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Sharp inequalities for dyadic A1 weights
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Abstract. We show how the Bellman function method can be used to
obtain sharp inequalities for the maximal operator of a dyadic A1 weight
on R

n. Using this approach, we determine the optimal constants in the
corresponding weak-type estimates. Furthermore, we provide an alter-
native, simpler proof of the related maximal Lp-inequalities, originally
shown by Melas.
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1. Introduction. A locally integrable nonnegative function w on R
n is called

a dyadic A1 weight if it satisfies the condition

1
|Q|

∫

Q

w(x)dx ≤ C essinf
x∈Q

w(x) (1.1)

for any dyadic cube Q in R
n. This is equivalent to saying that

Mdw(x) ≤ Cw(x) for almost all x ∈ R
n, (1.2)

where Md is the dyadic maximal operator, given by

Mdw(x) = sup

⎧⎨
⎩

1
|Q|

∫

Q

w(t)dt : x ∈ Q, Q ⊂ R
n a dyadic cube

⎫⎬
⎭ .

The smallest C for which (1.1) (equivalently (1.2)) holds is called the dyadic
A1 constant of w and is denoted by [w]1. A classical result of Coifman and
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Fefferman [2] states that any A1 weight satisfies the reverse Hölder inequality⎛
⎝ 1

|Q|

∫

Q

w(x)pdx

⎞
⎠

1/p

≤ c

|Q|

∫

Q

w(x)dx (1.3)

for certain p > 1 and c ≥ 1 which depend only on the dimension n and the
value of [w]1. The exact information on the range of possible p’s was studied
by Melas [3] (see also [1] for related results in the non-dyadic case). Here is
the precise statement.

Theorem 1.1. Let w be a dyadic weight on R
n. Then for every p such that

1 ≤ p < p0(n, [w]1) :=
log(2n)

log
(
2n − 2n−1

[w]1

)

and for every dyadic cube Q, we have

1
|Q|

∫

Q

(Mdw(x))pdx ≤ 2n − 1(
2n − 2n−1

[w]1

)p

− 2n

⎛
⎝ 1

|Q|

∫

Q

w(x)dx

⎞
⎠

p

. (1.4)

Both the range of p and the corresponding constant in (1.4) are best possible.

This result implies that the range of admissible exponents p in the reverse
Hölder inequality (1.3) is at least [1, p0(n, [w]1)). To prove that both intervals
are actually equal, Melas [3] constructed, for any λ > 1, a dyadic weight on
[0, 1]n such that [w]1 = λ and

∫
[0,1]n

w(x)p0(n,λ)dx = ∞.
The purpose of this paper is to study the corresponding weak-type esti-

mates. We will prove the following result.

Theorem 1.2. Let w be a dyadic weight on R
n, and let 1 ≤ p ≤ p0(n, [w]1).

Then for every dyadic cube Q, we have

1
|Q| |{x ∈ Q : Mdw(x) > 1}| ≤

⎛
⎝ 1

|Q|

∫

Q

w(x)dx

⎞
⎠

p

. (1.5)

Both the range of p and the constant 1 are already best possible in the estimate

1
|Q| |{x ∈ Q : w(x) > 1}| ≤

⎛
⎝ 1

|Q|

∫

Q

w(x)dx

⎞
⎠

p

.

A few words about the proof. Using a standard dilation argument, it is
enough to establish (1.5) for Q = [0, 1]n. In fact, we will prove the estimate in
a wider context of probability spaces equipped with a tree-like structure similar
to the dyadic one. Next, while Melas’ proof of Theorem 1.1 is combinatorial and
rests on a clever linearization of the dyadic maximal operator, our approach
will be entirely different and will exploit the properties of a certain special
function. In the literature, this type of argument is called the Bellman function
method and has been applied recently in various settings: see e.g. [4–8], and
references therein.
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The paper is organized as follows. Section 2 contains some preliminary
definitions. The description of the Bellman method can be found in Sect. 3,
and it is applied in two final parts of the paper: in Sect. 4 we present the study
of the weak type estimate, while in Sect. 5 we provide an alternative proof of
Melas’ result.

2. Measure spaces with a tree-like structure. Assume that (X,F , μ) is a given
non-atomic probability space. We assume that it is equipped with an additional
tree structure.

Definition 2.1. Let α ∈ (0, 1] be a fixed number. A sequence T = (Tn)n≥0 of
partitions of X is said to be α-splitting if the following conditions hold.

