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Abstract. For a Galois extension of degree p of local fields of characteristic
p, we express the Galois action on the ring of integers in terms of a combi-
natorial object: a balanced {0, 1}-valued sequence that only depends on the
discriminant and p. We show that the embedding dimension edim(R) of the
associated order R is tightly related to the minimal number d of R-module
generators of the ring of integers. Moreover, we show how to compute d and
edim(R) from p and the discriminant with a continued fraction expansion.
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1. Main results. By a local field we mean a field which is complete with respect to a
discrete valuation. Let K ⊂ L be a Galois extension of local fields of characteristic
p > 0, whose Galois group G is cyclic of order p. Let A and B be the rings of
integers of K and L. Let p be the maximal ideal of A and k = A/p its residue
field.

Define the multiplier ring, or associated order, of the Galois module B to be
the subring R = {x ∈ K[G] : xB ⊂ B} of the group ring K[G]. This ring R is a
local ring with residue field k which is free of rank p as an A-module, and which
contains A[G]. We denote its maximal ideal by m.

The goal of this paper is to study the ring R and the structure of B as an
R-module. Let d be the minimal number of R-module generators of B, and let δL/K

be the integer for which pδL/K is the discriminant of B over A. Our first theorem
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says that d is closely related to the embedding dimension edim(R) = dimk(m/m2)
of R. In Theorem 3 below we show how to compute d.

Theorem 1. If p | δL/K then R is isomorphic as an A-algebra to A[X]/(Xp) and
B is free of rank 1 as an R-module. If p � δL/K then edim(R) = 2d+ 1.

Theorem 1 implies that d = 1 and edim(R) = 2 if p | δL/K . This case includes the
unramified case, the case that the residue field extension is inseparable, and also
certain cases where the ramification index is p. We have R = A[G] if and only if
L is unramified over K; see Proposition 3.

The proof has two basic ingredients: graded rings and balanced sequences. In
Section 3 we will give R the structure of a graded ring, and B the structure of
a graded module over R. We will use an Artin-Schreier equation xp − x = y for
L over K where y ∈ K has valuation −t with t ≥ 0 as small as possible. If the
ramification index is p then p � t and δL/K = (p− 1)(t+ 1), and otherwise p | t
and δL/K = (p− 1)t; see Section 3 for details. Define the remainder s = rem(t, p)
of t when dividing by p to be the unique integer s that satisfies 0 ≤ s < p and
t ≡ s mod p.

We will give an explicit combinatorial description of the gradings on R and B
in terms of the balanced sequence associated to the fraction s/p. This sequence and
its basic properties are introduced in Section 2. The proof of Theorem 1, which
is given in Section 4, exploits some slightly subtle combinatorial properties of this
sequence.

The combinatorial description also gives rise to a method to compute d.

Theorem 2. If s = 0 then d = 1. Otherwise, d is the number of times we pass
through the middle oval in the following flow chart.

Start s | p− 1?

(p, s) := (s, rem(−p, s))

Finish
Yes

No

It follows from the two theorems that for s �= 0 we have

d = 1 ⇐⇒ edim(R) ≤ 3 ⇐⇒ s | p− 1;

d ≤ 2 ⇐⇒ edim(R) ≤ 5 ⇐⇒ s− rem(p, s) | s− 1.

The equivalence d = 1 ⇐⇒ s | p − 1 is essentially the result of Aiba [1], as
pointed out by Byott [5] and Lettl [9]. We include an independent proof of this in
Section 3, which does not rely on the combinatorial arguments of Section 4. See
[2, 3] for a characteristic zero analog.
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We can compute d more efficiently in terms of the continued fraction expansion
of −s/p. If s �= 0 then we can write

−s

p
= x0 +

1

x1 +
1

. . .
. . .

xm−1 +
1
xm

for unique integers x0, . . . , xm ∈ Z satisfying x1, . . . , xm−1 ≥ 1 and xm ≥ 2.

