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Abstract. It is shown that Gelfand transforms of elements f ∈ L∞(µ)
are almost constant at almost every fiber Π−1({x}) of the spectrum of
L∞(µ) in the following sense: for each f ∈ L∞(µ) there is an open dense
subset U = U(f) of this spectrum having full measure and such that the
Gelfand transform of f is constant on the intersection Π−1({x}) ∩ U . As
an application a new approach to disintegration of measures is presented,
allowing one to drop the usually taken separability assumption.
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1. Introduction. Let μ be a Borel measure on a compact topological space
X. The Gelfand spectrum of the algebra L∞(μ) despite of being compact, is
in general quite large. Among many interesting properties—it has a natural
fiber-wise structure determined by the constant values of Gelfand transforms
̂[f ] of elements [f ] ∈ L∞(μ) corresponding to continuous functions f on X.
Our main result (due to the first-named author) says that on some “large” sets,
all elements h ∈ L∞(μ) behave in much the same manner as in the continuous
case. The proof bases on topological and measure properties of the spectrum
of L∞(μ), (see [2], [3, I.9]) and is related to abstract approach to A-measures
problem and corona problem.

As an application, we prove in Section 3 a disintegration theorem for regu-
lar Borel complex measures on compact spaces. By the results of Section 2 it is
possible to drop the usually taken separability assumption and get a relatively
simple proof. In the final section—using the disintegration theorem we look at
the main result from a slightly different perspective.

Marek Kosiek was supported by Ministry of Science and Higher Education Grant NN201
546438.
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2. Fibers of the L∞ algebra. In this section we consider a probabilistic Borel
measure μ on a compact topological space X, assuming that

(∗) μ is regular and X is equal to the closed support of μ.

The set L∞(μ) of equivalence classes [f ] of essentially bounded μ-measurable
functions f on X is a commutative C*-algebra under standard operations.

Let Y be the spectrum of L∞(μ). By Gelfand–Naimark theorem, L∞(μ) is
isometrically isomorphic (by the Gelfand transform [f ] → ̂[f ]) to the Banach
algebra C(Y ) of all continuous, complex-valued functions on Y .

In our setting there is a natural “projection map” Π : Y → X constructed
as follows: The points y ∈ Y correspond to the functionals Πy defined on C(X)
by

Πy(f) := ̂[f ](y) for f ∈ C(X). (2.1)

As a composition of the embedding of C(X) in L∞(μ) and of y : L∞(μ) � h →
ĥ(y) = y(h) ∈ C, the functional Πy is linear-multiplicative on C(X). Hence
it can be identified with some point Π(y) in X, so that for any f ∈ C(X) we
have f(Π(y)) = Πy(f), i.e. f ◦ Π = ̂[f ]. Hence f ◦ Π is a continuous function
on Y for each f ∈ C(X). To clarify the setting, let us collect some simple
observations.

Proposition 2.1. 1. The projection Π : Y → X is continuous and surjective.
2. Up to the isometry f → [f ], C(X) can be considered as a closed subalgebra

of L∞(μ).
3. Each element x ∈ X as a linear-multiplicative functional on C(X) has a

linear-multiplicative extension y : [f ] → ̂[f ](y) to the whole L∞(μ), and
for any such an extension Π(y) = x, and in this sense one can view Π as
a projection.

Proof. Since the Gelfand topology on X is induced by the weak-star topology
with X treated as a subset of the dual of C(X), the continuity of Π follows
from the continuity of f ◦ Π for all f ∈ C(X). The isometry of C(X) � f →
[f ] ∈ L∞(μ) follows from (*), hence all the mappings in the sequence

C(X) � f → [f ] → ̂[f ] ∈ C(Y ). (2.2)

are isometric (the second one is the Gelfand transform), and by (2.1) we have
for f ∈ C(X)

sup
x∈X

|f(x)| = ‖f‖ = ‖̂[f ]‖ = sup
x∈Π(Y )

|f(x)|. (2.3)

As a continuous image of the compact space Y , the set Π(Y ) is compact, and
hence closed in X which by (2.3) implies that Π(Y ) contains the Shilov bound-
ary of C(X). Consequently Π(Y ) must be equal to X. Surjectivity comes also
from the last claim, easy to establish. Note that all the extensions y of the
given x form the set equal to the fiber Π−1({x}). �
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From now on we will not distinguish in writing between [μ]-essentially
bounded Borel functions on X and their equivalence classes in L∞(μ). We
have seen that ̂f is constant on each fiber Π−1({x}) for any f ∈ C(X).