(i) We have T0 = {X} and Tn ⊂ F for all n.
(ii) For any n ≥ 0 and any E ∈ Tn, there are pairwise disjoint sets

E1, E2, . . . , Em ∈ Tn+1 whose union is E and such that |Ei|/|E| ≥ α
for all i.

Let us stress that the number m in (ii) may be different for different E.

Example. Assume that X = (0, 1]n is the unit cube of R
n with Borel subsets

and Lebesgue’s measure. Let Tk be the collection of all dyadic cubes of volume
2−kn contained in X (i.e., products of intervals of the form (a2−k, (a+1)2−k],
where a ∈ {0, 1, 2, . . . , 2k − 1}). Then T = (Tn)n≥0 is 2−n-splitting.

In what follows, we will restrict ourselves to α ≤ 1/2 since for α > 1/2
there is only one α-splitting tree: T = ({X}, {X}, {X}, . . .). Let us define the
maximal operator and A1 class corresponding to the structure T .

Definition 2.2. Given a probability space (X,F , μ) with a sequence T as above,
we define the corresponding maximal operator MT as

MT f(x) = sup

⎧⎨
⎩

1
μ(I)

∫

I

|f |dμ : x ∈ I ∈ T

⎫⎬
⎭

for any f ∈ L1(X,F , μ). We will also use the notation Mn
T for the truncated

maximal operator, associated with T n = (T0, T1, . . . , Tn−1, Tn, Tn, Tn, . . .).

Definition 2.3. A nonnegative integrable function w is an A1 weight with
respect to T if there is a finite constant C such that

1
|E|

∫

E

w(x)dx ≤ C essinf
x∈E

w(x)

for any E ∈ T . This is equivalent to saying that

MT w(x) ≤ Cw(x)

for almost all x ∈ X. The smallest C for which the above holds is called the
A1 constant of w and will be denoted by [w]1.
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3. On the method of proof. Now we will describe the technique which will
be used to establish the inequalities announced in Section 1. Throughout this
section, c > 1, α ∈ (0, 1/2] are fixed constants. Distinguish the following subset
of R

3
+:

D = Dc = {(x, y, z) ∈ R
3
+ : y ≤ x ≤ cy, z ≤ cx}.

Let Φ, Ψ : R+ → R be two given functions, and assume that we want to
show that

∫

X

Φ(Mn
T w(x)) dx ≤ Ψ

⎛
⎝

∫

X

w(x)dx

⎞
⎠, n = 0, 1, 2, . . . , (3.1)

for any A1 weight w with respect to an α-splitting tree T , such that [w]1 ≤ c.
The key idea in the study of this problem is to construct a special function
B = Bc,α,Φ,Ψ : D → R, which satisfies the following conditions.

1◦ We have B(x, y, x ∨ z) = B(x, y, z) for any (x, y, z) ∈ D.
2◦ We have B(x, y, z) ≥ Φ(z) for any (x, y, z) ∈ D.
3◦ We have B(x, y, x) ≤ Ψ(x) for all x, y such that (x, y, x) ∈ D.
4◦ For any (x, y, z) ∈ D there exists A = A(x, y, z) ∈ R such that whenever

(x′, y′, z) ∈ D satisfies x′ ≤ c−1+α
cα x and y′ ≥ y, then

B(x′, y′, z) ≤ B(x, y, z) + A(x, y, z)(x′ − x). (3.2)

A few remarks concerning these conditions are in order. The condition 1◦

is a technical assumption which enables the proper handling of the maximal
operator. The conditions 2◦ and 3◦ are appropriate majorizations. The most
complicated (and most mysterious) condition is the last one. To shed some
light on it, observe that it yields the following concavity-type property of B.

Lemma 3.1. Let (x, y, z) be a fixed point belonging to D, and let n ≥ 2 be an
arbitrary integer. Let α1, α2, . . . , αn be positive numbers which sum up to 1,
such that αi ≥ α for each i. Assume further that (x1, y1, z), (x2, y2, z), . . .,
(xn, yn, z) ∈ D satisfy

x =
n∑

i=1

αixi and y = min{y1, y2, . . . , yn}.