Theorem 3. If s = 0 or s = p − 1 then d = 1. Otherwise d is the sum of all xi

with i odd and i < m.

We give the proof in Section 4. Since the continued fraction expansion can be
computed quickly, this gives rise to an algorithm that given p and s computes d in
polynomial time, i.e., in time bounded by a polynomial in log(p). When p > 2 and
s = p− 2 we have m = 2 and x1 = (p− 1)/2, so we immediately get d = (p− 1)/2
by Theorem 3, while the flow chart does not finish in polynomial time.

2. Balanced sequences. Suppose x is a real number with 0 ≤ x < 1. For i ∈ Z
let ai = 	ix
 = inf{n ∈ Z : n ≥ ix} and put εi = ai − ai−1 ∈ {0, 1}. This means
that the point (i, ai) is on or above the line through the origin with slope x, and
(i, ai − 1) is below it. In the picture below, we give the sequences εi, ai and mi

(defined below) for x = 5/8.

1
1

0
1

1
0

1
0

8

5
ε1, . . . , ε7 = 1, 1, 0, 1, 1, 0, 1
a1, . . . , a7 = 1, 2, 2, 3, 4, 4, 5

m1, . . . ,m7 = 0, 1, 2, 2, 3, 4, 5.

The sequence (εi)i∈Z is balanced, i.e., any two finite blocks in the sequence of the
same length have sums that differ by at most one. Moreover, blocks starting with
ε1 have maximal sum. This is phrased more precisely in the next lemma.

Lemma 1. For all i, j, n ∈ Z with n ≥ 0 we have

|(εi+1 + εi+2 + . . .+ εi+n) − (εj+1 + εj+2 + . . .+ εj+n)| ≤ 1.

For all n ≥ 0 we have

an = ε1 + ε2 + · · · + εn = sup{εi+1 + εi+2 + . . .+ εi+n : i ∈ Z}.
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We leave the easy proof to the reader. See [10, Sec. 2.1.2] for further properties.
When x is not rational the balanced sequence is often called a Sturmian sequence.

In this paper we are only interested in the case that x is rational, so from now
on let us assume that x ∈ Q. Then the sequence ε is periodic that is, there is an
integer p ≥ 1 so that εi = εj for all i, j ∈ Z with i ≡ j mod p. Let us take p minimal
with this property. Then p is the denominator of x. In our main application, p will
be the characteristic of K, but we will need balanced sequences whose period is
not prime as well. Write s for the numerator of x.

Lemma 2. The sequence ε2, ε3, . . . , εp−1 is a palindrome.

This lemma follows immediately from the fact that ai+ap−i = s+1 when 0 < i < p.

We define a third sequence m0,m1,m2, . . . ,mp−1 by

mn = inf{εi+1 + εi+2 + . . .+ εi+n : 0 ≤ i < p− n}.
The range over which we take this infimum is restricted: mn is the smallest sum
of a block of length n within ε1, . . . , εp−1.

Lemma 3. For n ∈ {1, . . . , p − 1} we have an = mn if and only if for all i, j ∈
{1, . . . , p− 1} with i ≡ j mod n we have εi = εj.

This lemma follows easily from Lemma 1. If n ∈ {1, . . . , p − 1} has the property
in Lemma 3 then we say that n is a sub-period of ε. In our example with x = 5/8
we see that 3, 6 and 7 are sub-periods.

3. Graded rings. Let the notation be as in the introduction. See [4, Chap. II §11]
for basic concepts of graded rings and modules. Our gradings will be indexed by
the non-negative integers.

