
Arch. Math. 97 (2011), 251–257
c© 2011 The Author(s). This article is published
with open access at Springerlink.com

0003-889X/11/030251-7

published online August 30, 2011
DOI 10.1007/s00013-011-0295-5 Archiv der Mathematik

One half log discriminant and division polynomials

Robin de Jong

Abstract. Szpiro and Tucker recently proved that, under mild conditions,
the valuation of the minimal discriminant of an elliptic curve with semi-
stable reduction over a discrete valuation ring can be expressed in terms
of intersections between n-torsion and 2-torsion, where n tends to infin-
ity. The argument of Szpiro and Tucker is geometric in nature. We give a
proof based on the arithmetic of division polynomials, and generalize the
result to the case of hyperelliptic curves.
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1. Introduction. Let K be a field of characteristic p �= 2 endowed with a non-
trivial discrete valuation, and let O be the ring of integers of K. Let E be an
elliptic curve over K given by a minimal equation y2 = f(x) with f(x) ∈ O[x]
a monic cubic separable polynomial. Let P

1
O be the projective line over O. Let

D be the Zariski closure in P
1
O of the scheme of zeroes of f on P

1
K , and for

each positive integer n with p � n let Hn be the Zariski closure in P
1
O of the

pushforward under x : E → P
1
K of the n-torsion minus the 2-torsion in E.

In [5] Szpiro and Tucker proved the following theorem.

Theorem 1.1. Assume that E has semistable reduction over K. Let Δ be the
discriminant of f . Then the formula:

lim
n→∞

p�n

1
n2

(D,Hn)ν =
1
2
ν(Δ)

holds, where ν : K∗ → Z is the normalised valuation of K and where (, )ν is
the geometric intersection pairing on the arithmetic surface P

1
O.
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As is known, the underlying reduced scheme of Hn can be conveniently
described by a division polynomial ψn ∈ O[x] (cf. [4, Exercise 3.7]). The poly-
nomial ψn has degree (n2 −1)/2 if n is odd, degree (n2 −4)/2 if n is even, and
has leading coefficient n. An alternative way of writing the conclusion of the
theorem is therefore that:

1
n2

∑

α:f(α)=0

log |ψ2
n(α)|ν −→ 1

2
log |Δ|ν

as n → ∞ with p � n, where | · |ν : K∗ → R
+ is any absolute value determined

by ν. The proof in [5] of Theorem 1.1 uses the geometry of the special fiber of
the minimal regular model of E over O.

Our purpose in this note is to show that Theorem 1.1 can alternatively be
derived from a study of the arithmetic of the division polynomials ψn alone. As
a consequence we will remove the assumption that E should have semistable
reduction over K, as well as the assumption that K should be a discretely
valued field. In fact, using the division polynomials introduced by Cantor [1],
to be explained below, we can even prove a result in the more general context
of hyperelliptic curves.

Let g be a positive integer, and let k be a field of characteristic p where
p = 0 or p ≥ 2g + 1. Let | · | be an absolute value on k. Let (X, o) be an
elliptic curve or a pointed hyperelliptic curve of genus g ≥ 2 over K, given by
an equation y2 = f(x) with f(x) ∈ k[x] monic, separable and of degree 2g+1,
putting o at infinity.

Theorem 1.2. Let ψn ∈ k[x] be the nth (Cantor’s) division polynomial of (X, o)
and let α ∈ k be a root of f . Then:

1
n2

log |ψ2
n(α)| −→ 1

2
log |f ′(α)|

as n → ∞. Here, only integers n are taken with p � (n− g + 1) · · · (n+ g − 1).
In particular, under the same conditions we have:

1
n2

∑

α:f(α)=0

log |ψ2
n(α)| −→ 1

2
log |Δ|

as n → ∞ where Δ =
∏

α:f(α)=0 f
′(α) is the discriminant of f .

The motivation in [5] to study limits of intersection numbers as in
Theorem 1.1 is that, when working over a number field K, these limits are nat-
ural local non-archimedean heights associated to the scheme D. As D consists
only of torsion points, its global height vanishes; this is used in [5] to show that
the total archimedean contribution to the height is equal to 1

2 log |NK/Q(Δ)|
where NK/Q(Δ) is the norm of Δ in Z. Our Theorem 1.2 provides local heights
at each of the archimedean places too, and allows one to verify a posteriori
that the global height is zero, by the product formula.

We note that the condition that p � (n− g+1) · · · (n+ g− 1) appears to be
rather natural from the theory of Weierstrass points in positive characteristic
(see [3] for example, esp. Remark 2.8). It generalizes the natural condition p � n
from the case of elliptic curves.
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2. Cantor’s division polynomials. Our main result is a statement about the
asymptotic behavior of certain special values of division polynomials associ-
ated to hyperelliptic curves. We briefly recall from [1] the construction of these
division polynomials and their main properties.

