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A geometric criterion for compactness of invariant subspaces
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Abstract. Let M be a non-compact homogeneous Riemannian manifold,
and let Ω be a compact subgroup of isometries of M . We show, under
general conditions, that the Ω-invariant subspace AΩ of a normed vec-
tor space A ↪→ Lq(M) is compactly embedded into Lq(M) if and only
if the group Ω has no orbits with a uniformly bounded diameter in a
neighborhood of infinity.
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1. Introduction. The problem studied in this paper has its origin in the com-
pactness result of Strauss [14]: while the Sobolev embedding W 1,2(RN ) ↪→
Lq(RN ), q ∈ (2, 2N

N−2 ), N > 2, is not compact, the subspace of radially sym-
metric functions of W 1,2(RN ) is embedded into Lq(RN ) compactly. Numerous
generalizations of this result have been obtained for various domain and target
spaces, as well as for different symmetry conditions, cf. [2,8,9,11,12]. In par-
ticular, the Sobolev spaces on Riemannian manifolds were studied by Hebey,
Vaugon [5,6], and one of the authors [13]. A more abstract approach was de-
veloped by the second author and his collaborators [3,10,17]

The purpose of this paper is to identify a general geometric condition that
is necessary and sufficient for such a compactness phenomenon to occur in a
setting when the original embedding is inherently non-compact. We consider
an embedding of an abstract normed space A into the Lebesgue space of a
non-compact complete Riemannian manifold M . All integrals in this paper
are taken with respect to the Riemannian measure on M .

Throughout the paper we will use the following set of assumptions.
(A) Let 1 < q < ∞, and let A ↪→ Lq(M) be a normed vector space. Let G be

a subgroup of the group of isometries I(M) of M that acts transitively
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on M , and assume that the norm of A is invariant with respect to the
actions of G, i.e. that u ◦ η ∈ A if u ∈ A, η ∈ G, and

‖u ◦ η‖A = ‖u‖A .
The non-compactness of this embedding is assured by the following elementary
statement.

Proposition 1.1. Assume (A). If A contains a function with compact support,
then the embedding A ↪→ Lq(M) is not compact.

Proof. Let u ∈ A be a function supported on a compact set B. Since M is
not compact, it contains infinitely many disjoint geodesic balls of radius R.
Since G acts transitively, there exists an infinite set of elements of constant
A-norm of the form u ◦ η, η ∈ G, with disjoint supports, and thus equidistant
in Lq(M). �

We prove in this paper that, in a general setting, compactness of a sym-
metric subspace of A in Lq is equivalent to the following geometric condition.

Definition 1.2. We say that a continuous action of a group Ω on a complete
Riemannian manifold M is coercive if for every t > 0, the set

Ot = {x ∈ M : diam Ωx ≤ t}
is bounded.

The planar rotation action of SO(2) on R
3 is not coercive because for every

t > 0 the set Ot is a circular cylinder. The action of SO(3) on R
3 is coercive

because for every t > 0 the set Ot is the closed ball of radius t/2.
In order to formulate our main result, we need to define an important

property of the space A.
An continuous embedding of a normed vector space A into a reflexive

Banach space X is called weakly cocompact relative to a bounded set D of
bounded linear operators acting on A if any bounded sequence uk ∈ A such
that ∀gk ∈ D, gkuk ⇀ 0 in X (which we write as uk

D
⇀ 0) converges to zero in

the norm of X. Here ⇀ denotes the weak convergence in X. In what follows
we will also use the notation uk

a.e.
⇀ u in Lq(M) to indicate that the sequence

uk converges weakly in Lq and almost everywhere on M .
Weak cocompactness of an embedding is a property related to, but generally

weaker than compactness. If X∗ is dense in A∗, then weak cocompactness is
trivially equivalent to cocompactness as defined in earlier work, e.g. [3].

If the space A and the group G satisfy the assumption (A), then we can
consider the weak cocompactness relative to the action of G, i.e. with respect
to the set of isometries of A defined by the elements of the group G. If the
group G is trivial, then cocompactness is trivially equivalent to compactness.

