Erratum to: A note on the Brück conjecture

Sheng Li and ZongSheng Gao

Abstract

In the article "A note on the Brück conjecture" (Arch. Math. 95 (2010), 257-268), the proofs of our results Theorem 1.4 and Theorem 1.6 mainly depend on Lemma 2.6, which is wrong. In this corrigendum, we give a correct proof of Theorem 1.4. Theorem 1.6 can be proved similarly; so we omit its proof.

Erratum to: Arch. Math. 95(3) (2010), 257-268
DOI 10.1007/s00013-010-0165-6

The following counterexample for Lemma 2.6 in [2] is due to Professor Igor Chyzhykov, to whom we wish to express our gratitude.

Example. Let $f(z)=e^{z^{p}}, p \in \mathbb{N}$, take $p=1$ for simplicity, and $E_{\theta}=\{0\}$. Then the inequality $\left|f\left(r_{k} e^{i \theta_{k}}\right)\right| \geq A M\left(r_{k}, f\right)$ is equivalent to $r_{k} \cos \theta_{k} \geq r_{k}+\log A$. Since A is a constant, we have $\theta_{k} \rightarrow 0 \in E_{\theta}$ as $r_{k} \rightarrow+\infty$.

Unfortunately, in [2], the proofs of our results Theorem 1.4 and Theorem 1.6 mainly depend on Lemma 2.6. We express regret for these mistakes. In the following, we give a correct proof of Theorem 1.4. Theorem 1.6 can be proved similarly, and its proof is hence omitted. To prove Theorem 1.4, we need some lemmas here.

Lemma A. Let

$$
p(z)=p_{n} z^{n}+p_{n-1} z^{n-1}+\cdots+p_{0}, \quad q(z)=q_{n} z^{n}+q_{n-1} z^{n-1}+\cdots+q_{0}
$$

[^0]where n is a positive integer, $p_{n}=\alpha e^{i \theta}, q_{n}=\beta e^{i \varphi}, \alpha \geq \beta>0, \theta, \varphi \in[0,2 \pi)$. If $p_{n} \neq q_{n}$, then for any given $\varepsilon>0$, there exists some $r_{0}>1$, such that for all $z=r e^{-i \frac{\theta}{n}}$ satisfying $r \geq r_{0}$, we have
$$
\operatorname{Re}\left\{p\left(r e^{-i \frac{\theta}{n}}\right)\right\}>\alpha(1-\varepsilon) r^{n}
$$
and
$$
\operatorname{Re}\left\{p\left(r e^{-i \frac{\theta}{n}}\right)-q\left(r e^{-i \frac{\theta}{n}}\right)\right\}>(\alpha-\beta \cos (\theta-\varphi))(1-\varepsilon) r^{n}
$$

Proof. Since $\operatorname{Re}\left\{p_{n}\left(r e^{-i \frac{\theta}{n}}\right)^{n}\right\}=\alpha r^{n}$, we can easily prove this conclusion.
Lemma B. ([1]) Let $f(z)$ be a meromorphic function with $\rho(f)=\alpha<+\infty$, then for any given $\varepsilon>0$, there exists a set $E \subset[0,+\infty)$ with finite linear measure $m E<\infty$, such that for all z satisfying $|z|=r \notin[0,1] \cup E$, and r sufficiently large,

$$
\exp \left\{-r^{\alpha+\varepsilon}\right\} \leq|f(z)| \leq \exp \left\{r^{\alpha+\varepsilon}\right\}
$$

Lemma C. ([3]) If $f_{j}(z)(j=1,2, \ldots, n)$ and $g_{j}(z)(j=1,2, \ldots, n)(n \geq 2)$ are entire functions satisfying
(i) $\sum_{j=1}^{n} f_{j}(z) e^{g_{j}(z)}=0$;
(ii) The orders of f_{j} are less than that of $e^{g_{k}-g_{h}}$ for $1 \leq j \leq n, 1 \leq h<k \leq$ n, then $f_{j}(z) \equiv 0(j=1,2, \ldots, n)$.