For each g ∈ G = Gal(L/K) we have the identity (g − 1)p = gp − 1 = 0 in
K[G]. This implies that the group ring K[G] is a local ring with residue field K.
If we choose a generator σ for G, and write X = σ − 1 ∈ K[G], then K[G] is the
truncated polynomial ring K[X]/(Xp). Thus, K[G] becomes a graded ring whose
homogeneous part of degree i is non-trivial only if i = 0, . . . , p−1, in which case it
is the 1-dimensional K-vector space KXi. For each i ≥ 0 the elements of degree at
least i form an ideal, which coincides with the i-th power of the maximal ideal of
K[G]. Thus, the grading depends on the choice of a generator of G, but the induced
filtration of K[G] by a chain of ideals is canonical. Note that A[G] =

⊕
iAX

i is a
graded subring of K[G].

For x ∈ L write ℘(x) = xp − x. By Artin-Schreier theory, we have L = K(α)
for some α ∈ L with ℘(α) ∈ K. We use the generator σ of G with σα = α+ 1 to
define a grading on K[G] so that σ − 1 is homogeneous of degree 1. For i < p the
element

(
α
i

)
is the binomial polynomial α(α − 1) · · · (α − i + 1)/i! where

(
α
0

)
= 1

and
(
α
i

)
= 0 for i < 0. For i < p we have (σ − 1)

(
α
i

)
=

(
α

i−1

)
. This implies that

we can equip L with the structure of a graded module over K[G]: its homogeneous
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piece of degree i is 0 for i = 0 and i > p, and it is the 1-dimensional K-vector space
Li = K

(
α

p−i

)
for i = 1, . . . , p. Note that L is free over K[G] on one homogeneous

generator
(

α
p−1

)
in degree 1.

We now refine our choice of Artin-Schreier equation to obtain a description of
B, and to show that B is a graded A[G]-submodule of L. Thus, we need a better
choice of α ∈ S = {α′ ∈ L with ℘(α′) ∈ K and α′ �∈ K}. Let fL/K be the degree
of the residue field extension of L over K. The following proposition partly goes
back to Hasse [6]. We include a proof below for convenience.

Proposition 1. The supremum sup{ordp(℘(α′)) : α′ ∈ S} is an integer −t with
t ≥ 0. If p | t then fL/K = p and δL/K = (p− 1)t. If p � t then fL/K = 1 and
δL/K = (p− 1)(t+ 1).

We now choose α ∈ S so that the supremum in the Proposition is attained at α.
Again, the generator σ of G with σα = α + 1 gives rise to a grading on K[G] for
which σ − 1 is homogeneous of degree 1.

Proposition 2. The ring B is a graded A[G]-submodule of L. For i = 1, . . . , p its
homogeneous part of degree i is the free A-module of rank 1

Bi = p�t(p−i)/p�
(

α

p− i

)
.

Proof of Propositions 1 and 2. For y ∈ K consider the polynomial f = T p − T −
y ∈ K[T ]. If y ∈ A then (f mod p) ∈ k[T ] is separable, which by Hensel’s lemma
implies that f has a zero in K if (y mod p) ∈ ℘(k), and that otherwise a zero of
f generates an unramified degree p extension of K. By applying this to y = ℘(α′)
with α′ ∈ S, we deduce two things. First, we then have (y mod p) �∈ ℘(k), and in
particular y �∈ p, so ordp(℘(α′)) ≤ 0. Thus, the supremum in Proposition 1 is a
finite number −t with t ≥ 0. Secondly, we have t = 0 if L is unramified over K.

Write vK and vL for the valuations on K and L, and let π ∈ K with vK(π) = 1.
Thus, p = πA and vL(π) is the ramification index of L over K.

Suppose that p � t. Then vL(α) < 0, and by the strong triangle inequality
we have pvL(α) = vL(αp) = vL(℘(α)). It follows that p | vL(℘(α)) = −tvL(π),
so vL(π) = p and vL(α) = −t, which implies that vL(

(
α
i

)
) = −it. Moreover, vL

assumes the values {0, 1, . . . , p − 1} on the set {π�it/p�(α
i

)
: 0 ≤ i < p}. With

Nakayama’s Lemma it follows that this set is an A-basis for B, as required.

