1, . . . , d},

where {ei}n
i=1 is the canonical basis of R

n.

Theorem A (Kolomoitsev, [6, Theorems 1 and 2]). Let d > n/2 and let m ∈
L∞(Rn) with Dαm ∈ L1

loc(R
n) for all α ∈ Id. Suppose that there exists a

constant ρ > 0 such that

sup
μ∈Z, α∈Id

‖χSμ
m‖ρ

∞
∥
∥
∥2μ(|α|1−n/2)χSμ

Dαm
∥
∥
∥
2

< ∞. (4)

Then m is a Fourier multiplier on Hp(Rn) for every p ∈ (0, 2] such that

1
p

− 1
2

≤ 1
1 + ρ

d

n
. (5)

Note that the sets of multi-indices α involved in the conditions (1) and
(4) differ essentially, as well as the corresponding conclusions. A close analysis
shows that neither result is superior in general and, as soon as n ≥ 2, the one
or the other might be better suited to a particular situation.
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For instance, note that in order to use Theorem A to verify whether bounded
functions m, which are locally in the Sobolev spaces W d

2 (Rn), are Fourier mul-
tipliers on any desired Hp(Rn) for p ∈ (0, 1), one needs that the smoothness
parameter d is grater than n/2. Theorem 1.1 shows that this restriction on
the parameter d can be relaxed, if we have an additional information on the
behaviour of the mixed partial derivatives Dαm, α ∈ Id,l, with l > n/2. Note
that functions which are not locally in W

�n/2�+1
2 (Rn) but satisfy the condi-

tion (1) for d ≤ n/2, l ∈ {�n/2� + 1, . . . , dn} and ρ > 0 small, can be easily
constructed.

On the other hand, if (1) holds for d > n/2, l = d, and t = 2, then we
get that the right-hand side of (2) is strictly less than that of (5). Therefore,
Theorem 1.1 does not reproduce Theorem A. It should be also underlined that
Kolomoitsev’s result is sharp; see [6, Remark 1, p. 1565]. We do not know if one
can modify Hytönen’s ∞-approach, which is involved in the proof of Theorem
4.1, to remove this drawback and cover Theorem A.

We point out that the Fourier embedding result which is applied (implic-
itly) in the proofs of Kolomoitsev’s multiplier theorems says that the Fourier
transform maps the Besov space Bs

t,q(R
n) isomorphically onto Ks

t′,q(R
n) for

every s ≥ 0, 0 < q ≤ ∞, and t = 2, where

Ks
t′,q(R

n) :=
{

f ∈ Lt′
(Rn) :

∑

μ∈Z

2μsq
(
∫

Sμ

|f |t′)q/t′
< ∞}

; (6)

see Baernstein and Sawyer [1, (2.2) p. 12]. At a first glance, this embedding re-
sult differs from Hytönen’s one, [5, Propositions 3.1 and 3.4], which is involved
in the proof of Theorem 1.1. However, in Section 3 we show that the difference
can be made, in a sense, only of geometrical character which is relevant to
divisions of R

n corresponding to the sets of multi-indices Id and Id,l.
More precisely, we give a natural modification of [5, Propositions 3.1 and

3.4], see Lemma 3.1, which together with a characterisation of Besov spaces,
see (9), shows immediately that Bs

t,q(R
n) embedds in Ks

t′,q(R
n) for every s ≥ 0,

t ∈ [1, 2], and t′ ≤ q ≤ ∞. It allows us to extend and unify some results known
in the literature.

In particular, combining Lemma 3.1 with techniques from [5], we extend
the Strömberg-Torchinsky results, [12, Theorems 5 and 6, Chapter XI], which
fall outside the scope of the treatment in [5]; see e.g. [5, Example 9.7]. We refer
the reader to Theorems 3.4 and 3.7 for more details.

We conclude with some additional comments. Except for some details, we
reproduce ideas which have been presented in [5] and the standard techniques
from the multiplier theory developed in the above cited papers. Therefore, the
presentation of the proofs of our results is restricted to providing only main
supplementary observations which should be made. It requires an adaptation
of the techniques developed in the corresponding papers. This allows us to
keep the novelty of the paper in a more transparent way.

Moreover, the presentation is restricted to the scalar-valued case. The
vector-valued counterparts of our results, with having a priori boundedness
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on one Lp space of vector-valued functions, can be easily obtained by stan-
dard arguments. The interested reader can for instance mimic the presentation
given in [5].