Proof of Theorem 1.4. Without loss of generality, we can suppose that $\eta=1$. Denote $g(z)=f(z)-a$, then $\rho(g)=\rho(f)=\rho$ and

$$
\Delta^{n} f(z)=\Delta^{n} g(z)=\sum_{j=0}^{n}(-1)^{n-j} C_{n}^{j} g(z+j)
$$

where $C_{n}^{0}, C_{n}^{1}, \ldots, C_{n}^{n}$ are non-zero integers. By assumption, we have

$$
\begin{equation*}
\frac{\Delta^{n} f(z)-a}{f(z)-a}=\frac{\sum_{j=0}^{n}(-1)^{n-j} C_{n}^{j} g(z+j)-a}{g(z)}=e^{p(z)} \tag{1.1}
\end{equation*}
$$

where $p(z)$ is a polynomial with $0 \leq d=\operatorname{deg}(p) \leq \rho$. Now set

$$
p(z)=p_{d} z^{d}+p_{d-1} z^{d-1}+\cdots+p_{0}
$$

where $p_{d} \neq 0, p_{d-1}, \ldots, p_{0}$ are constants, $p_{d}=\alpha_{d} e^{i \theta_{d}}, \alpha_{d}>0, \theta_{d} \in[0,2 \pi)$.
Firstly, we prove that $\rho \geq 1$. Otherwise, we have $\rho<1$ and hence $p(z) \equiv$ $C \in \mathbb{C}$. By Lemma 2.3 stated in [2], for any given $\varepsilon_{1}\left(0<2 \varepsilon_{1}<1-\rho\right)$, there exists a set $E_{1} \subset(1, \infty)$ of finite logarithmic measure, so that for all z satisfying $|z|=r \notin[0,1] \cup E_{1}$, we have

$$
\begin{equation*}
\left|\frac{\Delta^{n} g(z)}{g(z)}\right| \leq|z|^{n(\rho-1)+\varepsilon_{1}} \tag{1.2}
\end{equation*}
$$

Chose an infinite sequence of points $\left\{z_{k}=r_{k} e^{i \theta_{k}}\right\}$ such that

$$
\begin{equation*}
\left|g\left(z_{k}\right)\right|=M\left(r_{k}, g\right) \geq \exp \left\{r_{k}^{\rho-\varepsilon_{1}}\right\}, \quad r_{k} \notin E_{1} . \tag{1.3}
\end{equation*}
$$

From (1.1)-(1.3), we get a contradiction that

$$
\left|e^{C}\right| \leq\left|\frac{\Delta^{n} g\left(z_{k}\right)}{g\left(z_{k}\right)}\right|+\frac{|a|}{M\left(r_{k}, g\right)} \leq r_{k}^{n(\rho-1)+\varepsilon_{1}}+o(1)=o(1) .
$$

Secondly, we assert that $\rho \leq \lambda(f-a)+1$. Otherwise, we have $\rho>\lambda(f-a)+1$ and hence $\rho(g)>\lambda(g)+1$. It follows from the Hadamard factorization theorem that,

$$
g(z)=h(z) e^{q(z)}
$$

where $q(z)$ is a polynomial such that

$$
q(z)=-\left(q_{l} z^{l}+q_{l-1} z^{l-1}+\cdots+q_{0}\right)
$$

where $q_{l} \neq 0, q_{l-1}, \ldots, q_{0}$ are constants, $q_{l}=\beta_{l} e^{i \varphi_{l}}, \beta_{l}>0, \varphi_{l} \in[0,2 \pi)$, and $h(z)=z^{m} W(z)$, where m is the order of zero of $g(z)$ and $W(z)$ is the Weierstrass canonical product of the nonzero zeros of $g(z)$ such that $\rho(h)=\rho(W)=$ $\lambda(g)<\rho-1=l-1$.