Cocompactness plays a crucial role in the existence of extrema in non-
compact minimization problems, and is an underlying phenomenon of the con-
centration compactness principle introduced by Lions (e.g. [9]). In Section 4 we
give a list of cocompact embeddings into Lq, which of course includes Sobolev
embeddings on homogeneous manifolds.
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Theorem 1.3. Let M be a complete connected noncompact Riemannian mani-
fold. Let A ↪→ Lq(M), q ∈ (1,∞), A and G be, respectively, a normed vector
space and a subgroup of I(M) that satisfy assumptions (A). Assume that the
embedding A ↪→ Lq(M) is weakly cocompact relative to the action of G. Sup-
pose also that every sequence bounded in A has a subsequence which converges
a.e. Let Ω be a compact connected subgroup of I(M), and let AΩ denote the
subspace of Ω-invariant functions in A. Then if Ω is coercive, the embedding
of AΩ into Lq(M) is compact.

Conversely, if A contains a compactly supported function whose integral is
not zero, then the compactness of the embedding AΩ ↪→ Lq(M) implies that Ω
is coercive.

The conditions of the theorem are obviously satisfied by Sobolev spaces of
R
N and radial or suitable block-radial symmetries, cf. Section 3.

The paper is organized as follows. In Section 2 we prove the main theorem.
In Section 3 we give a general geometric example of a coercive symmetry group,
and in Section 4 we present examples of spaces A satisfying the conditions of
the theorem. For convenience of the reader, we recall a covering lemma and
an iterated Brezis–Lieb lemma in the last part of the paper.

2. Proof of main theorem. We say that a sequence of points xn ∈ M converges
to infinity if for any compact set K ⊂ M there is an integer N such that for
all n ≥ N , xn �∈ K.

Lemma 2.1. Assume that the group Ω is connected and acts coercively on
M . Then for any sequence xk → ∞, there exists a sequence of elements
ω

(1)
k , . . . , ω

(k)
k ∈ Ω such that a renumbered subsequence of xk satisfies

d
(
ω

(m)
k xk, ω

(n)
k xk

)
→ ∞ whenever m �= n.

Proof. Note that each orbit of Ω is a compact connected manifold. Let r > 0
and x ∈ M . By Lemma 5.1 there exist ω1;r,x, . . . , ωm(r,x);r,x ∈ Ω such that
Ωx is covered by the balls B2r(ω1;r,xx), . . . , B2r(ωm(r,x);r,xx), while the balls
Br(ω1;r,xx), . . . , Br(ωm(r,x);r,xx) are pairwise disjoint. Let xk → ∞. Assume
that there exists a C(r), such that m(r, xk) ≤ C(r). Then diam Ωxk ≤ 4rC(r).
In other words, xk ∈ O4rC(r). This implies, since Ω is coercive, that the se-
quence xk is bounded, which is a contradiction. Consequently, m(r, xk) → ∞
for every r. Select now xjk large enough so that m(k, xjk) ≥ k. �

Lemma 2.2. Under the assumptions of Lemma 2.1, for every J ∈ N there
exists a renumbered subsequence of xk such that the corresponding renumbered
sequences ω(1)

k , . . . , ω
(J)
k , given by Lemma 2.1, converge in Ω as k → ∞ to the

respective limits ω(1), . . . , ω(J).

The assertion follows from an elementary induction argument using the
diagonal argument. We recall that the sequence ηk ∈ I(M) is called discrete
if there exists a point x ∈ M such that ηk(x) → ∞. Note that if the action
of the group G is transitive and the property holds for some x, then it holds
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for every x in M . Moreover if ηk is discrete, then also η−1
k is discrete. We are

ready to prove Theorem 1.3.

Proof. Sufficiency: Let {uk}k∈N
be an arbitrary bounded sequence in AΩ. We

may assume without loss of generality that uk
a.e.
⇀ u in Lq(M). The embedding

is weakly cocompact, therefore if uk has no subsequence convergent in Lq(M),
then there is a sequence {ηk}k∈N

in G such that, on a renamed subsequence,
we have

(uk − u) ◦ ηk−1 a.e.
⇀ y �= 0. (2.1)

The sequence ηk−1 is necessarily discrete since if it is not discrete then
ηk

−1x converges for a renumbered subsequence and some x ∈ M . But ηk−1 is
a sequence of isometries of connected metric space, therefore convergence at
one point implies, for a renumbered subsequence of ηk−1, convergence at any
point of M . In consequence the sequence ηk → η ∈ G in the compact-open
topology of I(M). Then for any v ∈ Lq

′
,

〈v, (uk − u) ◦ ηk−1〉 = 〈v ◦ ηk, uk − u〉 → 0

since v ◦ ηk → v ◦ η in Lq
′
. But this contradicts the assumption that y �= 0.