2. Preliminaries. We follow the notation introduced in [5]. For an arbitrary
function f : R

n → C, we define the translation τh and the difference operators
Δd

h and ∂α
h as follows:

τhf(x) := f(x − h) (x ∈ R
n), Δhf := f − τhf,

∂α
h := Πn

i=1Δ
αi

hiei
=

∑

β≤α

(
α
β

)

(−1)|β|τβh (h ∈ R
n, α ∈ N0),

where ei stands for the ith standard unit vector in R
n, hβ := (hiβi)n

i=1, and by
Δj

h (j ∈ N0) we mean the j-fold iteration of Δh with the convention that Δ0
h

is the identity. For a multi-index α := (αi) ∈ N
n
0 , we set |α| = |α|1 =

∑n
i=1 αi

and |α|∞ := maxi=1,...,n αi to denote its 1-norm and ∞-norm, respectively.
Throughout, m denotes a bounded, measurable, complex-valued function

on R
n. Let ψ ∈ C∞(Rn) with the range [0, 1], suppψ ⊂ B(0, 1), and ψ ≡ 1

on B(0, 1
2 ). Let φ := ψ − ψ(2·) and φμ := φ(2−μ), μ ∈ Z, be a homogeneous

resolution of unity. Moreover, let mμ := mφμ (μ ∈ Z) denote the dyadic parts
of m corresponding to (φμ)μ∈Z.

To illustrate our general results expressed in the terms of the difference
operators we restate relevant Hörmander-type conditions studied by Strömberg
and Torchinsky in [12, Chapter XI].

For real numbers l ≥ 0 and t ∈ [1, 2] we say that m satisfies the condition
M(t, l), and write m ∈ M(t, l) if

⎛

⎜
⎝

∫

R≤|x|<2R

|Dαm(ξ)|tdξ

⎞

⎟
⎠

1/t

≤ CRn/t−|α| (R > 0)

for all multi-indices α with |α| ≤ l when l is a positive integer, and when l is
not an integer, in addition,
⎛

⎜
⎝

∫

R<|ξ|<2R

|Dαm(ξ) − Dαm(ξ − ζ)|tdξ

⎞

⎟
⎠

1/t

≤ CRn/t−|α| (|ζ|/R)ε (2|ζ| < R)

for all multi-indices α with |α| = �l�, where ε := l − �l�.
In [12], Strömberg and Torchinsky considered how the behaviour of the

Fourier transform of m reflects the fact that m ∈ M(t, l). They proved, in
particular, that k := m̂ ∈ K(t′, l − n/t) if l > n/t; see [12, Lemma 1, Chapter
XI]. Here, for s ∈ [1,∞] and r > 0, we write k ∈ K(s, r) if:

⎛

⎜
⎝

∫

R≤|x|<2R

|Dαk(x)|sdx

⎞

⎟
⎠

1/s

≤ CRn/s′−n−|α| (R > 0)
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⎛

⎜
⎝

∫

R<|ξ|<2R

|Dβk(x) − Dβk(x − z)|sdx

⎞

⎟
⎠

1/s

≤ CRn/s′−|α|σ
( |z|

R
; r − �r�−

)

(2|z| < R)

for all multi-indices α and β with |α| ≤ �r�− and |β| = �r�−, where �r�−

denotes the largest integer strictly less than r, and σ(h; ε) := hε if ε ∈ (0, 1),
and σ(h; 1) := −h log h if ε = 1 (h ∈ (0, 1)).

Subsequently, if kμ := k ∗ φμ (μ ∈ Z), and the functions
∑ν

−ν kμ, ν ∈ N,
satisfy the condition K(s, r) uniformly with respect to ν ∈ N, then we also
write k ∈ K(s, r).

Following [11], given 1 ≤ r ≤ ∞, we say that a function k ∈ L1
loc(R

n\{0})
satisfies the (Dr)-condition, and write k ∈ (Dr), if there exists a sequence
(cj) ∈ l1 such that
⎛

⎜
⎝

∫

2j |y|<|x|≤2j+1|y|

|k(x−y)−k(x)|rdx

⎞

⎟
⎠

1/r

≤cj2−jn/r′ |y|−n/r′
(j ∈ N, y ∈ R

n)

(for r = ∞ this condition is understood in the usual way). Note that (D1) is
the classical Hörmander condition. Moreover, for k := m̂ with m ∈ L∞ we also
write k ∈ (Dr) if

∑ν
μ=−ν kμ ∈ (Dr) uniformly in ν ∈ N.