Then

B(x, y, z) ≥
n∑

i=1

αiB(xi, yi, z). (3.3)

Proof. Apply 4◦ to x′ = xi, y
′ = yi, i = 1, 2, . . . , n, multiply both sides by αi,

and finally sum the obtained inequalities. Then, as the result, we get (3.3).
Thus, all we need is to verify whether the requirements for x′, y′ appearing
in 4◦ are fulfilled. The inequality yi ≥ y is assumed in the statement of the
lemma. Furthermore, by the definition of D,
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x =
n∑

i=1

αixi ≥ αixi +
∑
j �=i

αjyj

≥ αixi + (1 − αi)y ≥ αxi + (1 − α)y ≥ αxi + (1 − α)x/c,

which yields the desired bound xi ≤ c−1+α
cα x. �

We turn to the main result of this section.

Theorem 3.2. Suppose that (X,F , μ) is a probability space equipped with an
α-splitting tree T . If there is a function B = Bc,α,Φ,Ψ satisfying 1◦−4◦, then
(3.1) holds for any A1 weight w with respect to T such that [w]1 ≤ c.

Proof. Let w be as in the statement. Define two sequences (wn)n≥0, (vn)n≥0

of measurable functions on X as follows. Given an integer n, an element E of
Tn, and a point x ∈ E, set

wn(x) =
1

μ(E)

∫

E

w(t)dμ(t) and vn(x) = essinf
t∈E

w(t).

The following interplay between these objects will be important to us. Let n,E
be as above, and let E1, E2, . . . , Em be the elements of Tn+1 whose union is
E. Then we easily check that

1
μ(E)

∫

E

wn(t)dμ(t) =
m∑

i=1

μ(Ei)
μ(E)

· 1
μ(Ei)

∫

Ei

wn+1(t)dμ(t)

and

vn|E = min{vn+1|E1 , vn+1|E2 , . . . , vn+1|Em
}.

Furthermore, the inequality [w]1 ≤ c implies that the triple (wn, vn,Mn
T w)

takes values in D. These conditions, combined with Lemma 3.1, yield the
inequality∫

E

B(wn(t), vn(t),Mn
T w(t))dμ(t) ≥

∫

E

B(wn+1(t), vn+1(t),Mn+1
T w(t))dμ(t).

Indeed, we have Mn+1
T w = Mn

T w ∨ wn+1, so by 1◦,

B(wn+1(t), vn+1(t),Mn+1
T w(t)) = B(wn+1(t), vn+1(t),Mn

T w(t)), t ∈ E.

It remains to use (3.3) with x = wn|E , y = vn|E , z = Mn
T w|E, xi = wn+1|Ei

,
yi = vn+1|Ei

, and αi = μ(Ei)/μ(E). Summing over all E ∈ Tn, we get∫

X

B(wn(t), vn(t),Mn
T w(t))dμ(t) ≥

∫

X

B(wn+1(t), vn+1(t),Mn+1
T w(t))dμ(t)

and therefore, by induction,∫

X

B(w0(t), v0(t),M0
T w(t))dμ(t) ≥

∫

X

B(wn(t), vn(t),Mn
T w(t))dμ(t).
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However, the left-hand side equals

B

⎛
⎝

∫

X

w(t)dt, essinf
t∈X

w(t),
∫

X

w(t)dt

⎞
⎠ ,

and hence the application of 2◦ and 3◦ completes the proof of (3.1). �

4. A sharp weak-type estimate. The principal result of this section is the
following.

Theorem 4.1. Suppose that (X,F , μ) is a probability space equipped with an
α-splitting tree T . Then for any A1 weight w with respect to T and any p
satisfying

1 ≤ p ≤ p0(α, [w]1) := − log α

log
(

[w]1+α−1
[w]1α

) ,

we have

μ({x ∈ X : MT w(x) > 1}) ≤

⎛
⎝

∫

X

w(x)dx

⎞
⎠

p

. (4.1)

The range of p and the constant 1 are already the best possible in

μ({x ∈ X : w(x) > 1}) ≤

⎛
⎝

∫

X

w(x)dx

⎞
⎠

p

. (4.2)

Before we proceed, let us establish the following technical fact.

Lemma 4.2. For any c ≥ 1 and α ∈ (0, 1/2], we have (p0(α, c)−1)c ≤ p0(α, c).

Proof. The claim is equivalent to 1/p0(α, c) ≥ 1 − 1/c, or

log
(

cα

c + α − 1

)
≤ log α1−1/c.