Now suppose that p | t > 0. Then the image u of πt/pα ∈ B in the residue field
of L satisfies up ∈ k. If up = vp for some v ∈ k, then α′ = α− π−t/pz ∈ S, for any
lift z of v to A, would satisfy vK(℘(α′)) > −t which is a contradiction. Thus, u
generates an inseparable degree p extension of k. Again by Nakayama’s lemma, the
set {πit/pαi : 0 ≤ i < p} is an A-basis of B. It follows that {πit/p

(
α
i

)
: 0 ≤ i < p}

is an A-basis of B as well. This proves Proposition 2.
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In order to compute the discriminant in terms of t, first note that

δL/K = vK(∆L/K) = (p− 1)fL/KvL(σx− x)

when x is an A-algebra generator of B; see [11, Ch. IV §1 Prop. 4, Ch. II §2 Cor. 4].
If in addition x ∈ A

(
α
i

)
with 0 ≤ i < p then σx − x = xi/α, so vL(σx − x) =

vL(x) − vL(α) = vL(x) + t/fL/K . In the case p | t we found such an x with
vL(x) = 0. In the case p � t we have such an x in our A-basis of B with vL(x) = 1.
This gives the discriminant formulas in Proposition 1. �

We write t = pk + s with k, s ∈ Z and 0 ≤ s < p. Let ε1, ε2, . . . be the balanced
sequence associated to the fraction s/p. Define the integers m1,m2, . . . ,mp−1 and
a0, a1, . . . as in Section 2.

Let π be a prime element ofK and consider the element ϕ = (σ−1)/πk ∈ K[G],
which is homogeneous of degree 1.

Proposition 3. For i = 1, . . . , p we have

Bi = pk(p−i)+ap−i

(
α

p− i

)
, ϕBi = pεp−iBi+1.

The ring R is a graded subring of K[G] with Ri = p−miϕi when 0 ≤ i < p.

Proof. We have ϕ
(

α
p−i

)
=

(
α

p−i−1

)
π−k, and 	t(p−i)/p
 = 	t(p−i−1)/p
+k+εp−i.

Combining this with the previous Proposition the first statement follows.

The endomorphism ring of a finitely generated graded module over a graded
ring is itself graded [4, Ch. II §11.6]. In our case, we have a canonical isomorphism
of graded rings K[G] → EndK[G](L) that maps R bijectively to EndA[G](B). It
follows that R is a graded subring of K[G], and that its homogeneous part of
degree i is given by

Ri = {ψ ∈ Kϕi : ψBj ⊂ Bj+i for all j with 1 ≤ j ≤ p− i}.
To compute this we apply the first statement: for i, j ≥ 1 with i+ j ≤ p we have
ϕiBj = pwBi+j with w = εp−i−j+1 + · · · + εp−j . As j varies with i fixed, this
number w runs over the sums of blocks of length i in the sequence ε1, . . . , εp−1.
The minimal such w is mi. �

Corollary. If s = 0 or s = p− 1 then d = 1 and edim(R) = 2.

To see this, note that R = A[ϕ] if s = 0 and R = A[ϕ/π] if s = p− 1, and that in
both cases B1 generates B as an R-module.

We now formulate the main result of this Section. We define the following two
sets:

D = {i : 0 < i < p and aj +mi−j < ai for all j with 0 < j < i};

E = {i : 0 ≤ i < p and mj +mi−j < mi for all j with 0 < j < i}.
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Theorem 4. We have d = #D and edim(R) = #E. Moreover, a set of homoge-
neous elements in B (resp. m) forms a set of R-module generators of B (resp. m)
if and only if for each i in D (resp E) it contains an A-module generator of Bi

(resp mi).

Proof. The maximal ideal m of R is homogeneous: m =
⊕p−1

i=0 mi with m0 = p and
mi = Ri for i > 0. This implies that mB is a graded submodule of B. For each i
with 1 ≤ i ≤ p we have

(mB)i =
i∑

j=1

mi−jBj .

