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Abstract. We study two measures of associativity for graph algebras of
finite undirected graphs: the index of nonassociativity and (a variant of)
the semigroup distance. We determine “almost associative” and “anti-
associative” graphs with respect to both measures. It turns out that the
antiassociative graphs are exactly the balanced complete bipartite graphs,
no matter which of the two measures we consider. In the class of connected
graphs the two notions of almost associativity are also equivalent.
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1. Introduction

There are several ways to measure the (non)associativity of a given binary
operation ◦. The index of nonassociativity counts the number of triples (a, b, c)
such that (a ◦ b) ◦ c �= a ◦ (b ◦ c). The semigroup distance counts the minimum
number of changes we need to perform in the Cayley table of ◦ in order to make
it associative. The associative spectrum counts the number of term functions
arising from different bracketings of x1 ◦ · · · ◦ xn, thereby giving information
about the consequences of the associative identity that are (not) satisfied by ◦.
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We define these notions more precisely in Sect. 2, and we give several ex-
amples as well as a brief overview of earlier research in this area. The examples
will show that there is little relationship among these measures of associativ-
ity: it is possible that one of them is very small, while another one is very
large, for the same binary operation.

We can define a binary operation on the vertices of a graph by

x ◦ y =

{
x, if there is an edge from x to y;
0, otherwise;

where 0 is an external zero element. The main topic of this paper is the study
of associativity measures of these graph algebras. Again, the more formal def-
inition is given in Section 2, and we also recall some notions of graph theory
there.

We will only consider undirected graphs, and these have been completely
classified with respect to their associative spectra in [18] (we state this classifi-
cation in Theorem 5.1 in Section 5). Therefore, we focus on the semigroup dis-
tance (more precisely, a “graph-algebraic” version of the semigroup distance)
and on the index of nonassociativity in Sections 3 and 4. In particular, we
determine the minimal and maximal values of these measures of associativity,
and we characterize graphs corresponding to these extremal values.

We will conclude in Section 5 that—as opposed to the case of arbitrary bi-
nary operations—the semigroup distance and the index of nonassociativity are
closely related: for connected undirected graphs, the notions of “antiassociativ-
ity” and “almost associativity” coincide for these two measures of associativity
(but not for the associative spectrum).

2. Preliminaries

2.1. Measures of (non)associativity

Definition 2.1 ([2]). The index of nonassociativity of a finite groupoid A =
(A; ◦) is the number of nonassociative triples in A:

ns(A) =
∣∣{(a, b, c) ∈ A3 : (a ◦ b) ◦ c �= a ◦ (b ◦ c)

}∣∣ .
The index of nonassociativity was defined by Climescu [2], and he proved

that all values between 1 and n3 are possible for n-element groupoids if n ≥ 3
(see also [5]). (For 2-element groupoids the possible values are 0, 2, 4 and 8.)
Clearly, ns(A) = 0 if and only if A is associative (or, more precisely, the binary
operation of A is associative), and we may say that A is almost associative if
ns(A) = 1, while A can be regarded as antiassociative if ns(A) = n3. Groupoids
with ns(A) = 1 are also called Szász–Hájek-groupoids, because their structure
was first studied by Szász [25] and Hájek [6], and later by Kepka and Trch in
a long series of papers [10,11,12,13,14,15,16,17].

To introduce our second measure of associativity, we need to define the
distance of two groupoids. Let A1 = (A; ◦) and A2 = (A; ∗) be two groupoids
on the same finite set A. The distance of A1 and A2 is the Hamming distance
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of their operation tables, i.e., the number of positions where the operation
tables differ:

dist(A1, A2) = |{(x, y) : x ◦ y �= x ∗ y}|.
The set of all groupoids on A is a metric space with the above defined distance.
The semigroup distance a groupoid A, introduced by Kepka and Trch [9], is
simply the distance of A to the set of all semigroups in this metric space.

Definition 2.2 ([9]). The semigroup distance of a finite groupoid A = (A; ◦) is
defined by

sdist(A) = min
{
dist((A; ◦), (A; ∗)) : ∗ is an associative operation on A

}
.

Informally, sdist(A) is the least number of changes one has to perform
in the operation table of A to make it associative. We have sdist(A) = 0 if
and only if A is associative, and we can say that A is almost associative if
sdist(A) = 1. Antiassociativity for n-element groupoids could be defined by
sdist(A) = maxdist(n), where

maxdist(n) = max
{
sdist(A) : A is an n-element groupoid

}
.

However, the value of maxdist(n) is not known. It is clear that maxdist(n) ≤
n2 −n, as we can make any groupoid associative by changing each entry in the
operation table to the most frequently occurring element. As a lower bound,
we have maxdist(n) ≥ n2/4, as shown by the following example.

Example 2.3 [9]. Let A be an n element set, and let x ◦ y = f(x), where f is a
permutation of A that has no fixed points. Then we have ns(A) = n3 (this is
easy to verify) and sdist(A) ≥ n2/4 (this was proved in [9]).

Let us now describe a third way to measure associativity, which was
proposed by Csákány [3].

Definition 2.4 [3]. For a groupoid A = (A; ◦), let sn(A) denote the number
of term operations induced by bracketings of the “product” x1 ◦ · · · ◦ xn. The
sequence spec(A) = (s1(A), s2(A), s3(A), . . . ) is called the associative spectrum
of A.

Clearly, s1(A) = s2(A) = 1 for all groupoids, and s3(A) = 1 if A is asso-
ciative, while s3(A) = 2 if A is not associative. Moreover, by the generalized
associative law, s3(A) = 1 implies sn(A) = 1 for all n ∈ N, thus the associative
spectrum of a semigroup is (1, 1, 1, . . . ). The associative spectrum measures as-
sociativity by its consequences: a nonassociative groupoid A may still satisfy
some identities that are consequences of the associative law, and a relatively
small spectrum indicates that A satisfies relatively many of these identities. On
the other hand, if A satisfies no nontrivial “bracketing identities”, then sn(A)
equals the number of formally different bracketings of x1 ◦ · · · ◦ xn, which is
the (n − 1)-st Catalan number Cn−1 = 1

n

(
2n−2
n−1

)
. In the latter case A can

be regarded as antiassociative, and almost associativity could be defined by
spec(A) = (1, 1, 2, 1, 1, . . . ), as this is the least nonassociative associative spec-
trum(!). For more background about associative spectra, we refer the reader
to [3,20].
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2.2. Comparisons

As the following example illustrates, ns(A) can be arbitrarily large for a groupoid
with sdist(A) = 1, and, at the same time, A can have a Catalan spectrum.

Example 2.5. Let us define a binary operation ◦ on A = {0, 1, . . . , n − 1} by

x ◦ y =

{
1, if x = y = 0;
0, otherwise.

It is clear that sdist(A) = 1 (we get a zero semigroup by setting 0 ◦ 0 = 0),
and it is not hard to verify that ns(A) = 2n(n − 1) [9]. Restricting ◦ to the
subuniverse {0, 1}, we get the Sheffer operation (NOR operation), which does
not satisfy any nontrivial bracketing identities [3], hence the same is true for
A, i.e., A has a Catalan spectrum.

In some sense, the example above is the worst possible: if |A| = n, then
sdist(A) = 1 implies ns(A) ≤ 2n(n − 1) [9] (and, of course, no associative
spectrum can exceed the Catalan numbers). Analogously to Example 2.5, a
groupoid with ns(A) = 1 can have arbitrarily large semigroup distance [1,16].
However, here we do not know the maximal value of sdist(A) among n-element
groupoids with ns(A) = 1; the authors of [1] only mention that the size of the
groupoids they have constructed grow quickly.

In the next example we present groupoids that are almost associative
with respect to both the index of nonassociativity and the semigroup distance
but are antiassociative in the “spectral” sense.

Example 2.6. Let us consider the groupoid A = (A; ◦) defined by the following
operation table:

◦ 0 1 2
0 0 0 0
1 0 1 0
2 0 1 2

We have sdist(A) = 1 (we get a semigroup by setting 1 ◦ 2 = 2) and ns(A) = 1
(the only nonassociative triple is (1, 2, 1)). On the other hand, A has a Catalan
spectrum [3]. Repeatedly extending the groupoid by a zero element, we can
construct arbitrarily large groupoids with these properties.

Let us now see how small can be the semigroup distance of an n-element
groupoid A with ns(A) = n3.

Proposition 2.7. If A is an n-element groupoid and ns(A) = n3, then we have
sdist(A) ≥ n.