Since we identify L∞(μ) with C(Y ), the Riesz Representation Theorem
gives a regular positive Borel measure μ̃ on Y ”representing μ” in the sense
that ‖μ̃‖ = ‖μ‖ and

∫

f dμ =
∫

f̂ dμ̃ for f ∈ L∞(μ). (2.4)

For any Borel E ⊂ X, the Gelfand transform χ̂E of its characteristic function
χE , as an idempotent in C(Y ), is of the form χUE

, thus assigning a closed-open
set UE in Y to any measurable E ⊂ X. Applying (2.4) to χE we get for any
Borel subset E of X the equality

μ(E) = μ̃(UE). (2.5)

Moreover (Lemma 9.1 and Corollary 9.2 of [3]) we have

Lemma 2.2. The family {UE : E ⊂ Y, E measurable} forms a basis for the
topology of Y . If U is an open non-empty subset of Y , then μ̃(U) > 0.

Lemma 2.3. If E,F are Borel subsets of X and E ⊂ F , then χ̂E ≤ χ̂F and
UE ⊂ UF .

Proof. If E ⊂ F then χE = χE · χF . Hence χ̂E = χ̂E · χ̂F which means that
χ̂E ≤ χ̂F . Since χUE

= χ̂E and χUF
= χ̂F , we have UE ⊂ UF . �

Lemma 2.4. If E ⊂ X is open then Π−1(E) ⊂ UE and χΠ−1(E) ≤ χ̂E. If
E ⊂ X is closed, then Π−1(E) ⊃ UE and χΠ−1(E) ≥ χ̂E.

Proof. Let E be open in X and x ∈ E. Then there is a continuous function
f : X → [0, 1] such that f(x) = 1 and f ≤ χE . Hence f̂ is equal 1 on Π−1({x})
and f = f ·χE , which implies f̂ = f̂ · χ̂E = f̂ ·χUE

. Consequently χ̂UE
is equal

1 on Π−1({x}) which means that Π−1({x}) ⊂ UE . Since x was an arbitrary
point of E, we have Π−1(E) ⊂ UE . Then also χΠ−1(E) ≤ χUE

= χ̂E .
If E is closed then X\E is open and χE · χX\E = 0, χE + χX\E = 1. Con-

sequently χUE
χUX\E

= χ̂E · χ̂X\E = 0 and χUE
+ χUX\E

= χ̂E + χ̂X\E = 1.
It means that UE ∩ UX\E = ∅ and UE ∪ UX\E = Y which implies the desired
statement for closed sets. �
Remark 2.5. Till now the regularity of μ has not been used.

Lemma 2.6. If E is a Borel subset of X then

μ(E) = μ̃(Π−1(E)) = μ̃(UE). (2.6)

If E ⊂ X is open then Π−1(E) = UE. If E ⊂ X is closed then int(Π−1(E)) =
UE.

Proof. By the regularity of μ, for any ε > 0 we can find a compact set K ⊂ X
and an open set V ⊂ X such that K ⊂ E ⊂ V and μ(V \K) < ε. Also, there
exists f ∈ C(X) such that χK ≤ f ≤ χV . By the continuity of f we have
χΠ−1(K) ≤ f̂ ≤ χΠ−1(V ). (Proposition 2.1 and the consideration following it).
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Hence |μ(E) − ∫

f dμ| < ε and |μ̃(Π−1(E)) − ∫

f̂ dμ̃| < ε which by (2.4) and
by the arbitrariness of the choice of ε – gives μ(E) = μ̃(Π−1(E)). The second
equality in (2.6) we get by (2.5).