It follows that (mB)i = Bi if and only if ap−j − mi−j = ap−i for some j with
1 ≤ j < i. Taking i = p and j = 1 we see that ap−1 − mp−1 = 0 = a0, so
(mB)p = Bp. If 1 ≤ j < i < p then we have ai + ap−i = s+ 1 = aj + ap−j , so the
condition ap−j −mi−j = ap−i is equivalent to aj +mi−j = ai. It follows that we
have (mB)i = Bi if and only if i �∈ D.

By Nakayama’s lemma, a subset of B generates B as an R-module if and only
if it generates B/mB as a k-vector space. In particular, the minimal number of
such elements is the k-dimension of B/mB, which is the number of integers i with
Bi �= (mB)i. The last statement for B also follows.

Similarly, the ideal m2 is homogeneous. We have

m2 =
p−1⊕
i=0

(m2)i with (m2)i =
i∑

j=0

mjmi−j .

Since m0 �= A it follows that (m2)i = mi if and only if mj +mi−j = mi for some j
with 0 < j < i, which in turn is equivalent to i �∈ E . The result now follows as in
the first case with Nakayama’s lemma. �

The next result also follows Theorem 2, but since it is easy to prove without
much combinatorics we include a separate proof. The equivalence of the first and
third condition also follows from work of Aiba [1, 5, 9].

Corollary. When s �= 0 the following are equivalent:

(1) d = 1;
(2) ε1, . . . , εp−1 is an s-fold repetition of a sequence 1, 0, 0, . . . , 0;
(3) s | p− 1.

Proof. Clearly, (2) implies (3). Suppose (3) holds, so that p − 1 = sk for an
integer k. Then it is easy to see that (2) holds and that mi−1 = ai − 1 for each
i with 0 < i < p. If i > k then we get ai−k + mk = ai−k + 1 = ai, so i �∈ D. If
2 ≤ i ≤ k then we have a1 +mi−1 = 1 + 0 = ai, so again i �∈ D. We deduce that
D = {1} so that (1) holds. Note that R = A[ϕ,ϕk/π].
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Now suppose that (1) holds and that 0 < s < p − 1. Then we have D = {1}
and m1 = 0. The smallest l with ml = 1 satisfies 2 ≤ l ≤ p − 1. For each i with
1 ≤ i < l we have 1 = mi + 1 ≥ ai ≥ ε1 = 1, so ai = 1. Since l �∈ D there is an
integer i with 0 < i < l and al = ai +ml−i = 1 + 0 = 1 = ml. By Lemma 3 we see
that l is a sub-period. Thus, the sequence ε1, ε2, . . . , εp−1 satisfies εi = 1 exactly
when i ≡ 1 mod l. Using Lemma 2 we see that the sequence ends with l−1 zeroes,
so (2) follows. �

4. Combinatorial results. In this section we prove the results in Section 1 by ana-
lyzing the sets D and E for balanced sequences in a slightly more general setting.

Let x ∈ Q with 0 < x < 1, and write x = s/p with s and p positive coprime
integers. We do not assume that p is prime. We use the notation from Section 2.
In particular we have the sequences (εi), (ai) and (mi). We define the sets D and
E as in Section 3. We first look at the set of sub-periods

P = {n : 0 < n < p and an = mn}.
By Lemma 3 these are the n < p for which we have a commutative diagram

{1, 2, . . . , p− 1} {0, 1}.

Z/nZ

i �→ εi

Clearly, p− 1 always lies in P, and any multiple below p of an element of P again
lies in P. We define M = M(x) to be the set of minimal sub-periods, that is, the
sub-periods for which no proper divisor is a sub-period.

Lemma 4. Suppose i, j ∈ P with i + j ≤ p. Then gcd(i, j) ∈ P. If i + j = p then
1 ∈ P.