We refer the reader to [12] for the background on weighted Hardy spaces
Hp

w(Rn), and relevant classes of weights, i.e. the class of weights satisfying
the Muckenhoupt As-condition, the reverse Hölder RHr-condition, and the
doubling Db-condition; see [12, Chapter I].

We say that a function m ∈ L∞(Rn) is a Fourier multiplier on Hp
w(Rn),

and write m ∈ M(Hp
w) if the operator T given by

(Tf )̂ = mf̂ (f ∈ D̂0)

extends to a bounded operator on Hp
w(Rn), where D̂0 stands for {f ∈ S(Rn) :

supp f̂ is compact and 0 /∈ supp f̂}.
Finally, recall that Hp

w(Rn) is identical to Lp
w(Rn) for every p ≥ s and

w ∈ As, where s > 1; see [12, Theorem 1, Chapter VI]. In the sequel, we omit
’(Rn)’ in the symbols of the function spaces.

3. The 1-norm approach. The following lemma is a variant of Hytönen’s em-
bedding result; see [5, Propositions 3.1 and 3.4]. Roughly speaking, it shows
that if q = t′, then one can reduce the index set, {0, 1}n, involved in the in-
equality (3.3) of [5, Proposition 3.4], to the canonical basis of R

n, i.e. {ei}n
i=1.

Lemma 3.1. Let t ∈ [1, 2] and d ∈ N. Then there exists a constant C such that
for every R > 0 and every f ∈ Lt we have

∫

|x|>R

|f̂(x)|t′
dx ≤ C

n∑

i=1

1/R∫

0

‖Δd
hei

f‖t′
t

dh

h
. (7)
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The proof follows the idea of the proofs of [5, Propositions 3.1 and 3.4].

Proof. Set E(i, ρ, j) := {x ∈ R
n : 2jρi ≤ |xi| < 2j+1ρi} for all ρ ∈ (0,∞)n,

i = 1, . . . , n, and j ∈ N0. Let E(i, ρ) :=
⋃

j E(i, ρ, j) (i = 1, . . . , n). Fix R > 0.
Note that {x : |x| > R} ⊂ ⋃

i E(i, ρ) for every ρ ∈ (0,∞)n with |ρ|∞ ≤ R/
√

n.
Moreover, since |(1 − ei2πei·x/2

√
n2jρi)| ≥ C > 0 for every x ∈ E(i, ρ, j), we get

∫

E(i,ρ)

|f̂(x)|t′
dx ≤ C

∑

j

∫

E(i,ρ,j)

|(1 − ei2πei·x/2
√

n2jρi)df̂(x)|t′
dx

≤ C
∑

j

‖Δd
ei/2

√
n2jρi

f‖t′
t .

Therefore, taking the logarithmic average over ρi and changing a variable
h = 1/2

√
n2jρi, we get

∫

|x|>R

|f̂(x)|t′
dx ≤ C

R/
√

n∫

R/2
√

n

∫

⋃

i E(i,ρ)

|f̂(x)|t′
dx

dρi

ρi

≤ C
∑

i

∑

j

R/
√

n∫

R/2
√

n

‖Δd
ei/2

√
n2jρi

f‖t′
t

dρi

ρi

≤ C
∑

i

∑

j

1/2jR∫

1/2j+1R

‖Δd
hei

f‖t′
t

dh

h

= C
∑

i

1/R∫

0

‖Δd
hei

f‖t′
t

dh

h
.

This completes the proof. �

By a direct computation, Lemma 3.1 yields the following counterpart of [5,
Lemma 4.1].

Lemma 3.2. Let t ∈ [1, 2], d ∈ N, and γ ∈ (0, 1]. Suppose that f ∈ L∞ with
supp f ⊂ {x : |x| ≤ 2μ} (μ ∈ Z) satisfies

‖Δd
hei

f‖t ≤ 2μ(n/t−γd)hγd (i = 1, . . . , n, h > 0).