If E is closed then UE ⊂ Π−1(E) by Lemma 2.4. So UE ⊂ int(Π−1(E))
and int(Π−1(E)) \UE is open since UE is closed-open. Consequently, we have
int(Π−1(E)) = UE by Lemma 2.2.

The assertion for open sets follows from the equalities int(Π−1(E)) =
Y \Π−1(X\E) and UE = Y \ UX\E . �

Theorem 2.7. If μ is a probabilistic measure satisfying (∗), Y is the spectrum
of L∞(μ), and h ∈ L∞(μ), then there exists an open dense subset U of Y with
μ̃(U) = μ̃(Y ) such that ĥ is constant on Π−1({x}) ∩ U for all x ∈ X.

Proof. Let h ∈ L∞(μ), and let ε > 0. By Lusin Theorem there is g ∈ C(X)
with ‖g‖ ≤ ‖h‖ and a closed set Z ⊂ X such that μ(X\Z) < ε while Z ⊂
{g = h}. By Lemma 2.6 we have

UZ = int(Π−1(Z)), μ̃(UZ) = μ(Z) > 1 − ε.

Since Z ⊂ {g = h} then χZ · (g − h) = 0. Consequently χUZ
· (ĝ − ĥ) =

χ̂Z · (ĝ − ĥ) = 0 which implies

{ĝ �= ĥ} ∩ UZ = ∅.
Put Z1 := Z and ε = 1/2. Repeating the previous construction we find a
sequence {gn} ⊂ C(X) and a sequence {Zn} of closed subsets of X such that
Zn ⊂ {gn = h} and μ(X\Zn) < 1/2n. Then

μ̃(UZn
) = μ(Zn) > 1 − 1/2n, {ĝn �= ĥ} ∩ UZn

= ∅.
The last equality implies that ĥ is constant on each Π−1({x}) ∩ UZn

for all
x ∈ X and n ∈ N. We define a sequence of open sets as follows:

U1 := UZ1 , Un := UZn
\Π−1(Z1 ∪ · · · ∪ Zn−1).

By the above definition and Lemma 2.4, for k ∈ N we have Π−1(Zk) ⊃ UZk
⊃

Uk, hence Zk ⊃ Π(UZk
) ⊃ Π(Uk), and consequently

Π(Un) ∩ Π(Um) = ∅ for n �= m (2.7)

since Π(Un)∩Zk = ∅ for k < n. By Lemma 2.6 we have μ̃(Π−1(Zn)\UZn
) = 0

and hence

μ̃(Un) = μ̃(UZn
\Π−1(Z1 ∪ · · · ∪ Zn−1))= μ̃(Π−1(Zn)\Π−1(Z1 ∪ · · · ∪ Zn−1))

= μ̃(Π−1(Zn\(Z1 ∪ · · · ∪ Zn−1)) = μ(Zn\(Z1 ∪ · · · ∪ Zn−1)). (2.8)

Put now Z ′
1 := Z1 and Z ′

n := Zn\(Z1 ∪· · ·∪Zn−1) for n > 1. All the sets {Z ′
n}

are pairwise disjoint and a direct calculation gives the equality Z ′
n ∪ Z ′

n−1 ⊃
Zn\(Z1∪· · ·∪Zn−2) which by induction leads to the assertion Z ′

1∪· · ·∪Z ′
n ⊃ Zn.

Hence, by (2.8) and pairwise disjointness of {Un} and {Z ′
n}, we get

μ̃(U1 ∪ · · · ∪ Un) = μ̃(U1) + · · · + μ̃(Un) = μ(Z ′
1) + · · · + μ(Z ′

n)
= μ(Z ′

1 ∪ · · · ∪ Z ′
n)≥μ(Zn)>1−1/2n.
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Put U :=
⋃∞

n=1 Un. Hence U is open, μ̃(U) = 1 = μ̃(Y ), and consequently, by
Lemma 2.2, U is dense in Y . The function ĥ is constant on each Π−1({x})∩Un

for all x ∈ X and n ∈ N and sets Π(Un), n ∈ N are pairwise disjoint by (2.7).
It means that each fiber Π−1({x}) intersects at most one of the sets Un. Hence
ĥ is constant on each Π−1({x}) ∩ U for all x ∈ X. �

Remark 2.8. If the closed support of μ is not equal to X, then L∞(μ) is iso-
metrically isomorphic to the algebra {f|supp(μ) : f ∈ L∞(μ)}. In such a case
Π−1({x}) = ∅ for all x outside of the closed support of μ. Assuming that each
function is constant on empty set we conclude that the result of Theorem holds
true also when the closed support of μ is a proper subset of X.