Proof. Assume for contradiction that there is an n-element groupoid A =
(A; ◦) such that ns(A) = n3 and sdist(A) < n. Then there is a semigroup
A

∗ = (A; ∗) with dist(A, A∗) < n. By the pigeonhole principle, there is an
element a ∈ A such that the row of a in the operation table of A is identical
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to the row of a in the operation table of A
∗, and similarly, there exist c ∈ A

such that the column of c looks the same in the two operation tables:

∀x ∈ A : a ◦ x = a ∗ x and x ◦ c = x ∗ c.

This implies that (a, b, c) is an associative triple in A for any b ∈ A:

(a ◦ b) ◦ c = (a ∗ b) ∗ c = a ∗ (b ∗ c) = a ◦ (b ◦ c).

However, this contradicts the assumption ns(A) = n3. �

The estimate in the proposition above is sharp, as shown by the following
example

Example 2.8. Let us define a binary operation ◦ on A = {0, 1, . . . , n − 1} by
x ◦ y = f(x), where the map f : A → A is given by

f(x) =

{
1, if x = 0;
0, otherwise.

(Compare this with Example 2.3.) Then we have (a ◦ b) ◦ c = f2(a) and
a ◦ (b ◦ c) = f(a); therefore, ns(A) = n3. This implies sdist(A) ≥ n by Proposi-
tion 2.7. Actually, we have sdist(A) = n, as A is of distance n to a zero semi-
group. Considering the associative spectrum, note that evaluating x1 ◦ · · · ◦xn

over A, we get either f(x1) or f2(x1), depending on the bracketing. Thus the
associative spectrum of A is quite small: spec(A) = (1, 1, 2, 2, . . . ).

Summarizing our observations, we can say that the three measures of
associativity behave quite differently, but there seems to be some weak con-
nection between the index of nonassociativity and the semigroup distance. The
latter is also illustrated by the following inequality.

Theorem 2.9 [9]. If |A| = n, then ns(A) ≤ (2n2 + 2n) · sdist(A).

2.3. Graphs

A directed graph is a pair G = (V ; ρ), where V = V (G) is a nonempty set
(vertices) and ρ ⊆ V × V is a relation on V . We consider finite undirected
graphs, i.e., we always assume that the relation ρ is symmetric. (Sometimes
we drop the adjective “undirected”: by default, a graph always means an undi-
rected graph in this paper.) If G is such a graph and (x, y) ∈ ρ for two distinct
vertices x, y ∈ V (G), then e = {x, y} is an (undirected) edge of G, which we
will simply write as e = xy (of course, yx is the same edge). If (x, x) ∈ ρ, then
there is a loop on the vertex x. It will be convenient to treat loops and “real”
edges separately. Therefore, by a slight abuse of terminology, in the following
we say that e = xy is an edge only in the case x �= y. The set of “loopy”
vertices is denoted by L(G), thus we write x ∈ L(G) to indicate that there is
a loop on the vertex x. We denote by E(G) the set of edges (loops are not
included!), and we partition this set into three parts according to the number
of loops at the endpoints of the edges:

E0(G) = {xy ∈ E(G) : x /∈ L(G) and y /∈ L(G)};

E1(G) = {xy ∈ E(G) : exactly one of x ∈ L(G), y ∈ L(G) holds};
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E2(G) = {xy ∈ E(G) : x ∈ L(G) and y ∈ L(G)}.

(Thus e ∈ Ei means that exactly i of the two endpoints of the edge e have a
loop.) We say that G is a reflexive graph if the underlying relation is reflexive,
i.e., L(G) = V (G). Similarly, we say that G is irreflexive if there are no loops,
i.e., if L(G) = ∅. We use the notation G� for the graph that we obtain from
G by adding loops to all vertices.

The neighborhood of x in G is the set N(x) = {y ∈ V (G) : xy ∈ E(G)}.
Since loops and edges are treated separately, we have x /∈ N(x) even if there is a
loop on x. The degree of a vertex x is the size of it neighborhood: d(x) = |N(x)|.
Note that if there is a loop on x, it is not taken into account in d(x). We say
that x is an isolated vertex if d(x) = 0. Again, loops do not matter: a vertex
with a loop that is not connected to any other vertices is considered isolated.
A connected component of G is said to be nontrivial if it has at least two
vertices; the trivial connected components are just the isolated vertices. For
A ⊆ V , we denote by G|A the induced subgraph of G on the vertex set A, and
G\A stands for G|V \A.

By a cherry in G, we mean a three-vertex induced subgraph in which
exactly two edges are present (loops do not matter): . The set of cherries
in G will be denoted by Ch(G). Thus xyz ∈ Ch(G) if x, y, z are three distinct
vertices, and exactly two of xy ∈ E(G), yz ∈ E(G) and xz ∈ E(G) holds. Here
we use xyz as a shorthand for {x, y, z} (just as xy is a shorthand for {x, y}
when we speak about (non)edges).

An irreflexive graph G is bipartite if V (G) = A ∪ B, where A and B are
disjoint sets (called the two color classes) such that every edge of G has one
of its endpoints in A and the other endpoint in B. (We usually draw bipartite
graphs in such a way that A is above B and B is below A.) For natural numbers
n,m, let Kn denote the complete graph on n vertices, and let Kn,m denote the
complete bipartite graph with n and m vertices in the two color classes. We will
often need balanced complete bipartite graphs, where the sizes of the two color
classes differ by at most one. Up to isomorphism there is only one such graph
on n vertices, namely K�n/2�,�n/2�. These graphs are irreflexive by definition;
but we will also frequently encounter the reflexive complete graph K�

n . We use
the notation K�

n− � for the graph that we obtain from K�
n by removing one

loop (of course, up to isomorphism, it does not matter which loop is removed).
Similarly, Kn − �

� and K�
n − �

� indicate the removal of one edge from Kn and
K�

n , respectively (loops are retained in the second case).
We will need the following classical result of extremal graph theory, which

is a special case of Turán’s theorem about Kr-free graphs (see, e.g., [4, Theo-
rem 7.1.1]).

Theorem 2.10. If G is a triangle-free irreflexive undirected graph on n vertices,
then |E(G)| ≤ n/2� · �n/2� =

⌊
n2/4

⌋
. Equality holds here if and only if

G ∼= K�n/2�,�n/2�.

2.4. Graph algebras

Shallon [24] proposed a construction of an algebra associated to a directed
graph. These graph algebras have a binary and a nullary operation, but here
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we only consider their groupoid reducts (for simplicity, we do not introduce a
new name, and we just call these reducts graph algebras).

Definition 2.11 [24]. The graph algebra of a directed graph G = (V ; ρ) is the
groupoid A(G) = (V ∪̇ {0}; ◦), where

x ◦ y =

⎧⎪⎨
⎪⎩

x, if x, y ∈ V and (x, y) ∈ ρ;
0, if x, y ∈ V and (x, y) /∈ ρ;
0, if x = 0 or y = 0.

Let us mention that there are also other ways to assign a groupoid to a
directed graph; for instance, in [7] the authors study associative triples in the
groupoid (V ; ·), where the binary operation is defined by x · y = x if (x, y) ∈ ρ
and x · y = y if (x, y) /∈ ρ.

Poomsa-ard [21] characterized directed graphs with associative graph al-
gebras.

Theorem 2.12 [21]. The graph algebra of a directed graph is associative if and
only if the edge relation is transitive and the outneighborhood of each vertex is
a reflexive complete graph.

For undirected graphs, the characterization takes the following simple
form.

Corollary 2.13. An undirected graph has an associative graph algebra if and
only if all of its nontrivial connected components are reflexive complete graphs.

Associative spectra of graph algebras were investigated in [18,19]. The
main tool in that study was a result of Pöschel and Wessel [22] describing
satisfaction of identities in terms of graph homomorphisms. Since associative
spectra of undirected graphs were completely described in [18] (we state this
result in Theorem 5.1), we consider ns(A(G)) and sdist(A(G)).

More precisely, we consider a variant of the semigroup distance that seems
more relevant to our setting, and, admittedly, is easier to handle. We restrict
our attention to the metric space of graph algebras of undirected graphs with
a fixed vertex set V , and we measure associativity by the distance to the set
AssGr(V ) of associative graph algebras in this metric space.

Definition 2.14. For a finite nonempty set V , let AssGr(V ) denote the set of
all undirected graphs H with V (H) = V such that A(H) is associative. For a
finite undirected graph G with V (G) = V , we define sdistgr(A(G)) as follows:

sdistgr(A(G)) = min
{
dist(A(G), A(H)) : H ∈ AssGr(V )

}
.