Then there exists a constant C such that

‖f̂‖t′ ≤ C2μn/t, and

⎛

⎜
⎝

∫

|x|>R

|f̂(x)|t′
dx

⎞

⎟
⎠

1/t′

≤ C2μ(n/t−γd)R−γd (8)

for every R > 0.
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Lemma 3.2 motivates the following definition. For 0 < p, q ≤ ∞ and s > 0
we say that a function m ∈ L∞ satisfies the B(s, p, q)-condition, and write
m ∈ B(s, p, q) if there exists N � d ≥ s such that

sup
i=1,...,n

μ∈Z

∞∫

0

h−sq
∥
∥Δd

hei
[m(2μ·)φ]

∥
∥

q

p

dh

h
< ∞, B(s, p, q)

with modification for q = ∞, i.e.

sup
i=1,...,n
μ∈Z, h>0

h−s
∥
∥Δd

hei
[m(2μ·)φ]

∥
∥

p
< ∞. B(s, p,∞)

It is equivalent to say that m ∈ B(s, p, q) if

sup
μ∈Z

‖m(2μ·)φ‖Bs
pq

< ∞.

Indeed, combining [13, Theorems 2.5.12 and 2.5.13] with [13, Remark 3, p.113],
for every 0 < p, q ≤ ∞, s > n(1/min(p, 1) − 1), and d > s we have

Bs
p,q =

⎧

⎨

⎩
f ∈ Lp : max

i=1,...,n

∞∫

0

h−sq
∥
∥Δd

hei
f
∥
∥

q

p

dh

h
< ∞

⎫

⎬

⎭
(9)

and ‖·‖p+maxi=1,...,n

(∫ ∞
0

h−sq
∥
∥Δd

hei
(·)∥∥q

p
dh
h

)1/q

is an equivalent quasi-norm
in Bs

p,q (modification if q = ∞).
Let �s� denote the smallest integer at least s.

Lemma 3.3. Let s > 0, 1 ≤ p ≤ ∞, and 0 < q ≤ ∞. Suppose that m ∈ L∞

satisfies the B(s, p, q)-condition with d = �s�.
Then, if q < ∞, we have

sup
i=1,...,n, μ∈Z

j=1,...,�s�

∞∫

0

h−jγq
∥
∥
∥Δj

hei
[m(2μ·)φ]

∥
∥
∥

q

p

dh

h
< ∞,

for γ := s/�s� if s /∈ N, and for every γ ∈ (0, 1) if s ∈ N.
If q = ∞, then

sup
i=1,...,μ∈Z, h>0

j=0,...,�s�

h−γj
∥
∥
∥Δj

hei
[m(2μ·)φ]

∥
∥
∥

p
< ∞

for γ = s/�s�.
Proof. By (9) we have m(2μ·)φ ∈ Bs

pq uniformly with respect to μ ∈ Z. Since

Bs
pq ⊂ W


s�−1
p and

h−j
∥
∥
∥Δj

hei
f
∥
∥
∥

p
≤ ‖Djeif‖p (i = 1, . . . , n, h > 0, j = 0, ..., �s� − 1)

for every f ∈ W

s�−1
p , see e.g. [5, Corollary 2.2], we get

sup
i=1,...,n, h>0,μ∈Z

j=0,...,�s�−1

h−j
∥
∥
∥Δj

hei
[m(2μ·)φ]

∥
∥
∥

p
< ∞. (10)
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The fact that we can replace h−j in (10) with h−jγ for every γ ∈ (0, 1)
follows, for instance, from [5, Lemma 10.1]. This easily leads to the desired
estimates. �

Theorem 3.4. Let m ∈ L∞ satisfy the B(s, t,∞)-condition for some t ∈ [1, 2]
and s > n/t.

Then, for every multi-index β ∈ N
n
0 with |β| < s − n/t, there exists a

constant C such that for every R > 0 and y ∈ R
n with 0 < 2|y| ≤ R we have

∑

μ∈Z

⎛

⎜
⎝

∫

|x|>R

|Dβkμ(x)|1/t′
dx

⎞

⎟
⎠

1/t′

≤ CR−n/t−|β|, and

∑

μ∈Z

⎛

⎜
⎝

∫

|x|>R

|Dβkμ(x − y) − Dβkμ(x)|1/t′
dx

⎞

⎟
⎠

1/t′

≤ CR−n/t−|β|σ
( |y|

R
; s − n

t
− |β|

)

,

where σ(h; ε) := hε if ε ∈ (0, 1), σ(h; ε) := −h log h if ε = 1, and σ(h; ε) := h
if ε > 1 (h ∈ (0, 1)).