Substituting x = 1/c ∈ [0, 1] and working a little bit turns this bound into

αx ≤ 1 + (α − 1)x,

which is evident: the left-hand side is convex as a function of x, and both sides
are equal when x ∈ {0, 1}. �

4.1. Proof of (4.1). We may assume that [w]1 > 1, since otherwise w is con-
stant and the assertion holds true. If the average

∫
X

w is at least 1, then the
inequality is trivial. So, suppose that

∫
X

w < 1; then it suffices to prove the
weak-type estimate for p = p0(α, [w]1). In view of Theorem 3.2, all we need
is to construct an appropriate special function corresponding to c = [w]1 > 1,
α ∈ (0, 1/2], Φ(z) = χ{z≥1} and Ψ(x) = xp. Indeed, this will yield (3.1), and
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letting n go to ∞ will complete the proof. Introduce B = Bc,α,Φ,Ψ : D → R+

by

B(x, y, z) =

⎧⎨
⎩

cpyp−1(x − y)/(c − 1) if y ≤ c−1 and x ∨ z < 1,
(x − y)/(1 − y) if y > c−1 and x ∨ z < 1,
1 if x ∨ z ≥ 1.

We will exploit the following auxiliary property of B.

Lemma 4.3. For fixed x, z > 0, the function B(x, ·, z) : y 	→ B(x, y, z) is
nonincreasing on [x/c, x].

Proof. We may assume that x, z < 1, since otherwise the claim is obvious.
Note that for y ≥ x/c we have

∂

∂y

[
yp−1(x − y)

]
= yp−2((p − 1)x − py) ≤ yp−1((p − 1)c − p) ≤ 0

in light of Lemma 4.2. Furthermore, for any y < 1,

∂

∂y

[
x − y

1 − y

]
=

x − 1
(1 − y)2

< 0.

Since B is continuous, this gives the desired monotonicity. �

Now we turn to the verification that B satisfies the conditions 1◦ −4◦. The
first two of them are obvious, so let us look at 3◦. By Lemma 4.3, it suffices to
prove the majorization for y = x/c. But then the estimate is clear: both sides
are equal when x < 1, and for x ≥ 1 the inequality takes the form 1 ≤ xp.
Finally, we will check 4◦ with

A(x, y, z) =

⎧⎨
⎩

cpyp−1(c − 1) if y ≤ c−1 and x ∨ z < 1,
1/(1 − y) if y > c−1 and x ∨ z < 1,
0 if x ∨ z ≥ 1.

We may and do assume that x ∨ z < 1 since otherwise the right-hand side of
(3.2) is equal to 1 and there is nothing to prove. By the preceding lemma, it
suffices to show (3.2) under the assumption that

y′ = (x′/c) ∨ y. (4.3)

Suppose first that y > c−1; then (3.2) becomes

B(x′, y′, z) ≤ x′ − y

1 − y
.

If x′ ≥ 1, then this bound is clear; if x′ < 1, then y′ = y (see (4.3)) and thus
both sides are equal. Finally, assuming that y ≤ c−1, we see that (3.2) reads

B(x′, y′, z) ≤ cp

c − 1
yp−1(x′ − y).

If x′ ≤ cy, then y′ = y (see (4.3)) and hence both sides are equal. If x′ > cy,
then (4.3) implies that y′ = x′/c and the inequality becomes

(x′)p ≤ cp

c − 1
yp−1(x′ − y),
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or, after the substitution t = x′/y,

tp ≤ cp

c − 1
(t − 1). (4.4)

We have t > c by the assumption we have just made above. On the other hand,
exploiting the requirements appearing in 4◦, we get

t =
x′

y
≤ cx′

x
≤ c − 1 + α

α
.

It suffices to note that the left-hand side of (4.4) is a convex function of t and
both sides are equal for the extremal values of t: t = c and t = (c − 1 + α)/α
(the equality for the latter value of t is just the definition of p0(α, c)).

4.2. Sharpness. It is obvious that the constant 1 cannot be improved in (4.2):
consider a constant weight w ≡ λ > 1, and let λ ↓ 1. To show that the
weak-type estimate cannot hold with exponents larger than p0(α, c), we will
construct an appropriate example; a related object can be found in [3].