Clearly, sdist(A(G)) ≤ sdistgr(A(G)), and sometimes we have equality
here (e.g., when sdistgr(A(G)) = 1), but it may also happen that the inequality
is strict (e.g., for G ∼= K�n/2�,�n/2�; see Section 5). Observe that deleting or
adding an edge requires two changes in the operation table, while deleting or
adding a loop requires only one change. Thus, if G and H are two graphs on
the same finite vertex set, then

dist(A(G), A(H)) = 2 · |E(G) � E(H)| + |L(G) � L(H)|. (2.1)
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Tables 1, 2 and 3 in Appendix C show the results of a brute force com-
puter exploration of graph algebras of undirected graphs of sizes 3, 4 and 5
(we leave the case of 2-vertex graphs as an exercise to the interested reader).
Note that the size of the graph algebra is one more than the size of the graph,
due to the external zero element. We will always refer to the size of the graph;
in particular, n denotes the number of vertices of the graph under considera-
tion throughout the paper (hence the corresponding graph algebra has n + 1
elements).

We can conjecture from the tables that the range of sdistgr(A(G)) for n-
vertex graphs is an interval. This is indeed the case: we prove in Theorem 3.5
that the possible values are 0, 1, . . . ,

⌊
n2/2

⌋
, and we characterize graphs with

the maximal value sdistgr(A(G)) =
⌊
n2/2

⌋
in Theorem 3.6. The behavior of

the index of nonassociativity seems more complicated. It will be clear that
ns(A(G)) is always even (see Proposition 4.1), but we see “gaps” in the range of
ns(A(G)) even if we disregard odd numbers (these missing values are indicated
by gray color in Tables 2 and 3). We find the maximal value of ns(A(G)) and
the corresponding graphs in Theorem 4.6, and we describe some gaps at the
top of the range in Corollary 4.8. In Theorem 4.10 we prove that the bottom
of the range contains an interval of even numbers that is asymptotically as
long as the whole range. This means that the “chaotic” part at the top is very
small, but it remains an open problem to complete the description of the range
of ns(A(G)).

3. Semigroup distance of graph algebras

Our first result is an upper estimate of sdistgr(A(G)) in terms of the number
of edges. We prove this inequality in the next lemma, then we prove that the
inequality is strict in some special cases (Lemma 3.2), and in Proposition 3.3
we characterize graphs for which the estimate is sharp.

Lemma 3.1. For any finite undirected graph G, we have sdistgr(A(G)) ≤ 2 ·
|E(G)|.
Proof. Consider the graph H such that V (H) = V (G), E(H) = ∅ and L(H) =
L(G), i.e., H is obtained from G by deleting all edges (but keeping the loops).
By Corollary 2.13, H has an associative graph algebra, since it has no nontrivial
component. Clearly, dist(A(G), A(H)) = 2 · |E(G)|, thus sdistgr(A(G)) ≤ 2 ·
|E(G)|. �
Lemma 3.2. If G is a finite undirected graph that has a loop on a non-isolated
vertex, then sdistgr(A(G)) < 2 · |E(G)|.
Proof. Assume that x ∈ L(G) and xy ∈ E(G). We consider the graph H such
that V (H) = V (G), E(H) = {xy} and L(H) = L(G)∪{y}, i.e., H is obtained
from G by deleting all edges except xy and adding a loop to y (if there was no
loop there). By Corollary 2.13, H has an associative graph algebra, since its
only nontrivial component is isomorphic to K�

2 . According to (2.1), we have

dist(A(G), A(H)) = 2 · |E(G) � E(H)| + |L(G) � L(H)|
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≤ 2 · (|E(G)| − 1) + 1

= 2 · |E(G)| − 1,

thus sdistgr(A(G)) < 2 · |E(G)|, as claimed. �

Proposition 3.3. For any finite undirected graph G, we have

sdistgr(A(G)) ≤ 2 · |E(G)|,
and equality holds here if and only if G is triangle-free and loops appear only
on isolated vertices.

Proof. We have already proved the inequality sdistgr(A(G)) ≤ 2 · |E(G)| in
Lemma 3.1, so we only need to describe the graphs for which we have equal-
ity. Isolated vertices (with or without loops) do not influence the value of
sdistgr(A(G)), and they do not count into |E(G)| either. Therefore, we can
assume without loss of generality that G has no isolated vertices. Moreover,
by Lemma 3.2, we may also suppose that G is irreflexive.

Assume first that G contains a triangle xyz. Let us construct the graph H
such that V (H) = V (G), E(H) = {xy, xz, yz} and L(H) = {x, y, z}, i.e., H is
obtained from G by deleting all edges except the three edges of the triangle xyz
and adding a loop to x, y and z. By Corollary 2.13, H has an associative graph
algebra, since its only nontrivial component is isomorphic to K�

3 . According
to (2.1), we have

dist(A(G), A(H)) = 2 · |E(G) � E(H)| + |L(G) � L(H)|
≤ 2 · (|E(G)| − 3) + 3

= 2 · |E(G)| − 3,

thus sdistgr(A(G)) < 2 · |E(G)|, as claimed.
It remains to prove that if G is an irreflexive triangle-free graph with-

out isolated vertices, then sdistgr(A(G)) ≥ 2 · |E(G)|. Let H ∈ AssGr(V ),
where V = V (G), and let us verify that dist(A(G), A(H)) ≥ 2 · |E(G)|. By
Corollary 2.13, all nontrivial connected components of H are reflexive com-
plete graphs. Denote the vertex sets of the nontrivial components of H by
Vi (i = 1, . . . , k) and let V0 denote the set of isolated vertices of H (we can
assume without loss of generality that H has no loops on isolated vertices).
Of course, it may happen that H has no nontrivial connected components; in
that case we have k = 0 and V0 = V . Let ei (i = 1, . . . , k) denote the number
of edges in G|Vi

and let e0 denote the number of the remaining edges in G.
Note that e0 counts the edges of G within V0 as well as the edges across the
sets Vi (i = 0, 1, . . . , k).

This time it will be easier to compute dist(A(G), A(H)) directly by con-
sidering the operation tables of A(G) and A(H), instead of using (2.1). The
two operation tables differ at |Vi|2 −2ei many places in Vi ×Vi for i = 1, . . . , k

and at 2e0 many places outside the set
⋃k

i=1 Vi × Vi. Therefore, we have
dist(A(G), A(H)) = 2e0 +

∑k
i=1(|Vi|2 − 2ei). Since G|Vi

(i = 1, . . . , k) is an ir-
reflexive triangle-free graph, ei ≤ |Vi|2/4 holds by Theorem 2.10. This implies



25 Page 10 of 36 K. Kátai-Urbán and T. Waldhauser Algebra Univers.

|Vi|2 − 2ei ≥ 2ei for i = 1, . . . , k, hence

dist(A(G), A(H)) = 2e0 +
k∑

i=1

(|Vi|2 − 2ei) ≥ 2e0 +
k∑

i=1

2ei = 2|E(G)|,

and this completes the proof. �

Before stating and proving the main results of this section that de-
scribe possible values of sdistgr(A(G)) (Theorem 3.5) and the graphs attain-
ing the maximal value (Theorem 3.6), we need to look at what happens to
sdistgr(A(G)) if we add a loop to a vertex.

Lemma 3.4. Let G be a finite undirected graph with sdistgr(A(G)) = m, and
assume that there is no loop on the vertex v ∈ V (G). Let G∗ be the graph
obtained from G by adding a loop to v. Then sdistgr(A(G∗)) ∈ {m,m − 1}.
Proof. Clearly dist(A(G), A(G∗)) = 1, thus the triangle inequality implies that
sdistgr(A(G∗)) ≥ m − 1. In order to prove sdistgr(A(G∗)) ≤ m, let us consider
H ∈ AssGr(V ), with V = V (G) and dist(A(G), A(H)) = m. If v ∈ L(H) then
dist(A(G∗), A(H)) = m − 1 ≤ m. If v /∈ L(H) then, by Corollary 2.13, v is an
isolated vertex in H and the graph H∗ obtained from H by adding a loop to
the vertex v also belongs to AssGr(V ); furthermore, dist(A(G∗), A(H∗)) = m
in this case. This proves that in both cases there is an associative graph algebra
of distance at most m from A(G), thus sdistgr(A(G)) ≤ m, as claimed. �

Let rangen(sdistgr) denote the range of sdistgr on graph algebras of n-
vertex undirected graphs:

rangen(sdistgr) =
{
sdistgr(A(G)) : G is an undirected graph on n vertices

}
.

Theorem 3.5. For any positive integer n, we have

rangen(sdistgr) =
{

0, 1, . . . ,
⌊
n2/2

⌋}
.