3. Disintegration of measures. In this section X,Y,Z will be compact spaces,
and the word “measurable” will concern their Borel sigma-fields BX ,BY ,BZ .
Given a complex Borel measure ν on X and a measurable mapping P : X → Z
we denote by P (ν) the pushforward measure defined on Z by

P (ν)(E) := ν(P−1(E)), E ∈ BZ ,

so that
∫

Z

h dP (ν) =
∫

X

(h ◦ P ) dν, h ∈ C(Z).

Denote by μ the measure P (|ν|) and assume (without loss of generality) that
its total variation norm satisfies ‖μ‖ = 1.

Let us recall that for a family of measures νz, z ∈ Z the vector-valued inte-
gral

∫

Z
νz dμ is the measure ν such that for any continuous function h on X

we have
∫

hdν =
∫

Z

(∫

h(x)dνz(x)
)

dμ(z). (3.1)

The disintegration of a Borel probability measure ν on a compact space X
with respect to a mapping P : X → Z is a measurable family of probability
measures νz satisfying (3.1) and carried by the fibers P−1({z}). The existence
of disintegration under certain assumptions including the separability of X is
shown in [1]. Our approach is to build the measures νz using certain properties
of the Gelfand spectrum Y of the Banach algebra L∞(μ). If ν is a complex Bo-
rel measure, one can still obtain (3.1), allowing the νz to be complex measures.
Our proof implies that νz are supported on P−1({z}).

Let us begin by fixing some notation. Given a continuous function f ∈
C(X), denote by

gf = gν
f :=

d(P (fν))
d(P (|ν|)) (3.2)

the Radon–Nikodym derivative of the pushforward measures for “ν times den-
sity f” with respect to that of the variation measure |ν|. The shorthand nota-
tion gf will be used rather than gν

f if the measure ν is clear from the context.
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Bearing in mind their absolute continuity, we obtain for any ψ ∈ L1(μ)
(recall that μ = P (|ν|)) the equalities

∫

Z

ψ(z)gf (z) dμ(z) =
∫

Z

ψ(z) d(P (fν))(z) =
∫

X

ψ(P (x))f(x) dν(x) (3.3)

Clearly, we have gf ∈ L1(μ).

Lemma 3.1. For any f ∈ C(X) we have gf ∈ L∞(μ) and ‖gf‖∞ ≤ ‖f‖.
Proof. Let h ∈ L1(μ). Then, as in (3.3), using the equality μ = P (|ν|) we get

∣

∣

∣

∣

∫

hgf d(μ)
∣

∣

∣

∣

=
∣

∣

∣

∣

∫

h d(P (fν))
∣

∣

∣

∣

=
∣

∣

∣

∣

∫

(h ◦ P )f dν
∣

∣

∣

∣

≤ ‖f‖
∫

|h ◦ P | d|ν| = ‖f‖
∫

|h| d(P (|ν|)) = ‖f‖‖h‖1.

So gf as a functional on L1(μ) has its norm estimated by ‖f‖ (the sup-norm
over X) and the result follows. �

Assume, for convenience reasons that gf is real. (The general case will eas-
ily follow by splitting into the real and imaginary parts and multiplying by a
constant.) As in the previous section, let Y be the spectrum of the Banach
algebra L∞(μ). It is a totally disconnected compact space with its Gelfand
topology.

Let Π : Y → Z be the canonical projection (cf. Section 2 and [3]) that
assigns to a multiplicative linear functional y ∈ Y a unique point Πy ∈ Z so
that for any f ∈ C(Z) one has f(Πy) = y([f ]). The measure μ lifts to a Borel
measure μ̃ on Y so that Π(μ̃) = μ. As follows from Sections 2 and [3], such a
Borel measure on Y is actually unique. Theorem 2.7 provides for arbitrarily
chosen h ∈ L∞(μ) (here h = gf ) a dense open set U = Uh in Y , having full
measure μ̃ and such that ̂h is constant on each set Π−1({z}) ∩ Uh for z ∈ Z.