Suppose that (X,F , μ) is a probability space equipped with an α-splitting
tree T , such that there is a monotone sequence X = E0 ⊃ E1 ⊃ E2 ⊃ . . .,
with En ∈ Tn and μ(En) = αn. For x ∈ X, put N(x) = sup{n ≥ 0 : x ∈ En};
this is well-defined since E0 = X. Moreover, N(x) < ∞ almost everywhere,
because the sets Ei shrink to a set of measure zero. Define a weight w by

w(x) =
(

c − 1 + α

cα

)N(x)

, x ∈ X.

In other words, we have w(x) =
[
(c − 1 + α)/(cα)

]n
, where n is the unique

number such that x ∈ En\En+1. Then w is in the A1 class and [w]1 = c. To
see this, pick x ∈ X and let n be the unique integer such that x ∈ En\En+1.
The only elements of T which contain x are E0, E1, . . ., En, so

MT w(x) = max
0≤k≤n

⎧⎨
⎩

1
μ(Ek)

∫

Ek

w(t)dμ(t)

⎫⎬
⎭ .

However, by the definition of w, we easily compute that

1
μ(Ek)

∫

Ek

w(t)dμ(t) =
1

μ(Ek)

∑
�≥k

μ(E�\E�+1) ·
(

c − 1 + α

cα

)k

= c

(
c − 1 + α

cα

)k

and hence

MT w(x) = c

(
c − 1 + α

cα

)n

= cw(x).

Putting k = 0 in the above calculation gives
∫

X
w = c. Fix q ≥ 1, λ > 1, and

consider the weight w̃ = λ [cα/(c − 1 + α)]n w. It satisfies [w̃]1 = c and

μ
(
{x ∈ X : w̃(x) > 1}

)
≥ μ(En) = 1

cλ

[(
c−1+α

cα

)q
α
]n (∫

X
w(x)dx

)q
.
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Now, if we put q = p0(α, c), then the expression in the square brackets is equal
to 1. Therefore, if q is larger than p0(α, c), then the constant on the right-
hand side explodes as n → ∞. This shows that the threshold p0(α, c) in the
weak-type estimate cannot be improved.

5. Melas’ theorem revisited. Now we use the method developed in Section 3
to obtain the following version of Theorem 1.1. For a fixed c ≥ 1, α ∈ (0, 1/2],
and 1 ≤ p < p0(α, c), let

C = Cc,α,p =
1 − α

1 − α
(

c−1+α
cα

)p

(when α = 2−n and c = [w]1, this is exactly the constant appearing in (1.4)).

Theorem 5.1. Suppose that (X,F , μ) is a probability space equipped with an
α-splitting tree T . Then for any A1 weight w with respect to T , we have

∫

X

(MT w(x))pdx ≤ C[w]1,α,p

⎛
⎝

∫

X

w(x)dx

⎞
⎠

p

. (5.1)

Both the range of p and the constant Cc,α,p are best possible.

Proof. We only show (5.1), for the construction of the extremal examples, the
reader is referred to [3]. We may assume c = [w]1 > 1. Define the functions
Φ(z) = zp, Ψ(x) = Cxp, and consider B = Bc,α,Φ,Ψ : D → R, given by

B(x, y, z) = (c − 1)−1(x ∨ z)p−1 [(C − 1)cx + (c − C)(x ∨ z)] .

It is easy to show that this function enjoys the conditions 1◦, 2◦, and 3◦; we
leave the details to the reader. Finally, we will prove 4◦ with

A(x, y, z) = (c − 1)−1(x ∨ z)p−1(C − 1)c.

The estimate (3.2) can be rewritten in the form

(x′ ∨ z)p−1[(C − 1)cx′ + (c − C)(x′ ∨ z)]
≤ (x ∨ z)p−1[(C − 1)cx′ + (c − C)(x ∨ z)].

If x′ ≤ (x ∨ z), then both sides are equal; if x′ > (x ∨ z), then the bound
becomes

C(c − 1)(x′)p ≤ (x ∨ z)p−1((C − 1)cx′ + (c − C)(x ∨ z)),

or, after the substitution t = x′/(x ∨ z),

C(c − 1)tp ≤ (C − 1)ct + c − C. (5.2)

However, we have t > 1 and t ≤ (c − 1 + α)/(cα) (see the assumptions
appearing in 4◦). It suffices to note that the left-hand side of (5.2) is a convex
function, and that both sides are equal for t ∈ {1, (c−1+α)/(cα)}. Thus, (3.1)
gives the claim for truncated maximal operator, and letting n → ∞ completes
the proof, by the use of Lebesgue’s monotone convergence theorem. �
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