Proof. Let us consider bipartite graphs G with color classes A and B, where
|A| = n/2�, |B| = �n/2�. The number of edges of such a graph can be any
number between 0 and n/2� · �n/2�. Since bipartite graphs are triangle-free,
we have sdistgr(A(G)) = 2 · |E(G)| by Proposition 3.3, thus rangen(sdistgr)
contains all even numbers between 0 and 2 · n/2� · �n/2� =

⌊
n2/2

⌋
.

To obtain the odd numbers in this interval, let G be any one of the graphs
considered above that has a non-isolated vertex x. (The latter assumption
exludes only the empty graph.) If G∗ is the graph obtained from G by adding a
loop to the vertex x, then we have sdistgr(A(G∗)) = 2·|E(G)|−1 by Lemmas 3.2
and 3.4. This proves that rangen(sdistgr) contains all odd numbers between 1
and

⌊
n2/2

⌋ − 1.
It remains to prove that rangen(sdistgr) does not contain any number

greater than
⌊
n2/2

⌋
. Let V = V (G) have n elements, let H0 be the empty graph

on V (with no edges and no loops), and let H1 be the reflexive complete graph
on V (thus H1

∼= K�
n). Clearly, H0,H1 ∈ AssGr(V ) and dist(A(G), A(H0)) +
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dist(A(G), A(H1)) = n2. This implies that the smaller one of dist(A(G), A(H0))
and dist(A(G), A(H1)) is at most

⌊
n2/2

⌋
, hence sdistgr(A(G)) ≤ ⌊

n2/2
⌋
. �

Theorem 3.6. For an arbitrary finite undirected graph G on n vertices, we have
sdistgr(A(G)) =

⌊
n2/2

⌋
if and only if G ∼= K�n/2�,�n/2�.

Proof. It is clear from Proposition 3.3 that sdistgr(K�n/2�,�n/2�) = 2 · n/2� ·
�n/2� =

⌊
n2/2

⌋
. Conversely, assume that V = V (G) has n elements and

sdistgr(A(G)) =
⌊
n2/2

⌋
, and let us prove that G ∼= K�n/2�,�n/2�. We separate

two cases on whether G contains loops or not.

Case 1: There are no loops in G (i.e., G is irreflexive). Let H0 be the empty
graph on V (with no edges and no loops), and let H1 be the reflexive complete
graph on V (thus H1

∼= K�
n). Then we have

dist(A(G), A(H0)) = 2 · |E(G)| ≥ sdistgr(A(G)) =
⌊
n2/2

⌋
dist(A(G), A(H1)) = n2 − 2 · |E(G)| ≥ sdistgr(A(G)) =

⌊
n2/2

⌋
.

From these two inequalities we get
⌊
n2/2

⌋ ≤ 2 · |E(G)| ≤ ⌈
n2/2

⌉
. If n is

odd, then
⌈
n2/2

⌉
is an odd number, hence 2 · |E(G)| =

⌈
n2/2

⌉
is impossible.

So we have 2 · |E(G)| =
⌊
n2/2

⌋
, and this is certainly true also if n is even.

Therefore, 2 · |E(G)| = sdistgr(A(G)), and then G is triangle-free, according
to Proposition 3.3. Furthermore, G is irreflexive and |E(G)| = 1/2 · ⌊n2/2

⌋
=⌊

n2/4
⌋
, thus we can use Theorem 2.10 to conclude that G ∼= K�n/2�,�n/2�.

Case 2: There is at least one loop in G. By Lemma 3.4, sdistgr(A(G)) could
only increase if we remove loops, but by Theorem 3.5, sdistgr(A(G)) =

⌊
n2/2

⌋
is the maximum of rangen(sdistgr). This means that sdistgr(A(Ĝ)) =

⌊
n2/2

⌋
holds for the graph Ĝ that we obtain from G by removing all loops. Now
Ĝ ∼= K�n/2�,�n/2� follows by Case 1, hence E(Ĝ) = n/2� · �n/2�. Since G
contains a loop but has no isolated vertices, we can apply Lemma 3.2:

sdistgr(A(G)) < 2 · |E(G)| = 2 · |E(Ĝ)| = 2 · n/2� · �n/2� =
⌊
n2/2

⌋
.

However, this contradicts our assumption sdistgr(A(G)) =
⌊
n2/2

⌋
, so Case 2

is actually not possible. �

4. Index of nonassociativity of graph algebras

As the next proposition shows, the index of nonassociativity is much easier to
compute than sdistgr(A(G)): we just need to count cherries and edges. We also
see that ns(A(G)) is always an even number for undirected graphs.

Proposition 4.1. For any finite undirected graph G, we have

ns(A(G)) = 4 · |Ch(G)| + 4 · |E0(G)| + 2 · |E1(G)|.
Proof. Let uvw be a cherry, say, with uv, uw ∈ E(G) and vw /∈ E(G). It
is straightforward to verify that 4 of the 6 permutations of u, v, w give a
nonassociative triple, namely (u, v, w), (u,w, v), (v, u, w) and (w, u, v). We
claim that all nonassociative triples with pairwise distinct entries do arise this
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way from a cherry. Indeed, if (x, y, z) is a nonassociative triple, then either
(xy)z = 0 �= x = x(yz) or (xy)z = x �= 0 = x(yz). The first case holds if and
only if xy ∈ E(G), yz ∈ E(G), xz /∈ E(G), while the second case is equiv-
alent to xy ∈ E(G), yz /∈ E(G), xz ∈ E(G). We see that in both cases xyz
is a cherry, provided that x, y, z are pairwise distinct. Thus the number of
nonassociative triples consisting of three different entries is 4 · |Ch(G)|.

Now if u and v are two different vertices and uv /∈ E(G) or uv ∈ E2(G),
then all triples formed from u and v are associative. If uv ∈ E0(G), then we
get the 4 nonassociative triples (u, v, v), (u, v, u), (v, u, u) and (v, u, v). If uv ∈
E1(G), say, with u ∈ L(G) and v /∈ L(G), then we get only 2 nonassociative
triples, namely (u, v, v) and (v, u, v). Thus the number of nonassociative triples
consisting of two different entries is 4 · |E0(G)|+2 · |E1(G)|. To finish the proof,
we only need to note that triples of the form (u, u, u) are associative (as well
as those that contain the zero element). �
Proposition 4.2. For any finite undirected graph G, we have

ns(A(G)) ≤ 2 ·
∑

v∈V (G)

d(v)2,

and equality holds here if and only if G is triangle-free and loops appear only
on isolated vertices.

Proof. Isolated vertices (with or without loops) do not influence the index of
nonassociativity, and they do not count into vertex degrees either. Therefore,
we can assume without loss of generality that G has no isolated vertices. By
Proposition 4.1, ns(A(G)) ≤ 4 · |Ch(G)| + 4 · |E(G)|, with equality if and only
if G is irreflexive. Each vertex v is the “top” vertex of at most

(
d(v)
2

)
cherries,

and if v is not contained in any triangle, then (and only then), v is the “top”
vertex of exactly

(
d(v)
2

)
cherries. Thus we can estimate ns(A(G)) as follows:

ns(A(G)) ≤ 4 · |Ch(G)| + 4 · |E(G)|

≤ 4 ·
∑

v∈V (G)

(
d(v)
2

)
+ 4 · |E(G)|

= 2 ·
∑

v∈V (G)

d(v)2 − 2 ·
∑

v∈V (G)

d(v) + 4 · |E(G)|

= 2 ·
∑

v∈V (G)

d(v)2

(in the last step we used the well-known handshaking theorem: the sum of the
degrees is twice the number of edges). It is clear from the arguments above
that this estimate is sharp if and only if G contains neither loops nor triangles.

�
Example 4.3. It follows immediately from the proposition above that for the
complete bipartite graph Ka,b, we have ns(A(Ka,b)) = 2ab2+2a2b = 2(a+b)ab.

In the following we take a route similar to Section 3: we estimate ns(A(G))
by the number of edges (Proposition 4.4), then we see what happens to ns(A(G))
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when we add a loop (Lemma 4.5), and we use these to prove our main results
about the range of ns(A(G)) (Theorem 4.6, Corollary 4.8 and Theorem 4.10).

Proposition 4.4. For any finite undirected graph G with n vertices, we have

ns(A(G)) ≤ 2n · |E(G)|,
and equality holds here if and only if G is either a complete bipartite graph or
G has no edges.

Proof. Example 4.3 shows that ns(A(G)) = 2n · |E(G)| for complete bipartite
graphs, and this is trivially true for “edgeless” graphs, too.