For z ∈ Z denote

Uz := {Π−1(Π(V )) : V ⊂ Y, V closed-open, z ∈ Π(V )}.
For any z ∈ Z we define a linear functional Φz : C(X) → R putting

Φz(f) := Lim
E∈Uz

1
μ̃(E)

∫

E

ĝf dμ̃. (3.4)

Here Lim denotes a Banach limit. We require it only to be linear and located
between the lower- and upper limits with respect to the directed family Uz.
By Lemma 3.1, Φz is bounded, of norm less than or equal 1. Hence for each
z ∈ Z there exists a regular complex Borel measure νz on X such that

Φz(f) =
∫

f dνz for f ∈ C(X), ‖νz‖ ≤ 1 for z ∈ Z. (3.5)

Lemma 3.2. For a ∈ Π−1({z}) ∩ Ugf
we have Φz(f) = ĝf (a).
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Proof. Let a ∈ Π−1({z}) ∩ U , where U = Ugf
. For an arbitrary ε > 0 take a

closed-open neighbourhood Vε of a such that |ĝf (y) − ĝf (a)| < ε for y ∈ Vε

and put Eε := Π−1(Π(Vε)). This is possible since clopen sets form a base of
topology for Y (cf. [3]). Since ĝf is constant on each fiber intersected with U
we also have |ĝf (y) − ĝf (a)| < ε for y ∈ Eε ∩U . But as we have μ̃(Y \U) = 0,
the integral means over the sets E and E ∩ U are equal (for dμ̃). The above
estimate by ε for ĝf −ĝf (a) yields the same bound ε for the differences between
the integral means over any E ∈ Uz such that E ⊂ Eε. Passing to the Banach
limits, we get

|Φz(f) − ĝf (a)| ≤ ε. (3.6)

Since ε was arbitrary we get Φz(f) = ĝf (a). �

If one considers probability measures ν, for constant function f0 = 1 one
has gf0 = 1 and Φz(f0) = 1, hence our measures νz obtained in (3.5) are prob-
abilistic. For complex measures ν the integral representation (3.1) still has its
meaning and we may call it the disintegration of ν in this general case.

We are now in position to state our main result

Theorem 3.3. The family of measures νz, z ∈ Z satisfies (3.1). Moreover, it
forms a disintegration of the measure ν with respect to P, and for any z ∈ Z
the measure νz is concentrated on P−1({z}).

Proof. Let E be a closed subset of C and let Ẽ be its preimage under the
mapping {z → Φz(f)} i.e.

Ẽ = {z ∈ Z : Φz(f) ∈ E}.
Denote F := Π(ĝf

−1(E)). Then

F = {Π(a) : ĝf (a) ∈ E}.
Hence, by Lemma 3.2, F ∩ Π(Ugf

) = Ẽ ∩ Π(Ugf
). Since ĝf

−1(E) is closed by
the continuity of ĝf and consequently compact, F is also compact. So Ẽ differs
from F by a set of [P (|ν|)] measure 0 and consequently is measurable.

Taking ψ = 1 in (3.3), using (3.5) we get for f ∈ C(X), U = Ugf
the

equalities
∫

X

f dν =
∫

Z

gf dμ =
∫

Y

ĝf dμ̃ =
∫

Y ∩U

ĝf (a) dμ̃(a)

=
∫

Y ∩U

ΦΠ(a)(f) dμ̃(a) =
∫

Y

ΦΠ(a)(f) dμ̃(a)

=
∫

Z

Φz(f) dμ(z) =
∫

Z

(∫

f dνz

)

dμ(z) =
∫

Z

(∫

f dνz

)

d(P (|ν|))(z).