Rewrite (1.1) as

$$
\frac{a}{h(z) e^{q(z)}}=e^{p(z)}-\frac{\sum_{j=0}^{n}(-1)^{n-j} C_{n}^{j} h(z+j) e^{q(z+j)-q(z)}}{h(z)}
$$

Observe that for each $j \in\{0, \ldots, n\}, \operatorname{deg}(q(z+j)-q(z))=l-1$, and $\rho\left(\frac{a}{h(z) e^{q(z)}}\right)=l$, then by the equation above, we can easily get $l \leq d$. Thus we have $d=l$.

We claim that $p_{d}=q_{d}$. Otherwise, $p_{d} \neq q_{d}$, and we may assume that $\alpha_{d} \geq \beta_{d}>0$. In what follows, set $q_{j}^{*}(z)=q(z+j)+q_{d} z^{d}, p^{*}(z)=p(z)-p_{d} z^{d}$. Then we obtain from (1.1) that

$$
\begin{equation*}
e^{p(z)}-\frac{a e^{-q(z)}}{h(z)}=\frac{\sum_{j=0}^{n}(-1)^{n-j} C_{n}^{j} h(z+j) e^{q_{j}^{*}(z)}}{h(z) e^{q_{0}^{*}(z)}} . \tag{1.4}
\end{equation*}
$$

Set $\rho_{1}=\rho(h)$, then by Lemma B, for any given $\varepsilon_{2}\left(0<2 \varepsilon_{2}<\min \left\{\rho-\rho_{1}\right.\right.$, $1\})$, there exists a set $E_{2} \subset[0,+\infty)$ with finite linear measure, such that for all z satisfying $|z|=r \notin[0,1] \cup E_{2}$, and r sufficiently large,

$$
\begin{equation*}
\exp \left\{-r^{\rho_{1}+\varepsilon_{2}}\right\} \leq|h(z)| \leq \exp \left\{r^{\rho_{1}+\varepsilon_{2}}\right\} . \tag{1.5}
\end{equation*}
$$

From Lemma A and (1.5), for $r \notin[0,1] \cup E_{2}, r \rightarrow \infty$, we have

$$
\begin{equation*}
\left|\frac{a e^{-q\left(r e^{-i \frac{\theta_{d}}{d}}\right.}}{h\left(r e^{-i \frac{\theta_{d}}{d}}\right)}\right|=o\left(\left|e^{p\left(r e^{-i \frac{\theta_{d}}{d}}\right)}\right|\right) \tag{1.6}
\end{equation*}
$$

Notice that for $1 \leq j \leq n, q_{j}^{*}(z)-q_{0}^{*}(z)=q(z+j)-q(z)$ and hence $\operatorname{deg}\left(q_{j}^{*}(z)-q_{0}^{*}(z)\right)=d-1$. Applying Lemma A again, for $r \notin[0,1] \cup E_{2}, r \rightarrow \infty$, we get from (1.4)-(1.6) that