In particular, k ∈ K(t′, s − n/t), and k ∈ (Dt′).

The proof follows the ideas provided in [5]. We give only the main supple-
mentary observation which should be made, and leave the detailed verification
for the reader.

Proof. By Lemma 3.3 and a change of variable, we get

sup
i=1,...,n, h>0,μ∈Z

j=0,...,�s�

2−μ(n/t−γj)h−γj
∥
∥
∥Δj

hei
mμ

∥
∥
∥

t

= sup
i=1,...,n, h>0,μ∈Z

j=0,...,�s�

h−γj
∥
∥
∥Δj

hei
[m(2μ·)φ]

∥
∥
∥

t
< ∞,

where γ := s/�s�.
Therefore, since the set {jei : i = 1, . . . , n, j = 0, . . . , d} is stable, [5,

Lemma 11.1] (resp. [5, Lemma 11.2]) shows that the function f(x) := xβmμ(x)
(resp. f(x) := xβmμ(x)(1 − ei2πs·x) (|s| ≤ 2−μ)) (x ∈ R

n, μ ∈ Z) satisfies
the assumption of Lemma 3.2. By a straightforward computation, one can
obtain the conclusion of [5, Lemma 11.3] with q = t′ for all multi-indices β.
Consequently, following the lines of the proofs of [5, Lemmas 11.4 and 11.5] we
get also their conclusions for q = t′ and all multi-indices β with |β| < s − n/t.
This yields the desired estimates.

Now, the second claim follows from the first one by a direct computation.
�

Remark 3.5. Note that the condition (Dr) is monotonic with respect to r ∈
[1,∞], i.e. (Dr2) implies (Dr1) if 1 ≤ r1 ≤ r2 ≤ ∞. In particular, if k := m̂ ∈
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(Dr) (r ≥ 1), then it satisfies the classical Hörmander condition, i.e. (D1),
which shows that m is a Fourier multiplier on all Lp with p ∈ (1,∞).

The following corollary extends a result by Kurtz and Wheeden; see [8,
Theorem 1].

Corollary 3.6. Suppose that m ∈ B(s, t,∞) for some s > 0 and t ∈ (1, 2] such
that n/t < s ≤ n. If

(i) n
s < p < ∞ and w ∈ Aps/n or

(ii) 1 < p < (n
s )′ and w−1/(p−1) ∈ Ap′s/n,

then m is a Fourier multiplier on Lp
w. Furthermore, if s < n, one may take

p = n/s in (i), and p = (n/s)′ in (ii).

Proof. We make use of the generalisation of [8, Theorem 1] due to Rubio de
Francia, Ruiz & Torrea, see [11, Theorem 1.6, Part I], which in particular says
that a singular integral operator of convolution type with kernel k ∈ (Dr)
(1 < r < ∞) is bounded on Lp

w if w ∈ Ap/r′ and r′ ≤ p < ∞ or if w ∈ Ar′
p

and 1 < p ≤ r. Note that by a kernel in [11] the authors mean a function
in L1

loc(R
n\{0}). However, the conclusion of [11, Theorem 1.6, Part I] still

holds in our a bit more general case of k = m̂ with m ∈ L∞ and k ∈ (Dr).
Indeed, according to the above definition, one can apply [11, Theorem 1.6, Part
I] to

∑ν
μ=−ν kμ (ν ∈ N) and then the standard approximation and density

arguments.
To apply this result, first observe that the condition B(s, t,∞) is monotonic

with respect to t, i.e. if 1 ≤ t1 ≤ t2 ≤ 2, then B(s, t2,∞) yields B(s, t1,∞).

Indeed, since Δj
y[m(2μ·)φ] =

∑

i≤j

(
j
i

)

(−1)iτiy[m(2μ·)φ] (y ∈ R
n), the claim

follows immediately from Hölder’s inequality.
Now, if w ∈ Aps/n, then there exists r ∈ (1,∞) such that n/s < r′ <

min(p, t) with w ∈ Ap/r′ . By the above observation and Theorem 3.4, we get
k ∈ (Dr), and consequently (i) holds. By the standard duality argument one
can show (ii).