Let ωk → ω ∈ Ω. Then it follows from (2.1) that

(uk − u) ◦ ωk ◦ η−1
k ◦ ω−1

k
a.e.
⇀ y ◦ ω−1.

Fix J ∈ N. Let a ∈ M be an arbitrary point, and let xk = ηka. By Lemmas 2.1
and 2.2, there exist sequences ω(1)

k , . . . , ω
(J)
k that converge in Ω as k → ∞

to, respectively, ω(1), . . . , ω(J), and such that d(ω(m)
k xk, ω

(n)
k xk) → ∞ when-

ever m < n ≤ J . Therefore the sequence η−1
k (ω(m)

k )−1ω
(n)
k ηk is discrete, and,

consequently, the sequence
(
ω

(m)
k ◦ η−1

k ◦ (ω(m)
k )−1

)
◦

(
ω

(n)
k ◦ η−1

k ◦ (ω(n)
k )−1

)−1

is also discrete.
Since u ◦ ηk a.e.

⇀ 0 in Lq(M) for any discrete sequence ηk ∈ G (it is immediate
for u with compact support and extends to the whole Lq(M) by density), the
iterated Brezis–Lieb lemma, i.e. Lemma 5.1, applies and yields

lim inf
∫

M

|uk|qdμ ≥ J

∫
|y|qdμ.

For a J sufficiently large (and a corresponding subsequence), we obtain a
contradiction which proves the compactness of the embedding.
Necessity: If Ω is not coercive, there exists R > 0 and a sequence xk → ∞
such that Ωxk ⊂ BR(xk). By the assumption there exists a function ψ with∫
M
ψ > 0 supported in a ball Br(y) for some y ∈ M and r > 0. Let us replace

xk with a renumbered subsequence such that the distance between any two
terms in the sequence will be greater than 2(R + r). Let ηk ∈ G be such that
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ηkxk = y, and define

ψk =
∫

Ω

ψ ◦ ηk ◦ ω dω,

where the Haar measure of Ω is normalized to the value 1. By the Young
inequality,

‖ψk‖A ≤
∫

Ω

‖ψ ◦ ηk ◦ ω‖Adω =
∫

Ω

‖ψ‖Adω = ‖ψ‖A.

Note that the supports of the functions ψk are disjoint, and therefore

‖ψm − ψn‖Lq = ‖ψm‖Lq + ‖ψn‖Lq ≥ 2 inf
k

‖ψk‖Lq .

Furthermore,

μ(BR+r)1−1/q‖ψk‖Lq ≥
∫

M

ψk =
∫

Ω

∫

M

ψ ◦ ηk ◦ ω dμ dω =
∫

M

ψ dμ > 0.

Consequently, we have a sequence, bounded in A and lacking a convergent
subsequence in Lq, and so the embedding AΩ ↪→ Lq(M) is not compact. �
Remark 2.3. • The reasoning in the proof of necessity extends with trivial

changes to embeddings into any reflexive rearrangement-invariant space
that is continuously embedded into L1

loc(M).
• The theorem remains valid with only elementary adaptations of the proofs

if instead of the group of isometries I(M) of the manifold M , one takes
a locally compact group G of homeomorphisms acting transitively on
M , equipped with the consistent compact-open topology. One needs to
assume that the group G acts transitively and equicontinuously on M ,
preserves the Riemannian measure of M , for some C > 0 satisfies supη∈G
‖u ◦ η‖A ≤ C‖u‖A. In this setting Ω is a compact coercive subgroup of
G.

Corollary 2.4. Assume that the group Ω fixes a point o ∈ M , and let Arad be the
subspace of A consisting of all functions dependent on r = d(o, x). Then under
the remaining conditions of Theorem 1.3, if Ω is coercive, then the embedding
of Arad ↪→ Lq(M) is compact.

Proof. We have Arad ↪→ AΩ. �
3. Coercive groups. In a more restrictive setting, we have the following nec-
essary and sufficient condition for the action of a subgroup G ⊂ I(M) to be
coercive.

Proposition 3.1. Let M be a simply connected complete Riemannian manifold,
and assume that the sectional curvature K of M is non-positive. Let Ω be a
compact, connected subgroup of I(M) that fixes some point o ∈ M . Then Ω is
coercive if and only if Ω has no other fixed point but o.

Before we prove the proposition, we need a few auxiliary results. We will
use the following statement, derived from [4, p. 218, Proposition 2.5]:
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Proposition 3.2. Let M be a Riemannian manifold, let o ∈ M , and assume
that expoM is a diffeomorphism. If � is a curve on ToM and the sectional
curvature of M is non-positive, then the length of expo � on M is greater or
equal than the length of �.