Proof. Suppose first that i+ j = p. We may assume that j > 1. By Lemma 2 and
the fact that i ∈ P we get εj = εp−j+1 = εi+1 = ε1 = 1. Using j ∈ P and Lemma 1
one sees that for each l with 0 ≤ l < i we have

εl+1 + al = al+1 ≥ εj + · · · + εj+l = εj + (ε1 + · · · + εl) = 1 + al,

so that εl+1 = 1. Since i ∈ P this implies that s = p− 1 and 1 ∈ P.

Next, suppose that i + j < p and assume that j < i. Suppose i ≡ r mod j
with 0 ≤ r < j. For each k with 1 ≤ k ≤ j we then have εr+k = εi+k = εk, since
j ∈ P and i ∈ P. For each l with 0 < l < p− r there is an integer k with 1 ≤ k ≤ j
so that l ≡ k mod j and εl+r = εk+r = εk = εl. Thus, r ∈ P. We can repeat
the argument with j and r instead of i and j, and by the Euclidean algorithm it
follows that gcd(i, j) ∈ P. �

Theorem 5. If s = p−1 then D = {1} and E = {0, 1}. Otherwise the map f : M →
D given by f(i) = rem(p, i) is a bijection, and E is the disjoint union {0}∪M∪D.
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Proof. If s = p − 1 we have ε1 = · · · = εp−1 = 1, and the result is obvious. So
assume 0 < s < p− 1.

Suppose that i ∈ M. If i | p then i, p− i ∈ P, and s = p− 1 by Lemma 4, con-
tradicting our assumption. It follows that f(i) > 0. By Lemma 4, and minimality
of i ∈ P we see that there is no j ∈ P with j ≤ f(i). This implies that aj = mj +1
for all j with 0 < j ≤ f(i). Using i ∈ P again, and Lemma 2 we see that for
each j with 0 < j < f(i) we have εj = εp−f(i)+j = εf(i)−j+1, so ε1, . . . , εf(i) is a
palindrome. This implies that for each j with 0 < j < f(i) we have

af(i) = aj + af(i)−j = aj + 1 +mf(i)−j > aj +mf(i)−j ,

which implies that f(i) ∈ D. Secondly, this gives

mf(i) = af(i) − 1 > aj +mf(i)−j − 1 = mj +mf(i)−j ,

which shows that f(i) ∈ E . This proves that f(M) ⊂ D and f(M) ⊂ E .

Now suppose that i ∈ D. Then for each j with 0 < j < i we have

aj +mi−j < ai ≤ aj + ai−j ≤ aj +mi−j + 1,

so ai−j = mi−j + 1 and ai = aj + ai−j . It follows from the first equality that we
have j �∈ P for each j with 0 < j < i. The second equality implies that ε1, . . . , εi
is a palindrome, so for each j with 0 < j < i we have εj = εi−j+1 = εp−i+j , and it
follows that p− i ∈ P. There is an element k ∈ M with k | p− i, and we know that
k ≥ i. If k = i then 1 ∈ P by Lemma 4, and s = p− 1. So k > i and i = rem(p, k).
This shows that D ⊂ f(M).

We now show that f is injective. Suppose that k = rem(p, i) = rem(p, j) for
i, j ∈ M with i �= j. Then lcm(i, j) | p− k so i+ j < lcm(i, j) ≤ p− k ≤ p. With
Lemma 4 it follows that gcd(i, j) ∈ P, which contradicts minimality of the periods
i and j. This shows that f is a bijection from M to D.

In order to show that M ⊂ E , let i ∈ M and 0 < j < i. We have

mi = ai ≥ aj +mi−j ≥ mj +mi−j ;
mi = ai ≥ ai−j +mj ≥ mj +mi−j .

If mi = mj +mi−j then aj = mj and ai−j = mi−j , so j, i− j ∈ P. By Lemma 4
the strict divisor gcd(j, i− j) of i then lies in P, contradicting minimality of i. We
deduce that i ∈ E .