Since for every w ∈ Ar (r ≥ 1) there exists ε > 1 such that wε ∈ Ar, and
m is a multiplier on Lp for every p > 1, see Remark 3.5, the last statement
can be obtained by an interpolation argument with a change of measure. This
completes the proof. �

We conclude with further results on multipliers on weighted Hardy spaces
which extend slightly the results due to Strömberg and Torchinsky in [12]. We
start with preliminary observations.

First, note that if m ∈ M(t, l) (t ∈ [1, 2], l > 0), then m ∈ B(l, t,∞).
Indeed, this follows, for instance, from [5, Lemma 4.2] by taking as the stable
set I in its formulation the set {jei : i, . . . , n, j = 0, . . . , �l�}, and noting that
in this case |α|1 = |α|∞ for all α ∈ I.

We point out that the multiplier results of Strömberg and Torchinsky [12,
Theorems 4, 5, and 6, Chapter XI] are formulated in the terms of the condition
M(t, l), though, their proofs are based on the behaviour of m̂ reflecting the fact
that m ∈ M(t, l). In other words, [12, Theorems 4, 5, and 6, Chapter XI] follow
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from corresponding convolution variants for a kernel m̂ which are implicitly
provided therein on the way in accordance to the fact that m ∈ M(t, l) implies
m̂ ∈ K(t′, l − n/t); see [12, Lemma 1, Chapter XI].

Therefore, combining Theorem 3.4 with the above observation, we get the
following extension of [12, Theorems 4, 5, and 6, Chapter XI]. We refer the
reader, for instance, to [12, Chapter I] for the definition of the notions involved
in its formulation, i.e. the Muckenhoupt Ap-condition, the reverse Hölder RHr-
condition, and the doubling Db-condition. Moreover, following [12], we set
rw := sup{r ≥ 1 : w ∈ RHr} for the critical index of the weight w ∈ A∞ for
the reverse Hölder condition.

Theorem 3.7. Let m ∈ L∞ and r > 1. Suppose that m ∈ B(s, t,∞) for some
t ∈ [1, 2] and s > n/t. Then the following assertions hold.

(i) For every r ≤ p ≤ ∞ and w ∈ Ar with nmin
(

r
p , 1

p′ − 1
rwp

)

< s, m is a
Fourier multiplier on Lp

w.
(ii) For every 0 < p < r and w ∈ Ar ∩ Dθn with 1 ≤ θ ≤ r and

s >

⎧

⎨

⎩

n(θ−1)(s−p)
p(r−1) + nmax

(
1
t ,

1
p′ + 1

rwp

)

if 1 < p < r,

nmax
(

θ
p − 1

t′ , θ
p − rw−1

rwp

)

if 0 < p ≤ 1,

m is a Fourier multiplier on Hp
w.

(iii) For every p ∈ (0, 1] with s > n(1/p − 1/t′), m is a Fourier multiplier on
Hp.

Remark 3.8. a) Combining Lemma 3.1, (9), and Hölder’s inequality we im-
mediately get that for every s ≥ 0, t ∈ [1, 2], and t′ ≤ q ≤ ∞ the Fourier
transform maps Bs

t,q in Ks
t′,q continuously; see (6) for the definition of

Ks
t′,q. Note that Lemma 3.2 is a special variant of these embeddings for

q = ∞.
b) In [1], Baernstein and Sawyer proved that if p ∈ (0, 1), and either s =

n(1/p − 1/2) and 0 < q ≤ p or s > n(1/p − 1/2) and q ∈ (0,∞], then the
condition

sup
δ>0

‖m(δ·)φ‖Bs
2,q

< ∞,

or by (9), equivalently m ∈ B(s, 2, q), implies that m is a Fourier multi-
plier on Hp; see [1, Corollary 1]. This result is sharp in the sense that Bs

2,q

cannot be replaced by any larger Besov space Br
2,t. Recently related con-

ditions were systematically studied by Kolomoitsev; see [6,7] and Remark
4.5 b). Moreover, note that Theorem 3.7 (iii) reproduces the Baernstein–
Sawyer result for t = 2 and q = ∞, and recall that Bs

2,q1 ⊂ Bs
2,q2 if

q1 < q2. It is not clear for the author if one can sharpen the statements
(ii) and (iii) of Theorem 3.7 if m ∈ B(s, 2, q) with 0 < q ≤ p and
s = n(1/p − 1/2).