The following statement is well known.

Lemma 3.3. Under the assumptions of Proposition 3.1, we have the following
identity for all ω ∈ Ω:

expo ◦dω = ω ◦ expo,

and consequently, the map

ψλ(x) = exp−1
o (λ expo(x))

is a diffeomorphism between orbits on Sr(o) and Sλr(o) for any r, λ > 0.

We are ready now to prove Proposition 3.1.

Proof. Necessity: By the Hadamard–Cartan theorem, M is diffeomorphic to
R
N under the exponential map at any given point of M . Assume that for some

ρ > 0 there exists a fixed point xρ ∈ Sρ(o). Then it follows from Lemma 3.3
that for any r > 0 the point xr = expo(

r
ρ exp−1

o (xρ)) is also a fixed point of Ω
and d(xr, o) → ∞. So the group Ω is not coercive.

Sufficiency: Assume that there exists a constant C > 0 such that for a
sequence Rk → ∞, the geodesic sphere SRk

(o) has a point xk such that
diam Ωxk ≤ C. Now Proposition 3.2 implies

diamo(exp−1
o (Ω · xk)) ≤ C,

where the diameter diamo is taken with respect to the Euclidean distance on
ToM . Moreover,

dΩ · exp−1
o (xk) = exp−1

o (Ω · xk),
where dΩ = {doω : ω ∈ Ω}, cf. Lemma 3.3. Therefore the set R−1

k exp−1
o (Ω ·xk)

is a subset of the unit sphere in ToM , and its diameter satisfies

diamo

(
R−1
k exp−1

o (Ω · xk)
)

= diam
(
R−1
k dΩ · exp−1

o (xk)
) ≤ C

Rk
.

But then the group dΩ has a fixed point belonging to the unit sphere in ToM ,
so also Ω has a fixed point belonging to S1(o). �

Example. In general, there exist coercive groups that have no fixed points, i.e.
their orbits expand towards infinity and never shrink to a point. We give a
simple example.

Let M = S1 × R
n, n ≥ 2, be the Riemannian product manifold of the

unit circle and the Euclidean space. Let Ω = S1 × SO(n). Then Ω is a con-
nected group of isometries acting on M . The action is given by the formulae
(eiϕ, h)(eiψ, x) = (ei(ϕ+ψ), h(x)), eiϕ, eiψ ∈ S1, h ∈ SO(n), and x ∈ R

n. Every
orbit of the group Ω has a form S1 × Sr(0) with some r ∈ [0,∞). Therefore
Ω is a compact subgroup of I(M) that acts coercively on M and has no fixed
point.
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4. Examples. Let M be as in Theorem 1.3. In particular, it may be by the
hyperbolic space, R

N , or a stratified nilpotent Lie group with the left or the
right shift invariant Riemannian structure.

The Sobolev spaces W s,p(M), p ∈ (1,∞), s ∈ [1,∞) are cocompactly
embedded into Lq(M), q ∈ (p, p∗), where p∗ = pN

N−sp for sp < N and p∗ = ∞
for sp ≥ N , relative to I(M). The cocompactness statement originates in the
work of Lieb [7]. For the case of integer k, we refer the reader to [17]. For
fractional s, the result follows from the continuity of Sobolev embeddings (see
Strichartz [15]), the monotonicity of the Sobolev scale with respect to s, and
the Hölder inequality. For M = R

N , and 0 < s < 1, the cocompactness is
verified in [3]. Thus, given the cocompactness of the embedding into Lq(M),
Theorem 1.3 implies that, for any coercive compact subgroup Ω of I(M), the
Ω-invariant subspace of W s,p(M) is compactly embedded into Lq. In the case
of R

N , the hyperbolic space or a Carnot group, the coercivity of Ω means, by
Proposition 3.1, that Ω has exactly one fixed point. In particular, in the case
of R

N or H
N in the Poincaré ball coordinates, Ω may be SO(N), or, more

generally, consist of block-matrices
⎡
⎢⎢⎣
T1 0 . . . 0
0 T2 . . . 0
. . . . . . . . . . . .
0 . . . 0 TJ

⎤
⎥⎥⎦ ,

where Tj ∈ SO(RNj ),
∑J
j=1Nj = N , Nj ≥ 2.