It remains to show that νz is carried by Xz := P−1({z}) for any z ∈ Z.
Let us begin with the case of non-negative ν. Then for h ∈ C(Z), denoting

f := h◦P we get gf = h, since P (f ·ν) = h·P (ν). Now by Lemma 3.2, Φz(f) =
h(z), since h is continuous. But this gives us the equality

∫

f dνz = h(z) for
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all continuous h : Z → C, meaning that P (νz) is the point mass 1 measure δz
at z, proving that νz is carried by P−1({z}).

In the general case, denote by ν′
z the measures (carried by P−1({z})) ob-

tained by disintegrating |ν| with respect to P . For any nonnegative continuous
function f on X we have |fν| = f |ν| and since

|P (fν)| ≤ P (|fν|) = P (f |ν|),
we have the corresponding inequality for the numerators in (3.2) for |gν

f | and

g
|ν|
f -respectively, showing that

|gν
f | ≤ g

|ν|
f .

Applying these inequalities for all such non-negative f ∈ C(X), in (3.4) and
(3.5), we get

∣

∣

∣

∣

∫

fdνz

∣

∣

∣

∣

≤
∫

fdν′
z,

which shows that

|νz| ≤ ν′
z

and consequently, the νz are also carried by P−1({z}). �

4. Fibers and disintegration. Let now, as in Section 2, X be a compact space
μ be a measure on X satisfying (∗), and Y be the spectrum of the algebra
L∞(μ). By Theorem 3.3, there is a family {νx}x∈X of Borel regular measures
on Y such that

∫

f̂dμ̃ =
∫

X

(∫

f̂(y)dνx(y)
)

dμ(x) (4.1)

for f ∈ L∞(μ) (i.e f̂ ∈ C(Y )), and each νx is carried by Π−1({x}) for any
x ∈ X. Since μ is probabilistic, the formulas (3.4) and (3.5) used for the func-
tion identically equal to 1, give νx(X) = 1 and ‖νx‖ ≤ 1, which implies that
each νx is non-negative. Recall from Section 2 that to any Borel set E ⊂ X
we can uniquely assign by the Gelfand transform of its characteristic function
a closed-open set UE ⊂ Y .

Proposition 4.1. For any f ∈ L∞(μ) there is sequence of Borel subsets
{En}∞

n=1 ⊂ X such that Uf :=
⋃∞

n=1 UEn
is an open dense subset of Y with

μ̃(Uf ) = 1 and f̂ is constant on Π−1({x}) ∩ Uf for all x ∈ X.

Proof. Take an arbitrary f ∈ L∞(μ). By Theorem 2.7 there is an open dense
subset U of Y with μ̃(U) = 1 and such that f̂ is constant on Π−1({x})∩U for
all x ∈ X. By the regularity of μ̃ we can find a compact set K ⊂ U such that
μ̃(U \ K) < 1/2. Since K is compact, we can find a finite collection {Fi}k

i=1

of Borel subsets of X such that K ⊂ ⋃k
i=1 UFi

⊂ U . Put E1 :=
⋃k

i=1 Fi. Then
UE1 =

⋃k
i=1 UFi

⊂ U and μ̃(U\UE1) < 1/2. By induction we find a sequence
of Borel sets En ⊂ X such that UEn

⊂ U and

μ̃(U\UEn
) < 1/2n. (4.2)
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Replacing each UEn
by

⋃n
i=1 UEi

we get an increasing sequence of closed-open
subsets of U satisfying (4.2). Hence μ̃(Uf ) = 1. �

Theorem 4.2. For each f ∈ L∞(μ) its Gelfand transform f̂ is constant a.e. [νx]
for [μ] almost every x ∈ X, where νx are measures in the disintegration (4.1)
of the measure μ̃.

Proof. Define a measure ω as follows:

ω(W ) :=
∫

X

νx(W ) dμ(x)

for all Borel W ⊂ Y . If W is closed-open then its characteristic function is
continuous and by (4.1) we have ω(W ) = μ̃(W ). Then by Proposition 4.1, we
get ω(Uf ) = μ̃(Uf ) = 1 since the sets UEn

(n = 1, 2, . . .) are closed-open and
form an increasing sequence. Consequently ω(Y \ Uf ) = 0 which implies the
assertion in the statement of our theorem. �
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