c) The statements (i) and (ii) of Theorem 3.7 correspond directly to [12,
Theorems 5 and 6, Chapter XI]. The last one (iii) is an immediate con-
sequence of (ii) (by taking a constant weight), and corresponds to [12,
Corollary, p. 164]. Note that, by a standard interpolation argument for
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the Hp-scale, (iii) implies that m is a multiplier on Hp for all p > 1, and
recall that Hp = Lp if p > 1. However, it should be underlined that the
proof of (i) and (ii) is based on the fact that m is a multiplier on Lp

spaces for appropriate values p > 1, which follows, for instance, from the
fact that m̂ satisfies the classical Hörmander condition, see Remark 3.5
(cf. also the proof of [12, Theorem 4]).

4. The ∞-norm approach. In this section, we adapt the ∞-norm approach
established by Hytönen in [5] to provide an extension of Kolomoitsev’s results;
see Remark 4.5 b). The condition below allows one to control the ∞-norm of
dyadic parts mμ of multiplier functions m, as well as the ∞- and 1-norm of
multi-indices of their difference operators.

Theorem 4.1. Let m ∈ L∞. Suppose that for some ρ > 0, t ∈ [1, 2], d ∈ N,
and γ ∈ (0, 1] with γd > 1/t we have

sup
μ∈Z, h∈(0,∞)n

‖m(2μ·)φ‖ρ
∞

∥
∥h−γα∂α

h [m(2μ·)φ]
∥
∥

t
< ∞ (11)

for all multi-indices α with |α|∞ ≤ d.
Then m is a Fourier multiplier on Hp for every p ∈ (0, 2] such that

1
p

− 1
2

<
1

1 + ρ

(
γd

n
+

1
2

− 1
tn

)

. (12)

The following corollary follows straightforward from [5, Lemma 10.4].

Corollary 4.2. Let m ∈ L∞. Suppose that for some ρ > 0, t ∈ [1, 2], and d ∈ N

we have
sup

μ∈Z, h∈(0,∞)n

‖m(2μ·)φ‖ρ
∞

∥
∥h−α∂α

h [m(2μ·)φ]
∥
∥

t
< ∞ (13)

for all multi-indices α with |α|∞ ≤ d and |α| ≤ l, where �n/t� + 1 ≤ l ≤ nd if
d ≥ 2 or d = 1 and t �= 1, and l = n if d = t = 1.

Then the conclusion of Theorem 4.1 holds with γ = l/nd.

Remark 4.3. In the case of infμ∈Z ‖mμ‖∞ > 0, the condition (11) is equiv-
alent to Hytönen’s one from [5, Corollary 9.6], i.e. supμ∈Z, h∈(0,∞)n

∥
∥h−γα∂α

h

[m(2μ·)φ]
∥
∥

t
< ∞, which gives the conclusion of Theorem 4.1 with ρ = 0.

Corollary 4.4. Let m ∈ L∞ with |m(x)| ≤ C 1
(1+|x|)a (x ∈ R

n) for some con-
stants a > 0 and C > 0. If

sup
μ∈Z,h∈(0,∞)n

min(1, 2−μb)
∥
∥h−α∂α

h [m(2μ·)φ]
∥
∥

t
< ∞

for some b ≥ 0 and all α ∈ {0, 1}n with |α| ≤ l := �n/t� + 1, where t ∈ (1, 2],
then the conclusion of Theorem 4.1 holds with ρ = b/a, d = 1, and γ = l/n.

Proof of Theorem 4.1. The proof follows a standard interpolation argument.
Set

m(z, ·) :=
∑

μ∈Z

‖m(2μ·)φ‖ρ−(1+ρ)z
∞ mφ(2−μ·) (0 ≤ �z ≤ 1).
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First, note that m(1 + iy, ·) are Fourier multipliers on H2 = L2 uniformly with
respect to y ∈ R, and

m(iy, 2μ·)φ =
∑

|ν−μ|≤1

‖m(2μ·)φ‖ρ−(1+ρ)iy
∞ m(2μ·)φ(2μ−ν ·)φ.