Now assume that G has at least one edge, and for any e ∈ E(G), let
ch(e) denote the number of cherries that contain the edge e. Clearly, we have
ch(e) ≤ (n − 2) for each e ∈ E(G); furthermore,

∑
e∈E(G) ch(e) = 2 · |Ch(G)|,

as each cherry contains exactly two edges. Using these observations together
with Proposition 4.1, we can estimate ns(A(G)) as follows:

ns(A(G)) ≤ 4 · |Ch(G)| + 4 · |E(G)|
= 2 ·

∑
e∈E(G)

ch(e) + 4 · |E(G)|

≤ 2(n − 2) · |E(G)| + 4 · |E(G)|
= 2n · |E(G)|.

The inequalities above turn into equalities if and only if the endpoints of each
edge are loopless, and every edge is contained in n − 2 cherries, i.e.,

∀xy ∈ E(G) ∀v ∈ V (G)\{x, y} : xv ∈ E(G) or yv ∈ E(G), but not both.

(4.1)

Let us assume that G is such a graph, and suppose for contradiction that G
contains a cycle C of odd length. Any chord of C (i.e., an edge connecting two
non-consecutive vertices of C) cuts C into two shorter cycles, one of which
has odd length. Therefore, if we choose C to be of minimal odd length �, then
C is a chordless cycle. However, the existence of a chordless cycle of length �
contradicts (4.1), unless � = 4. This proves that G does not contain any cycles
of odd length, hence G is bipartite. Let A and B be the two color classes, and
let xy ∈ E(G) with x ∈ A and y ∈ B. If v is any vertex from A, then (4.1)
gives that yv ∈ E(G), whereas if v belongs to B, then we have xv ∈ E(G).
Since this is true for every edge xy of G, we can conclude that G is a complete
bipartite graph. �

Lemma 4.5. Let G be a finite undirected graph, let v be a loopless vertex of G,
and let G∗ denote the graph obtained from G by adding a loop to v. Then we
have

ns(A(G∗)) = ns(A(G)) − 2 · d(v).

Proof. Let p denote the number of loopless neighbors of v, and let q denote
the number of neighbors of v that have a loop. Then we have

|Ch(G∗)| = |Ch(G)|, |E0(G∗)| = |E0(G)| − p, |E1(G∗)| = |E1(G)| + p − q.
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Now we can compute ns(A(G∗)) with the help of Proposition 4.1:

ns(A(G∗)) = 4 · |Ch(G)| + 4 · (|E0(G)| − p) + 2 · (|E1(G)| + p − q)

= ns(A(G)) − 2(p + q)

= ns(A(G)) − 2d(v). �

Theorem 4.6. For any finite irreflexive undirected graph G on n vertices, the
following hold:

(i) if G ∼= K�n/2�,�n/2�, then ns(A(G)) = 2n n/2� �n/2� = n
⌊
n2/2

⌋
;

(ii) if G � K�n/2�,�n/2�, then ns(A(G)) ≤ 2n n/2� �n/2� − 4 n/2� + 4.

Proof. The proof is quite long and technical, so we present it separately in
Appendix A. �
Remark 4.7. Let G be the graph obtained from K�n/2�,�n/2� by connecting two
vertices in the color class of size �n/2� by an edge. Then we have ns(A(G)) =
2n n/2� �n/2� − 4 n/2� + 4, and this shows that the estimate in item (ii) of
Theorem 4.6 cannot be improved.

Let rangen(ns) denote the range of ns on graph algebras of n-vertex
undirected graphs:

rangen(ns) =
{
ns(A(G)) : G is an undirected graph on n vertices

}
.

Corollary 4.8. Let n be a positive integer, and assume that n ≥ 8.
(i) If n is even, then the three largest elements of rangen(ns) are

n3

2
− (2n − 4),

n3

2
− n,

n3

2
.

(ii) If n is odd, then the four largest elements of rangen(ns) are

n3 − n

2
− (2n − 6),

n3 − n

2
− (n + 1),

n3 − n

2
− (n − 1),

n3 − n

2
.

Proof. The corollary can be derived from Theorem 4.6 and Lemma 4.5 as
follows. Let G be a graph on n vertices, and let Ĝ denote the graph that we
obtain from G by deleting all loops. If Ĝ � K�n/2�,�n/2�, then

ns(A(G)) = ns(A(Ĝ)) −
∑

v∈L(G)

2d(v) ≤ 2n
⌊n

2

⌋ ⌈n

2

⌉
− 4

⌊n

2

⌋
+ 4,

and we can have equality here, for example, if G is the graph described in
Remark 4.7. If Ĝ ∼= K�n/2�,�n/2�, then

ns(A(G)) = ns(A(K�n/2�,�n/2�)) −
∑

v∈L(G)

2d(v) = 2n
⌊n

2

⌋ ⌈n

2

⌉
−

∑
v∈L(G)

2d(v).

This number can be larger than 2n n/2� �n/2� − 4 n/2� + 4 only if G has at
most one loop, and then the subtrahend

∑
v∈L(G) 2d(v) is either zero, 2 n/2�

or 2 �n/2�. �
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Remark 4.9. Corollary 4.8 is valid also for n < 8, in the sense that the largest
elements of rangen(ns) are

• 2n
⌊

n
2

⌋ ⌈
n
2

⌉ − 4
⌊

n
2

⌋
+ 4,

• 2n
⌊

n
2

⌋ ⌈
n
2

⌉ − 2
⌈

n
2

⌉
,

• 2n
⌊

n
2

⌋ ⌈
n
2

⌉ − 2
⌊

n
2

⌋
,

• 2n
⌊

n
2

⌋ ⌈
n
2

⌉
,

but some of these numbers might coincide (even for odd n), and their order
might be different.

We have seen that there are some gaps close to the top of rangen(ns);
however, the bottom of rangen(ns) contains a long sequence of consecutive
even numbers (asymptotically as long as the whole range).

Theorem 4.10. Let rn be the greatest even integer such that all even numbers
up to rn belong to rangen(ns). Then we have

lim
n→∞

rn

n3
=

1
2
.

Proof. The proof is quite long and technical, so we present it separately in
Appendix B. �

It is easy to determine graphs with the least possible nonzero index of
nonassociativity (we will do this in Section 5, but we invite the reader to do
this on their own now), and most of these graphs are not connected. Connected
graphs are much more interesting in this respect, so we conclude this section
by a characterization of the “most associative” connected graphs.

Let Ka
�

Kb denote the graph that is constructed by connecting a ver-
tex of Ka and a vertex of Kb by a path of length �. Here, by the length of a
path we mean the number of edges in the path, i.e., Ka

�
Kb has a+b+�−1

vertices. As an illustration, let us draw K3
3 K4 and K2

5 K5 (vertices of
the connecting paths are colored gray):

Clearly, we have Ka
�

Kb
∼= Kb

�
Ka; furthermore, the graphs K2

�
K2,

K2
�+1 K1 and K1

�+2 K1 are isomorphic, as all of them are paths of length
� + 2. Therefore, in the following we will always assume that a ≥ 2 and b ≥ 2
when we consider the graphs Ka

�
Kb. This way the path of length 2 cannot

be written in the form Ka
�

Kb, but it is included in the second item of the
proposition below as K3 − �

�.

Proposition 4.11. For any finite connected irreflexive undirected graph G on
n ≥ 3 vertices, the following hold:

(i) if G ∼= Kn, then |Ch(G)| = 0;
(ii) if G ∼= Kn − �

�

, then |Ch(G)| = n − 2;
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(iii) if G ∼= Kr
�

Ks for some r, s ≥ 2, � ≥ 1 with r + s + � − 1 = n, then
|Ch(G)| = n − 2;

(iv) if G is not isomorphic to any of the above mentioned graphs, then |Ch(G)| >
n − 2.

Proof. The first three statements of the proposition are straightforward to
verify. We prove (iv) by induction on n. The case n = 3 is void, and for n = 4
there are only two graphs (up to isomorphism) that are relevant to (iv), and
both of them indeed have more than n − 2 = 2 cherries:

From now on we consider the case n ≥ 5. If every vertex of G has degree 1
or n − 1, then G is isomorphic either to the complete graph Kn or to the star
K1,n−1. In the latter case |Ch(G)| =

(
n−1
2

)
> n − 2, since n ≥ 5.