Let again g ≥ 1 be an integer. Let a1, . . . , a2g+1 be indeterminates and
write R for the commutative ring Z[a1, . . . , a2g+1]. Let F (x) be the polynomial
x2g+1 + a1x

2g + · · · + a2gx+ a2g+1 in R[x], and let Δ ∈ R be the discriminant
of F . Let y be a variable satisfying y2 = F (x), and let E1(z) be the polynomial
E1(z) = (F (x− z) − y2)/z in R[x, z]. Put

S(z) = (−1)g+1y
√

1 + zE1(z)/y2,

where
√

1 + zE1(z)/y2 is the power series in R[x, y−1][[z]] obtained by bino-
mial expansion on 1 + zE1(z)/y2. One has:

S(z)2 = F (x− z), and S(z) =
∞∑

j=0

Pj(x)(2y)1−2jzj

for some Pj(x) ∈ R[x] of degree 2jg and with leading coefficient in Z.
Let n ≥ g be an integer. Then Cantor’s polynomial ψn (in genus g) is

defined to be the element of R[x] given by:

ψn =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∣∣∣∣∣∣∣∣∣∣

Pg+1 Pg+2 · · · P(n+g)/2

Pg+2 . .. . ..
...

... . .. . .. Pn−2

P(n+g)/2 · · · Pn−2 Pn−1

∣∣∣∣∣∣∣∣∣∣

n ≡ g mod 2,

∣∣∣∣∣∣∣∣∣∣

Pg+2 Pg+3 · · · P(n+g+1)/2

Pg+3 . .. . ..
...

... . .. . .. Pn−2

P(n+g+1)/2 · · · Pn−2 Pn−1

∣∣∣∣∣∣∣∣∣∣

n ≡ g + 1 mod 2.

For n = g and n = g+ 1 we understand that ψn is the unit element. We have:

degψn =
{
g(n2 − g2)/2 n ≡ g mod 2,
g(n2 − (g + 1)2)/2 n ≡ g + 1 mod 2.

Next, denote by b(n) the leading coefficient of ψn in R. Then b(n) is an integer,
and we have:

p � (n− g + 1) · · · (n+ g − 1) ⇒ p � b(n)

for each prime integer p. Moreover, the b(n) are the values at the integers
n ≥ g of a certain numerical polynomial b ∈ Q[x] which can be written down
explicitly.

The geometric meaning of the ψn is as follows. Let k be a field of charac-
teristic p where either p = 0 or p ≥ 2g + 1. Note that in particular p �= 2.
Let f(x) ∈ k[x] be a monic and separable polynomial of degree 2g+ 1, and let
(X, o) be the elliptic or pointed hyperelliptic curve of genus g over k given by
the equation y2 = f(x). The point o is meant to be the unique point at infinity
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of X. Let J = Pic0X be the jacobian of X. It comes equipped with a natural
symmetric theta divisor, represented by the classes [q1 + · · · + qg−1 − (g− 1)o]
in J where q1, . . . , qg−1 are points running through X. Also we have a nat-
ural Abel-Jacobi embedding ι : X → J given by sending p 	→ [p − o]. Let
[n] : J → J be the multiplication-by-n map on J . For integers n such that
n ≥ g and p � (n− g + 1) · · · (n+ g − 1) we then put

Xn = ι∗[n]∗Θ.

This Xn turns out to be an effective divisor on X of degree gn2. In fact, Xn

is the scheme of Weierstrass points of the line bundle OX(o)⊗n+g−1 on X; cf.
[3] for a further study of such schemes. Note that Xn is a generalization of the
scheme of n-torsion points on an elliptic curve. In analogy to what we did in
that case in the Introduction, we subtract from each Xn the part coming from
the hyperelliptic ramification points. More precisely we put:

X∗
n =

{
Xn −Xg n ≡ g mod 2,
Xn −Xg+1 n ≡ g + 1 mod 2.

We have:

Xg =
g(g − 1)

2
D + go, Xg+1 =

g(g + 1)
2

D,

where D denotes the reduced divisor of degree 2g + 2 on X consisting of the
hyperelliptic ramification points of X. It can be shown (in fact we will see a
proof below) that these X∗

n are effective k-divisors on X with support disjoint
from the hyperelliptic ramification points. Note that:

degX∗
n =

{
g(n2 − g2) n ≡ g mod 2,
g(n2 − (g + 1)2) n ≡ g + 1 mod 2.

We have the following theorem.

Theorem 2.1. (Cantor [1]) Let n ≥ g be an integer such that p does not divide
(n − g + 1) · · · (n + g − 1). Specialize the polynomial ψn from equation (2.1)
to a polynomial in k[x], by sending a1, . . . , a2g+1 to the coefficients of f . Then
X∗

n is equal to the scheme of zeroes of ψn on X.

We note that if (X, o) is an elliptic curve, the polynomials ψn with n ≥ 1
coincide with the “usual” division polynomials from elliptic function theory
(cf. [4, Exercise 3.7]).