By [5, Lemma 10.1], there exists a constant C such that

‖∂β
hφ(2μ−ν ·)‖∞ ≤ Chγβ2|β|‖Dβφ‖∞

for every h ∈ (0,∞)n, |ν −μ| ≤ 1, and every β ∈ N
n
0 with |β|∞ ≤ d. Therefore,

combining Leibniz’ formula

∂α
h [m(2μ·)φ(2μ−ν ·)φ] =

∑

β≤α

(
α
β

)

∂α−β
h [m(2μ·)φ]τ(α−β)h[∂β

hφ(2μ−ν ·)]

with (11), we get

‖∂α
h [m(iy, 2μ·)φ]‖t ≤ Chγα (μ ∈ Z, h ∈ (0,∞)n)

for all |α|∞ ≤ d. Consequently, by [5, Corollary 9.6], m(iy, ·), y ∈ R, are Fourier
multipliers on Hq for every q ∈ (0, 1) with γd > 1/t + n(1/q − 1) uniformly
with respect to y.

Finally, note that for every p ∈ (0, 1) satisfying (12), there exists q ∈ (0, 1)
with γd > 1/t+n(1/q−1) such that for θ := (1+ρ)−1 we have θ/q+(1+θ)/2 =
1/p. Thus, by the complex interpolation for the Hp-scale, see [2, Theorem
3.4], we get that mθ = m is a Fourier multiplier on Hp. This completes the
proof. �

Remark 4.5. a) Let α ∈ N
n
0 and m ∈ L∞ be such that Dαm ∈ L1

loc. By [5,
Corollary 2.2], for all q ∈ [1,∞] we have that

‖∂α
h m‖q ≤ |hα|‖Dαm‖q (h ∈ (0,∞)n).

Therefore, the assumption of Theorem 4.1 can be checked in the terms
of the classical Hörmander-type conditions M(l, t) introduced in Section
2. In particular, it gives the proof of Theorem 1.1 in Section 1.

Moreover, recall that the function mε,δ(ξ) := ψ(ξ)ei|ξ|ε |ξ|−δ (ξ ∈
R

n), where ε, δ > 0 and ψ ∈ C∞ with ψ(ξ) = 0 for |ξ| ≤ 1 and ψ(ξ) = 0
for |ξ| ≥ 2, is a Fourier multiplier on Hp if and only if δ ≥ n(1/p− 1/2)ε;
see e.g. [10, Proposition 5.1]. By direct computation, one can show that
for an appropriate choice of ε and δ the function m = mε,δ satisfies
the condition (3) for some b > 0 but not supμ∈Z,α∈Il,d

∥
∥2μ(|α|1−n/t)χSμ

Dαm
∥
∥

t
< ∞.

b) It may be also interesting to compare Corollary 4.2 with Kolomoitsev’s
results from [7] following the remark stated below Theorem A in Section
1. For the convenience of the reader we restate here [7, Theorems 3 and
4]. We replace the classical Besov norm ‖ · ‖Bs

p,q
occurring in [7] with the

equivalent one used in the previous section; see (9).
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Theorem B (Kolomoitsev, [7, Theorems 3 and 4]). Let m ∈ L∞.
(i) If

sup
μ∈Z,h>0

‖m(2μ·)φ‖ρ
∞

∥
∥
∥h−sΔ�s�+1

hei
[m(2μ·)φ]

∥
∥
∥

t
< ∞

for some ρ > 0 and s > n/min(t, 2) with t ∈ (0,∞], then m is a Fourier
multiplier on Hp for all p ∈ [1, 2] with 1/p − 1/2 ≤ s/(1 + ρ)n.

(ii) If

sup
μ∈Z,h>0

‖m(2μ·)φ‖ρ
∞

∥
∥
∥h−sΔ�s�+1

hei
[m(2μ·)φ]

∥
∥
∥

∞
< ∞

for some ρ > 0 and s > 0, then m is a Fourier multiplier on Hp for all
p ∈ (1, 2] with 1/p − 1/2 ≤ s/(1 + ρ)n.

In particular, note that if s ∈ N, then

Cs
� {f ∈ L∞ : Dseif ∈ L∞, i = 1, . . . , n} � Bs

∞∞ � Cs−1

continuously. Here, the derivatives Dsei are considered in the sense of distribu-
tions. The second inclusion follows from the estimates ‖Δs

hei
f‖∞ ≤hs‖Dseif‖∞

(h > 0); see e.g. [5, Lemma 2.1].

Open Access. This article is distributed under the terms of the Creative Com-
mons Attribution 4.0 International License (http://creativecommons.org/licenses/
by/4.0/), which permits unrestricted use, distribution, and reproduction in any
medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes
were made.
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