Therefore, we may assume that there is a vertex x with 2 ≤ d(x) ≤ n−2.
Setting A = N(x) and B = V (G)\(A ∪ {x}), we have |A| = d(x) ≥ 2 and
|B| = n − 1 − |A| ≥ 1. There are two types of cherries in G that contain the
vertex x:

x

u ∈ A v ∈ A

(a)

u ∈ A

x w ∈ B

(b)

For type (a) we need that uv /∈ E(G), thus the number of cherries of this type
is the number of non-edges in the induced subgraph G|A; we will denote this
number by nA =

(|A|
2

)−|E(G|A)|. Since xw /∈ E(G) for all w ∈ B (by the very
definition of the set B), the number of cherries of type (b) equals the number
of edges uw with u ∈ A and w ∈ B, which we will denote by eAB . Thus we
have the following relationship between the number of cherries in G and in
G\{x}:

|Ch(G)| = |Ch(G\{x})| + nA + eAB . (4.2)

It is possible that nA = 0, but the connectedness of G guarantees that eAB ≥ 1
(recall that B is not empty, as d(x) ≤ n − 2). We discuss four cases for G\{x}
corresponding to (i), (ii), (iii) and (iv).

If G\{x} ∼= Kn−1, then |Ch(G\{x})| = 0, nA = 0 and eAB = |A|·|B|. The
case |A| = n − 2 is not possible, since then G would be isomorphic to Kn − �

�.
Therefore, 2 ≤ |A| ≤ n − 3, which together with |A| + |B| = n − 1 implies
|A| · |B| ≥ 2 ·(n−3) > n−2. Now (4.2) gives |Ch(G)| = 0+0+ |A| · |B| > n−2,
and this is what we had to prove.
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If G\{x} ∼= Kn−1− �

�, then |Ch(G\{x})| = n−3, nA ∈ {0, 1} and eAB ≥ 2.
(The last inequality follows from the fact that for n ≥ 5 it is not possible to
divide the vertices of Kn−1 − �

� into two parts in such a way that only one edge
goes across the two parts.) By (4.2), we have |Ch(G)| ≥ (n−3)+0+2 > n−2,
as required.

If G\{x} ∼= Kr
� Ks, then |Ch(G\{x})| = n − 3, nA ≥ 0 and eAB ≥ 1,

hence (4.2) yields |Ch(G)| ≥ (n−3)+0+1 ≥ n−2. We have equality here if and
only if nA = 0 and eAB = 1. This means that A induces a complete subgraph of
G\{x} that can be separated from the rest of G\{x} by the removal of a single
edge, which is possible only if A corresponds to Kr or Ks at the isomorphism
G\{x} ∼= Kr

�
Ks. Since G is obtained from G\{x} by connecting the new

vertex x to each element of A, either G ∼= Kr+1
� Ks or G ∼= Kr

� Ks+1,
contradicting the assumption of (iv). This proves that |Ch(G)| > n − 2.

In the remaining cases the induction hypothesis gives that |Ch(G\{x})| >
n− 3, hence |Ch(G)| > (n− 3)+0+1 = n− 2 follows by (4.2), as nA ≥ 0 and
eAB ≥ 1. �

Theorem 4.12. For any finite connected undirected graph G on n ≥ 3 vertices,
the following hold:

(i/a) if G ∼= K�
n , then ns(A(G)) = 0;

(i/b) if G ∼= K�
n− �, then ns(A(G)) = 2(n − 1);

(ii) if G ∼= K�
n − �

�

, then ns(A(G)) = 4(n − 2);

(iii) if G ∼= (Kr
�

Ks)� for some r, s ≥ 2, � ≥ 1 with r + s + � − 1 = n,
then ns(A(G)) = 4(n − 2);

(iv) if G is not isomorphic to any of the above mentioned graphs, then
ns(A(G)) > 4(n − 2).

Proof. The first four statements follow from propositions 4.1 and 4.11. In order
to prove (iv), consider the graph Ĝ that is obtained from G by removing all
loops.

If Ĝ ∼= Kn, then Proposition 4.1 shows that ns(A(G)) = 2(n − 1) · (n −
|L(G)|). Here we must have |L(G)| ≤ n − 2 (otherwise we are in case (i/a) or
(i/b)), hence ns(A(G)) ≥ 2(n − 1) · 2 > 4(n − 2).

If Ĝ ∼= Kn − �

� or Ĝ ∼= Kr
� Ks, then G must have at least one loopless

vertex (otherwise we are in case (ii) or (iii)); therefore, ns(A(G)) > 4 · |Ch(G)|
according to Proposition 4.1, and |Ch(G)| = n − 2 by Proposition 4.11. This
proves that ns(A(G)) > 4(n − 2).

If G is not isomorphic to any of the above mentioned graphs, then propo-
sitions 4.1 and 4.11 give ns(A(G)) ≥ 4 · |Ch(G)| > 4(n − 2). �

5. Conclusion

In this section we compare the extremal cases for the three measures of as-
sociativity (sdistgr(A(G)), ns(A(G)) and spec(A(G))) for undirected graphs.
Before doing so, let us complement the results of the previous two sections by
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the following description of associative spectra of graph algebras of undirected
graphs (the first item in the theorem is just a repetition of Corollary 2.13).

Theorem 5.1 [18]. Let G be an undirected graph.

(i) If every nontrivial connected component of G is a reflexive complete
graph, then sn(A(G)) = 1 for all n ∈ N.

(ii) If every nontrivial connected component of G is either a reflexive complete
graph or a complete bipartite graph, and the last case occurs at least once,
then sn(A(G)) = 2n−2 for all n ≥ 2.

(iii) Otherwise sn(A(G)) = Cn−1 for all n ∈ N.

By Theorems 3.6 and 4.6, the only antiassociative graph algebra on n
vertices is A(K�n/2�,�n/2�), if we measure associativity by sdistgr or by ns.
However, A(K�n/2�,�n/2�) is not antiassociative with respect to the associative
spectrum (in fact, it is almost associative!), according to the theorem above.
On the other hand, most graph algebras are antiassociative in the “spectral”
sense by Theorem 5.1, and the other two measures of associativity can be very
small for these graphs (see below).

The least nonzero value of sdistgr is 1, and we have sdistgr(A(G)) = 1 if
and only if G is obtained from a graph H ∈ AssGr(V (G)) by removing one
loop, but G itself does not belong to AssGr(V (G)). By Corollary 2.13, this
means that one component of G is isomorphic to K�

r − � for some r ≥ 2, and
all other nontrivial components are reflexive complete graphs. For such a graph,
we have ns(A(G)) = 2(r − 1) by Proposition 4.1. Therefore, sdistgr(A(G)) = 1
implies ns(A(G)) ≤ 2(n − 1) for graphs G with n vertices. (This explains the
(n − 1) dots in the second column in Tables 1, 2 and 3.) Theorem 5.1 shows
that these graphs have a Catalan spectrum.

Since the index of nonassociativity of a graph algebra is always an even
number, the least possible nonzero value is 2, and, by Proposition 4.1, we
have ns(A(G)) = 2 if and only if Ch(G) = E0(G) = ∅ and |E1(G)| = 1. It is
straightforward to verify that this happens if and only if one component of G
is isomorphic to K�

2 − � (an edge with a loop at one endpoint) and all other
nontrivial components are reflexive complete graphs. If G is such a graph, then
sdistgr(A(G)) = 1, and G has a Catalan spectrum. (This explains why we only
have one dot in the second row in Tables 1, 2 and 3.)

We see that if A(G) is almost associative with respect to the index of
nonassociativity (i.e., ns(A(G)) = 2), then it is almost associative also with
respect to sdistgr (i.e., sdistgr(A(G)) = 1), but the converse implication is
not true. However, if we restrict our attention to connected graphs with at
least four vertices, then these two notions of almost associativity actually co-
incide. Indeed, for connected graphs with n vertices, the least nonzero value
of ns(A(G)) is 2(n − 1), and this value is attained only for K�

n− � if n ≥ 4
(see Theorem 4.12). On the other hand, it follows from the discussion above
that if G is connected, then sdistgr(A(G)) = 1 holds also only if G ∼= K�

n− �.
We can conclude that for undirected graphs, sdistgr(A(G)) and ns(A(G))

match nicely (at least as far as antiassociativity and almost associativity are
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concerned), but the associative spectrum is quite unrelated to them. The fol-
lowing theorem, which is an analogue of Theorem 2.9, and Conjecture 5.3
below also show connections between sdistgr(A(G)) and ns(A(G)).

Theorem 5.2. For every undirected graph G with n vertices, we have

ns(A(G)) ≤ 2(n − 1) · sdistgr(A(G)).