3. Proof of Theorem 1.2. We just evaluate the determinants at the right hand
side of equation (2.1) at α, where α is a root of F = x2g+1 + a1x

2g + · · · +
a2gx+ a2g+1 in an algebraic closure Q(R) of the fraction field Q(R) of R, and
then specialize to k. Let cm = 1

2m+1

(
2m+1

m

)
for m ≥ 0 be the mth Catalan

number. We start with:

Lemma 3.1. The identity:

Pj(α) = (−1)g · cj−1 · F ′(α)j

holds in R[α] for all integers j ≥ 1.



Vol. 97 (2011) One half log discriminant and division polynomials 255

Proof. We recall the relations:

S(z) =
∞∑

j=0

Pj(x)(2y)1−2jzj , S(z)2 = F (x− z).

We claim that:
1
j!
djS(z)
dzj

=
Rj(x, z)

(2S(z))2j−1
(3.1)

for some Rj(x, z) ∈ Q(R)[x, z] with Rj(α, 0) = −cj−1 · F ′(α)j , for all
j ≥ 1. This gives what we want since S(0) = (−1)g+1y hence Pj(x) =
(−1)g+1Rj(x, 0).

To prove the claim we argue by induction on j. We have dS
dz = −F ′(x−z)

2S(z)

which settles the case j = 1 with R1(x, z) = −F ′(x − z). Now assume that
(3.1) holds with Rj(x, z) ∈ Q(R)[x, z], and with Rj(α, 0) = −cj−1 · F ′(α)j for
a certain j ≥ 1. Then a small calculation yields:

1
(j + 1)!

dj+1S

dzj+1
=

1
j + 1

d

dz

Rj(x, z)
(2S(z))2j−1

=
Rj+1(x, z)
(2S(z))2j+1

with:

Rj+1(x, z) =
2

j + 1

(
2
(
d

dz
Rj(x, z)

)
F (x− z) + (2j − 1)Rj(x, z)F ′(x− z)

)
.

We find Rj+1(x, z) ∈ Q(R)[x, z] and:

Rj+1(α, 0) =
2(2j − 1)
j + 1

Rj(α, 0) · F ′(α)

= −2(2j − 1)
j + 1

cj−1 · F ′(α)j+1

= −cj · F ′(α)j+1

by the induction hypothesis. This completes the induction step. �

Now evaluating equation (2.1) at α with the help of the Lemma then yields
the equality:

ψn(α) = c(n) · F ′(α)d(n) (3.2)

for all n ≥ g in R[α], where:

c(n) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∣∣∣∣∣∣∣∣∣∣

cg cg+1 · · · c(n+g)/2−1

cg+1 . .. . ..
...

... . .. . .. cn−3

c(n+g)/2−1 · · · cn−3 cn−2

∣∣∣∣∣∣∣∣∣∣

n ≡ g mod 2,

∣∣∣∣∣∣∣∣∣∣

cg+1 cg+2 · · · c(n+g−1)/2

cg+2 . .. . ..
...

... . .. . .. cn−3

c(n+g−1)/2 · · · cn−3 cn−2

∣∣∣∣∣∣∣∣∣∣

n ≡ g + 1 mod 2,
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at least up to a sign, and where d(n) ∈ Z is given by:

d(n) =
{

(n2 − g2)/4 n ≡ g mod 2,
(n2 − (g + 1)2)/4 n ≡ g + 1 mod 2.

We claim that p � (n − g + 1) · · · (n + g − 1) ⇒ p � c(n) holds for every prime
number p and every integer n and that the c(n)’s are the values at the integers
n ≥ g of a numerical polynomial c ∈ Q[x]. This follows from a general result
on Hankel determinants of Catalan numbers due to Desainte-Catherine and
Viennot (see [2, Section 6]): for arbitrary integers l,m ≥ 1 we have the identity

∣∣∣∣∣∣∣∣∣∣

cl cl+1 · · · cl+m−1

cl+1 . .. . ..
...

... . .. . .. cl+2m−3

cl+m−1 · · · cl+2m−3 cl+2m−2

∣∣∣∣∣∣∣∣∣∣

=
∏

1≤i≤j≤l−1

i+ j + 2m
i+ j

.

In particular c(n) is non-vanishing in k if the characteristic p of k satisfies
p � (n− g + 1) · · · (n+ g − 1). Also c(n) has only polynomial growth in n.

Let us now place ourselves in the situation of Theorem 1.2. In particular
we work over a field k of characteristic p with p = 0 or p ≥ 2g + 1, and
now α is a given root of f ∈ k[x] in k. Let n ≥ g be an integer such that
p � (n− g + 1) · · · (n+ g − 1). From equation (3.2) we obtain by specializing:

ψn(α) = c(n) · f ′(α)d(n) (3.3)

in k. Since f ′(α) and c(n) are both non-zero in k we deduce that ψn(α) is non-
zero in k as well. In particular we find that X∗

n has support disjoint from the
hyperelliptic ramification points, a claim that we made earlier. Theorem 1.2
follows from equation (3.3) upon taking absolute values and logarithms (which
we can do because of the non-vanishing), and letting n tend to infinity, always
under the condition that p � (n− g + 1) · · · (n+ g − 1).
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