We have proved that M ∪ D ⊂ E\{0}, and we now prove the other inclusion.
Suppose i ∈ E with i �= 0 and i �∈ D. We will show that i ∈ M. Since i �∈ D, there
is an integer j with 0 < j < i and ai = mj + ai−j . Since i ∈ E we also have

mj ≤ mi −mi−j − 1 ≤ mi − ai−j ≤ ai − ai−j = mj ,

so all inequalities are equalities. It follows that ai = mi, and i ∈ P. If i has a strict
divisor l ∈ P, we have mi = ml + mi−l, which contradicts that i ∈ E . Therefore
we have i ∈ M.
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Finally, if the union {0} ∪ M ∪ D is not disjoint, then there is an integer
i ∈ M ∩ D with i, p− i ∈ P, so s = p− 1 by Lemma 4. �

Proof of Theorem 1. See the Corollary to Proposition 3 for the case s = 0 and
s = p − 1. In the other cases Theorems 4 and 5 give d = #D = #M, and
edim(R) = #E = 1 + #M + #D = 1 + 2d. �

In order to prove Theorems 2 and 3 we give an inductive procedure to break
down our balanced sequence.

Define g : Z → Z by g(i) �→ �i/x�. Then for each i ∈ Z the point (g(i), i) is on
or above the line through the origin with slope x = s/p, and (g(i) + 1, i) is below
this line. This implies that

{1 + g(i) : i ∈ Z} = {j ∈ Z : εj = 1},
so for i ≥ 0 the (i+ 1)th occurrence of a 1 in the sequence ε1, ε2, . . . is at ε1+g(i).

Let us now write y = T (x) = 	1/x
 − 1/x, and put k = 	1/x
. Then x =
1/(k − y) with k ∈ Z and 0 ≤ y < 1. We will see below that this is the beginning
of a continued fraction expansion of x.

The distance between the (i+ 1)th and the ith occurrence of the number 1 in
ε1, ε2, . . . is

g(i) − g(i− 1) = �i(k − y)� − �(i− 1)(k − y)�
= k − (	iy
 − 	(i− 1)y
) = k − ε′i,

where (ε′i)i is the balanced sequence for the rational number y.

In the following example we give ε1, . . . , ε19 for x = 8/19. We have T (x) = 5/8
and k = 3. For i = 0, . . . 7 the number ε′1+i is written below ε1+g(i) = 1.

1 0 1 0 1 0 0 1 0 1 0 1 0 0 1 0 1 0 0

1 1 0 1 1 0 1 0

The next Proposition tells us how to express the set of minimal sub-periods M(x)
of ε1, . . . , εp−1, in terms of the set of minimal sub-periods M(y) of ε′1, . . . , ε

′
s−1.

Proposition 4. If p ≡ 1 mod s then M(x) = {(p − 1)/s}. Otherwise, we have
p− 1 ∈ M(x) and we have a bijection M(y) → M(x)\{p− 1} given by i �→ g(i).

Proof. The first statement is clear: if p = us + 1 then ε1, . . . , εp−1 consists of s
consecutive blocks of a 1 followed by u − 1 zeroes, so P = {i ∈ uZ : 1 ≤ i < p},
and M(x) = {u}.

For the rest of the proof, assume that p �≡ 1 mod s. Therefore s �= 1 and
0 < y < 1. We have ε′s = 0 and g(s− 1) = p− k.
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We first show that g(P(y)) ⊂ P(x). Suppose that i ∈ P(y). All blocks in
ε′1, . . . , ε

′
s−1 of length i have the same sum, so all blocks in ε1 . . . , εg(s−1) of sum

i starting with a 1 which are not followed by a 0, have the same length, and this
length is g(i). We get the sequence ε1 . . . , εp−1 by adding a 1, and k− 2 zeroes. It
is not hard to see that in this longer sequence each block of length g(i) has sum i,
so that g(i) ∈ P(x). This shows that g(P(y)) ⊂ P(x)\{p− 1}.