$$
\begin{aligned}
& \frac{1}{2} \exp \left\{\left(1-\varepsilon_{2}\right) \alpha_{d} r^{d}\right\} \leq \frac{1}{2}\left|e^{p\left(r e^{-i \frac{\theta_{d}}{d}}\right)}\right|<\left|e^{p\left(r e^{-i \frac{\theta_{d}}{d}}\right)}\right|-\left|\frac{a e^{-q\left(r e^{-i \frac{\theta_{d}}{d}}\right)}}{h\left(r e^{-i \frac{\theta_{d}}{d}}\right)}\right| \\
& \quad<\frac{1}{2}\left|e^{p\left(r e^{-i \frac{\theta_{d}}{d}}\right)}\right|=\frac{1}{2} \left\lvert\, \frac{\sum_{j=0}^{n}(-1)^{n-j} C_{n}^{j} h\left(r e^{-i \frac{\theta_{d}}{d}}+j\right) e^{q_{j}^{*}\left(r e^{-i \frac{\theta_{d}}{d}}\right)}}{\left.h\left(r e^{-i \frac{\theta_{d}}{d}}\right) e^{q_{0}^{*}\left(r e^{-i \frac{\theta_{d}}{d}}\right)} \right\rvert\,}\right. \\
& \quad \leq \frac{1}{2} \exp \left\{r^{\rho_{1}+\varepsilon_{2}}\right\} \sum_{j=0}^{n} C_{n}^{j}\left|h\left(r e^{-i \frac{\theta_{d}}{d}}+j\right) e^{q_{j}^{*}\left(r e^{-i \frac{\theta_{d}}{d}}\right)-q_{0}^{*}\left(r e^{-i \frac{\theta_{d}}{d}}\right)}\right| \\
& \quad \leq 2^{n-1} \exp \left\{2 r^{\rho_{1}+\varepsilon_{2}}\right\} \exp \left\{r^{d-1+\varepsilon_{2}}\right\}<\exp \left\{r^{d-\frac{1}{2}}\right\},
\end{aligned}
$$

which is impossible.
Now we prove that $p_{d}=q_{d}$. By (1.1), we obtain

$$
\frac{\sum_{j=0}^{n}(-1)^{n-j} C_{n}^{j} h(z+j) e^{q_{j}^{*}(z)}}{h(z) e^{q_{0}^{*}(z)}}=e^{p_{d} z^{d}}\left(e^{p^{*}(z)}-\frac{a}{h(z) e^{q_{0}^{*}(z)}}\right)
$$

Considering the order of each side in the equation above, we get

$$
\begin{equation*}
e^{p^{*}(z)}-\frac{a}{h(z) e^{q_{0}^{*}(z)}} \equiv 0 \tag{1.7}
\end{equation*}
$$

This gives

$$
\begin{equation*}
\sum_{j=0}^{n}(-1)^{n-j} C_{n}^{j} h(z+j) e^{q_{j}^{*}(z)}=0 \tag{1.8}
\end{equation*}
$$

From (1.7), $h(z)$ has no zeros, and thus it must be a constant function. Since $d=l=\rho(g)>\lambda(g)+1$, we have $d \geq 2$. Therefore, for $0 \leq j<k \leq$ $n, \operatorname{deg}\left(q_{j}^{*}(z)-q_{k}^{*}(z)\right) \geq 1$. Applying Lemma C to (1.8), we get a contradiction that $(-1)^{n-j} C_{n}^{j}=0, j=0,1, \ldots, n$. Hence, we prove that $1 \leq \rho(f) \leq$ $\lambda(f-a)+1$.

Finally, applying the Hadamard factorization theorem, we can complete the proof of Theorem 1.4.

Acknowledgements

The authors would like to thank Professor Igor Chyzhykov again for the example mentioned before and thank the referee and the managing editor, Professor Ernst-Ulrich Gekeler, for their valuable suggestions and comments.

References

[1] Z. X. Chen, The growth of solutions of $f^{\prime \prime}+e^{-z} f^{\prime}+Q(z) f=0$ where the order of $Q=1$, Science in China (Ser.A) 45 (2002), 290-300.
[2] S. Li and Z. S. Gao, A note on the Brück Conjecture, Arch. Math. 95 (2010), 257-268.
[3] C. C. Yang and H. X. Yi, Uniqueness theory of meromorphic functions, Kluwer Academic publishers, The Newtherlands, 2003.

Sheng Li and ZongSheng Gao
LMIB and School of Mathematics and Systems Science, Beihang University,
Beijing 100191, People's Republic of China
e-mail: lisheng1982@gmail.com
ZongSheng Gao
e-mail: zshgao@buaa.edu.cn

Received: 5 April 2012

[^0]: The online version of the original article can be found under doi:10.1007/s00013-010-165-6.