For Besov spaces, the cocompactness of subcritical Jawerth’s embeddings
Bsp,r(R

N ) ↪→ Lq(RN ), q ∈ (p, p∗), where p∗ = pN
N−sp for sp < N and p∗ = ∞,

was proved in [3]. Therefore, in this case the Ω-symmetric spaces of Bsp,r(R
N )

are cocompactly embedded into corresponding Lq, if and only if Ω is coercive.
When Ω is a group of block-symmetric matrices, this result was proved in [12],
Corollary 3.

Let now M and Ω be as in Example 3. Then the Ω-invariant subspace
W s,p

Ω (M) is compactly embedded into Lq(M,μ) for any p < q < p∗, where
p∗ = p

1−sp if sp < 1 and p∗ = ∞ otherwise. This is immediate from the
fact that the functions in W s,p

Ω (M) are in fact functions of one variable. This
example, however, bears on the more general situation when the dimension of
the orbit is involved in decreasing the effective local dimension of the manifold
which may lead to a corresponding increase of the value of the critical Sobolev
exponent. See more details in [6,13].

We would like also to mention the cocompactness of the Strichartz embed-
dings into Lq for the nonlinear Schrödinger equation by Terence Tao [16] (Tao
calls the cocompactness property “inverse embedding”). Similarly to the crit-
ical Sobolev inequality, the embedding of the radial subspace is not compact,
as the loss of compactness may occur due to rescalings.
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remarks.
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Appendix.

A covering lemma. The following lemma in different versions occurs many
times in literature, we quote a particular case of Lemma A.1 from [17].

Lemma 5.1. Let X be a compact subset of a complete Riemannian manifold
M , and let r > 0. There exists a finite covering of X by open geodesic balls
B2r(xi), i = 1, . . . , N(r), such that the balls Br(xi), i = 1, . . . , N(r) are dis-
joint.

The iterated Brezis–Lieb lemma. The following proposition evaluates the Lq-
norms of sequences given by sums of terms with asymptotically disjoint sup-
ports. Although it and similar results have appeared elsewhere in literature,
for the reader’s convenience, we explicitly recall its proof, which is an easy
corollary of the well known Brezis–Lieb lemma 5.2. cf. [1].

Lemma 5.2. Let M be a Riemannian manifold, and let μ be the Riemann
measure on M . Suppose that 1 ≤ q < ∞. Let η(n)

k ∈ I(M) be such that

whenever m �= n, the sequence k �→ η
(m)
k η

(n)
k

−1
is discrete. Let uk ∈ Lq(M)

be a bounded sequence such that, for each n ∈ N, the sequence uk ◦ η(n)
k

−1

converges weakly and almost everywhere to a function which we will denote by
w(n). Then, for every J ∈ N,

∫

M

|uk|qdμ−
J∑
n=1

∫

M

|w(n)|qdμ−
∫

M

∣∣∣∣∣uk −
J∑
n=1

w(n) ◦ η(n)
k

∣∣∣∣∣
q

→ 0. (5.1)

Proof. We use induction. For J = 1, the statement is immediate from the

Brezis–Lieb lemma for the sequence uk ◦ η(1)
k

−1
whose weak and a.e. limit

is w(1). Assume (5.1) is true for J = m, and let us show that it is true for
J = m+ 1. Let

v
(m)
k = uk −

m∑
n=1

w(n) ◦ η(n)
k ).

Applying the Brezis–Lieb lemma to the sequence v(m)
k ◦ η(m+1)

k

−1
whose weak

and a.e. limit is w(m+1), we obtain from (5.1) the following:

0 = lim

⎡
⎣

∫

M

|uk|p −
m∑
n=1

∫

M

|w(n)|p −
∫

M

∣∣∣∣v(m)
k ◦ η(n)

k

(−1)
∣∣∣∣
p
⎤
⎦

= lim

⎡
⎣

∫

M

|uk|p −
m∑
n=1

∫

M

|w(n)|p −
∫

M

|w(m+1)|p −
∫

M

∣∣∣∣v(m+1)
k ◦ η(n)

k

(−1)
∣∣∣∣
p
⎤
⎦ ,

which immediately gives (5.1) for J = m+ 1. �
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[8] P.-L. Lions, Symétrie et compacité dans les espaces de Sobolev, J. Funct. Anal.

49 (1982), 315–334.

[9] P.-L. Lions, The concentration-compactness principle in the calculus of vari-

ations. The locally compact case, part 1, Ann. Inst. H. Poincare, Analyse non
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