Proof. Let H ∈ AssGr(V (G)) such that dist(A(G), A(H)) = sdistgr(A(G)).
By (2.1), we have sdistgr(A(G)) = 2k + �, where k = |E(G) � E(H)| and
� = |L(G) � L(H)|. We introduce some more notation to facilitate the proof:
let ei = |Ei(G)| and e′

i = |Ei(G) ∩ E(H)| for i = 0, 1. We claim that

2e0 + e1 ≤ 2k + 2e′
0 + e′

1. (5.1)

Indeed, by the definition of k, we have

2k ≥ 2 · |E(G)\E(H)| ≥ 2 · |E0(G)\E(H)| + 2 · |E1(G)\E(H)|
= 2(e0 − e′

0) + 2(e1 − e′
1)

≥ 2(e0 − e′
0) + (e1 − e′

1),

and this is equivalent to (5.1).
Let us consider the following sets for i = 0, 1:

Θi =
{
(xy, x) : xy ∈ Ei(G) ∩ E(H) and x ∈ L(G) � L(H)

}
.

If xy ∈ E0(G) ∩E(H), then xy is an edge of H, hence, by Corollary 2.13 both
x and y must have a loop in H. Since these two vertices do not have a loop in
G, both (xy, x) and (xy, y) belong to Θ0; consequently, |Θ0| = 2e′

0. Similarly,
if xy ∈ E1(G) ∩ E(H), then exactly one of (xy, x) and (xy, y) belongs to Θ1,
hence |Θ1| = e′

1. On the other hand, for each x ∈ L(G) � L(H), there are at
most n − 1 vertices y such that (xy, x) ∈ Θ0 ∪ Θ1, thus |Θ0 ∪ Θ1| ≤ (n − 1) · �.
This implies that

2e′
0 + e′

1 = |Θ0| + |Θ1| = |Θ0 ∪ Θ1| ≤ (n − 1) · �

(note that Θ0 and Θ1 are disjoint). Comparing this with (5.1), we obtain that

2e0 + e1 ≤ 2k + (n − 1) · �. (5.2)

Next we consider the following set:

Ξ =
{
(xyz, xy) : xyz ∈ Ch(G) and xy ∈ E(G) � E(H)

}
.

Since H contains no cherries by Corollary 2.13, all cherries of G must be
“destroyed”, i.e., each cherry of G appears at least once as the first component
of an element of Ξ, thus |Ξ| ≥ |Ch(G)|. On the other hand, for each xy ∈
E(G) � E(H), there are at most n − 2 vertices z such that (xyz, xy) ∈ Ξ,
hence |Ξ| ≤ (n − 2) · k. This implies that

|Ch(G)| ≤ (n − 2) · k. (5.3)

Now we can prove the desired inequality with the help of (5.2), (5.3) and
Proposition 4.1:

ns(A(G)) = 4 · |Ch(G)| + 4e0 + 2e1
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≤ 4(n − 2) · k + 4k + 2(n − 1) · �

= 2(n − 1) · (2k + �)

= 2(n − 1) · sdistgr(A(G)). �

Conjecture 5.3. For every undirected graph G with n vertices, we have

ns(A(G)) ≥ 2 · sdistgr(A(G)).

Remark 5.4. As we have already mentioned, we have sdistgr(A(G)) = 1 and
ns(A(G)) = 2(n − 1) for G = K�

n− �. This shows that the estimate in Theo-
rem 5.2 cannot be improved. Similarly, if G is a disjoint union of r copies of
K�

2 − �, then sdistgr(A(G)) = r and ns(A(G)) = 2r, hence Conjecture 5.3 is
also sharp (if it is true at all). This conjecture can clearly seen in Tables 1, 2
and 3: there are no dots above the main diagonal.

Finally, let us list some topics for further research:
1. Prove or disprove Conjecture 5.3.
2. Complete the description of the set rangen(ns) by determining all gaps

in the range.
3. In Section 3 we considered sdistgr instead of the “real” semigroup dis-

tance. Determine the range of sdist(A(G)) for graph algebras of n-vertex
undirected graphs and characterize graphs corresponding to the extremal
cases. Let us mention that sdist(A(G)) < sdistgr(A(G)) holds for G =
K�n/2�,�n/2� if n ≥ 3. Indeed, let H be the directed graph that we obtain
from K�n/2�,�n/2� by making all edges one-way, pointing to the color class
of size n/2�, and adding a loop to each vertex of this color class. By Theo-
rem 2.12, A(H) is associative, and we have dist(A(K�n/2�,�n/2�), A(H)) =
n/2� · �n/2� + n/2�, which is less than sdistgr(A(K�n/2�,�n/2�)) = 2 ·
n/2� · �n/2� for n ≥ 3.

4. Investigate measures of (non)associativity for graph algebras of directed
graphs (see [19] for a study of associative spectra of these graph algebras).
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Appendix A. Proof of Theorem 4.6

Graphs with the maximal number of cherries were determined in [23] (cherries
are called open triangles in that paper). We will use the same line of reasoning
to find the maximal value of ns(A(G)). We need two technical lemmas: in
Lemma A.1 we determine the maximum of a function that will appear in the
proof of Theorem 4.6, and in Lemma A.2 we deal with a special case that
would cause some trouble during the proof.

Lemma A.1. Let us define a four-variable function f on real numbers by

f(a, b, c, d) = (a + c + 1)(a/2 + b + d) + (b + c + 1)(b/2 + a + d) + 2c − 2d.

For a given t ∈ N, let Σt = {(a, b, c, d) ∈ N
4
0 : a+ b+ c+d = t}. The maximum

of f on Σt is

Mt :=
1
2
t2 +

3
2
t +

⌊
t

2

⌋⌈
t

2

⌉
.

Depending on the parity of t, the maximal value is attained at one or three
tuples.

(i) If t is even, then f(a, b, c, d) = Mt if and only if

(a, b, c, d) =
(

t

2
,

t

2
, 0, 0

)
.

(ii) If t is odd, then f(a, b, c, d) = Mt if and only if (a, b, c, d) is one of the
following three tuples:(

t − 1
2

,
t + 1

2
, 0, 0

)
,

(
t + 1

2
,

t − 1
2

, 0, 0
)

,

(
t − 1

2
,

t − 1
2

, 1, 0
)

.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
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Proof. Let (a, b, c, d) ∈ Σt with c ≥ 1 and d ≥ 1. Then (a+1, b+1, c−1, d−1) ∈
Σt and it is straightforward to verify that

f(a + 1, b + 1, c − 1, d − 1) = f(a, b, c, d) + (a + b)/2 + c + 1 > f(a, b, c, d).

Therefore, we can increase the value of f by simultaneously increasing a and
b by 1 while decreasing c and d by 1. Hence the maximum value of f can be
attained only at tuples with c = 0 or d = 0 or both. We investigate the three
cases c > 0, d = 0 and c = 0, d > 0 and c = 0, d = 0 separately.

1. If c ≥ 1 and d = 0, then (a + 1, b, c − 1, 0), (a, b + 1, c − 1, 0) ∈ Σt and

f(a, b, c, 0) = (a + c + 1)(a/2 + b) + (b + c + 1)(b/2 + a) + 2c,

f(a + 1, b, c − 1, 0) = f(a, b, c, 0) − a/2 + b/2 + 3c/2 − 3/2,

f(a, b + 1, c − 1, 0) = f(a, b, c, 0) + a/2 − b/2 + 3c/2 − 3/2,

f(a + 1, b, c − 1, 0) + f(a, b + 1, c − 1, 0) = 2f(a, b, c, 0) + 3c − 3.

If c ≥ 2 then 3c−3 > 0, thus the above calculations show that at least one
of the inequalities f(a+1, b, c−1, 0) > f(a, b, c, 0) and f(a, b+1, c−1, 0) >
f(a, b, c, 0) hold. This means that f(a, b, c, 0) cannot be maximal if c ≥ 2.
If c = 1, then we have

f(a + 1, b, 0, 0) = f(a, b, 1, 0) − (a/2 − b/2),

f(a, b + 1, 0, 0) = f(a, b, 1, 0) + (a/2 − b/2).

This implies that if a �= b, then one of f(a + 1, b, 0, 0) and f(a, b + 1, 0, 0)
is greater than f(a, b, 1, 0), hence the latter cannot be the maximal value
of f . We can conclude that in the case c ≥ 1, d = 0, the maximum of f
can be attained only at ((t − 1)/2, (t − 1)/2, 1, 0), which is possible only
if t is odd.

2. If c = 0 and d ≥ 1, then (a + 1, b, 0, d − 1) ∈ Σt and

f(a, b, 0, d) = (a + 1)(a/2 + b + d) + (b + 1)(b/2 + a + d) − 2d,

f(a + 1, b, 0, d − 1) = f(a, b, 0, d) + b + d + 1 > f(a, b, c, d).

Therefore, we can increase the value of f by simultaneously increasing a
by 1 and decreasing d by 1, hence cannot get the maximal value of f in
this case.

3. Finally we assume that c = 0 and d = 0. Then (a, b, 0, 0) ∈ Σt implies
a + b = t, hence

f(a, b, 0, 0) = (a + 1)(a/2 + b) + (b + 1)(b/2 + a)

=
1
2
t2 +

3
2
t + ab.