Now suppose that j ∈ P(x) with 1 ≤ j < p− 1. Then εj+1 = ε1 = 1 so j = g(i)
for some i with 1 ≤ i < s. For l with 1 ≤ l < s the symbol ε′l is determined
by the distance between the l-th and the (l + 1)th occurrence of the number 1
in the sequence ε1, . . . , εp−1. Since this sequence is obtained by repeating a block
containing i symbols 1, this distance depends only on l mod i. Thus, i ∈ P(y).

This shows that g gives a bijection P(y) → P(x)\{p− 1}. If i is in P(y), then
for j ≥ 1 with i + j < s the distance from the (i + j + 1)th number 1 to the
(i + 1)th is equal to the distance between the (j + 1)th and the first, so we have
g(i + j) = g(i) + g(j). This implies that the bijection g : P(y) → P(x)\{p − 1}
preserves the divisibilities, so that we obtain a bijection M(y) → M(x)\{p− 1}.

It remains to show that p−1 ∈ M(x). Assume this is false. We have p−1 ∈ P(x),
so l ∈ M(x) for a strict divisor l of p − 1. Writing jl = p − 1, we see that j is a
strict divisor of s and that l = g(s/j). By applying Lemma 4 to s/j, s−s/j ∈ P(y)
it follows that 1 ∈ P(y), which in turn implies that p ≡ 1 mod s, contradicting our
assumption. �

Iterating the operator T computes the Hirzebruch continued fraction of −x; see
[7]. For instance, if we start with x = 8/19 then T (x) = 5/8 and T (T (x)) = 2/5,
and we get

− 8
19

= − 1

3 − 5
8

= − 1

3 − 1

2 − 2
5

= − 1

3 − 1

2 − 1

3 − 1
2

.

The proposition above implies that we can count M(x) by iterating T on our
rational number x until we have a number a/b with a | b− 1. In the picture below
we outline {εi+1 : i ∈ M(x)} for the values x we encounter starting from 8/19.
We outlined εi+1 for the non-minimal i ∈ P with a dashed line.

1 0 1 0 1 0 0 1 0 1 0 1 0 0 1 0 1 0 0

1 1 0 1 1 0 1 0

1 0 1 0 0

M(8/19) = {7, 16, 18}
M(5/8) = {3, 7}
M(2/5) = {2}

Proof of Theorems 2 and 3. In Proposition 4 we have y = T (s/p) satisfies y =
rem(−p, s)/s, so Theorem 2 follows from Proposition 4 and Theorem 5.
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In order to deduce Theorem 3, recall first that the Hirzebruch continued fraction
expansion of −x is

−x = −s

p
= − 1

y1 − 1

. . .
. . .

yn−1 − 1
yn

for integers n ≥ 1 and y1, . . . , yn ≥ 2, which are given by yi = 	1/T i−1(x)
 and
Tn(x) = 0.

We have the following rewriting rule [8, (19) p. 215] between the usual continued
fraction and the Hirzebruch continued fraction. For integers u, v with v ≥ 1 and a
rational number w > 1 we have

u+
1

v +
1
w

= u+ 1 − 1

2 − 1

. . .
. . .

2 − 1
w + 1

,

where the number of symbols 2 on the right is v − 1.

The rule also holds when w = ∞, that is, when we replace 1/w and 1/(w + 1)
by 0. This implies that we have s = p−1 if and only if y1 = y2 = . . . = yn = 2, and
we have s | p−1 if and only if y2 = y3 = . . . = yn = 2. Thus, Proposition 4 implies
that if s �= p − 1, the number d is the largest i ≤ n with yi �= 2. Starting with
the continued fraction in Theorem 3 we can apply the rewriting rule repeatedly
to find the Hirzebruch continued fraction expansion of −x. Then we find that the
largest i ≤ n with yi �= 2 is the sum of all odd xi with i < m. �
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