Since t is constant on Σt, in this case the maximum of f can be at-
tained only if a = (t − 1)/2�, b = �(t − 1)/2� or a = �(t − 1)/2�,
b = (t − 1)/2�.

We have proved that f can take its maximal value only at the tuples listed in
items (i) and (ii) in the statement of the lemma. To finish the proof, one only
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needs to verify that f takes the same value at these tuples, and this common
value is

Mt =
1
2
t2 +

3
2
t +

⌊
t

2

⌋⌈
t

2

⌉
. �

Lemma A.2. Let G be a finite irreflexive undirected graph on n ≥ 7 vertices,
and for any edge e ∈ E(G), let Δ(e) denote the number of triangles con-
taining e. Let m = min{Δ(e) : e ∈ E(G)}, and assume that for every edge
e = xy ∈ E(G) with Δ(e) = m, we have G\{x, y} ∼= K�(n−2)/2�,�(n−2)/2�.
Then one of the following holds:

(i) m = 0 and G is isomorphic to K�n/2�,�n/2�, or
(ii) m = 0 and G has the following structure:

• V (G) = {v1, . . . , vn−2, x, y};
• G|{v1,...,vn−2} is isomorphic to K�(n−2)/2�,�(n−2)/2�;
• x is connected by an edge to all other vertices, whereas y is connected

only to x.

Example A.3. Here are the two graphs considered in the lemma above for the
case n = 7:

v1 v2 v3

v4 v5 v6 v7

v1 v2

xy

v3 v4 v5

Proof. Let xy ∈ E(G) be an arbitrary edge such that Δ(xy) = m. Then
G\{x, y} is a balanced complete bipartite graph with at least five vertices:

G\{x, y} :

a1 a2

· · ·

b1 b2 b3

· · ·

Since G\{x, y} has no triangles, a triangle containing an edge of the form aibj

must have either x or y as the third vertex, hence Δ(aibj) ≤ 2, thus m ≤ 2.
We separate two cases on whether there is an edge aibj with Δ(aibj) = m.

Case 1: We have Δ(aibj) = m for some i and j, say, Δ(a1b1) = m. Then
G\{a1, b1} is a balanced complete bipartite graph (we may also assume without
loss of generality that x is a “upper” vertex and y is an “lower” vertex in this
bipartite graph):

G\{a1, b1} :

a2

· · ·

b2 b3

· · ·

x

y
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Let us summarize what we know about our graph:

G :

a1 a2

· · ·

b1 b2 b3

· · ·

x

y

The dashed lines indicate that so far we do not know if xa1, xb1, ya1, yb1 are
edges in G. However, despite the lacking information, we can conclude that the
edge a2b2 is not included in any triangle, hence Δ(a2b2) = 0 = m. This implies
that G\{a2, b2} is a balanced complete bipartite graph, thus xb1, ya1 ∈ E(G)
and xa1, yb1 /∈ E(G). Now we have completely determined the structure of G,
and we see that G ∼= K�n/2�,�n/2�:

G :

a1 a2

· · ·

b1 b2 b3

· · ·

x

y

Case 2: We have Δ(aibj) > m for all i and j. This implies Δ(aibj) ≥ 1,
thus each edge aibj is included in at least one triangle. Recall also that aibj

can be included in at most two triangles (namely aibjx and aibjy), hence
m < Δ(aibj) ≤ 2 and consequently m ≤ 1. We split Case 2 into two subcases
depending on the edges between the sets {x, y} and {a1, a2, . . . , b1, b2, b3 . . . }.
Case 2a: For all i and j, we have xai, xbj , yai, ybj ∈ E(G). In this case our
graph looks like this:

G :

a1 a2

· · ·

b1 b2 b3

· · ·

x

y

There exists a triangle xyv for all v ∈ {a1, a2, . . . , b1, b2, b3, . . . }, thus Δ(xy) =
n − 2. Now n − 2 = m ≤ 1 follows, contradicting our assumption n ≥ 7.
Case 2b: There exist v ∈ {x, y} and w ∈ {a1, a2, . . . , b1, b2, b3, . . . } such that
vw /∈ E(G). We may assume without loss of generality that yb1 /∈ E(G).
Then the only triangle containing the edge aib1 can be aib1x, so we must have
xb1 ∈ E(G) and xai ∈ E(G) for all i:

G :

a1 a2

· · ·

b1 b2 b3

· · ·

x

y



Vol. 85 (2024) Measuring associativity: graph algebras of undirected graphs Page 25 of 36 25

It remains to find out the status of the dashed (non)edges. We see that
Δ(aib1) = 1 > m, hence m = 0, i.e., xy is contained in no triangle. This
implies that y cannot be connected to any ai:

G :

a1 a2

· · ·

b1 b2 b3

· · ·

x

y

Now the only triangle containing the edge aibj can be aibjx, so we must have
xbj ∈ E(G) for all j (previously we saw this only for j = 1):

G :

a1 a2

· · ·

b1 b2 b3

· · ·

x

y

The final step is to observe that Δ(xy) = 0 implies ybj /∈ E(G) for all j ≥ 2,
and now we see that our graph has the structure described in item (ii) in the
statement of the lemma:

G :

a1 a2

· · ·

b1 b2 b3

· · ·

x

y

�
Remark A.4. The assumption n ≥ 7 cannot be dropped in Lemma A.2, as
witnessed by the following four graphs:

Now we are ready to prove Theorem 4.6.

Proof of Theorem 4.6. The first statement of the theorem follows from Ex-
ample 4.3. We prove the second statement by induction on the number of
vertices. For n ≤ 6 we have verified (ii) by computer. Let us now assume that
G � K�n/2�,�n/2� with n = |V (G)| ≥ 7 and that (ii) holds for graphs with less
than n vertices. Let m = min{Δ(e) : e ∈ E(G)}.

If G\{x, y} ∼= K�(n−2)/2�,�(n−2)/2� holds for every edge e = xy ∈ E(G)
with Δ(e) = m, then G is the second graph described in Lemma A.2. Let us
compute ns(A(G)) with the help of Proposition 4.1. The number of (loopless)
edges is

|E0(G)| = |E(G)| = 1 + n − 2 + |E(K�(n−2)/2�,�(n−2)/2�)|
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= n − 1 +
⌊

n − 2
2

⌋⌈
n − 2

2

⌉
.

Next we count the cherries in G (we use the notation of the second item of
Lemma A.2): we have

n − 2 cherries of the form yxvi,(⌊
n−2
2

⌋
2

)
+

(⌈
n−2
2

⌉
2

)
cherries of the form vixvj ,

⌈
n − 2

2

⌉
·
(⌊

n−2
2

⌋
2

)
+

⌊
n − 2

2

⌋
·
(⌈

n−2
2

⌉
2

)
cherries of the form vivjvk.

Summing it up, Proposition 4.1 gives

ns(A(G)) = 2(n − 4)
⌊

n − 2
2

⌋⌈
n − 2

2

⌉
+ 2n2 − 2n.

After simple but tedious calculations we get that the inequality of (ii) is equiv-
alent to 8

⌊
n−2
2

⌋ ⌈
n−2
2

⌉ − 4
⌊

n−2
2

⌋ ≥ 0, which is indeed true (for all n ≥ 2).
Now suppose that there is an edge e = xy ∈ E(G) with Δ(e) = m such

that G\{x, y} � K�(n−2)/2�,�(n−2)/2�. We introduce some notation to facilitate
cherry-counting:

ch(x) = the number of cherries in G that contain the vertex x;

ch(y) = the number of cherries in G that contain the vertex y;

ch(e) = the number of cherries in G that contain the edge e;

A = {v ∈ V (G)\{x, y} : vx ∈ E(G) and vy /∈ E(G)}, a = |A|;
B = {v ∈ V (G)\{x, y} : vx /∈ E(G) and vy ∈ E(G)}, b = |B|;
C = {v ∈ V (G)\{x, y} : vx ∈ E(G) and vy ∈ E(G)}, c = |C|;
D = {v ∈ V (G)\{x, y} : vx /∈ E(G) and vy /∈ E(G)}, d = |D|.

The triangles containing the edge e are of the form xyv, where v ∈ C, thus
Δ(e) = m = c. Comparing the graphs G and G\{x, y}, we see that

|Ch(G)| = |Ch(G\{x, y})| + ch(x) + ch(y) − ch(e);

|E(G)| = |E(G\{x, y})| + a + b + 2c + 1.

Therefore, the index of nonassociativity of A(G) can be computed as follows
(we divide by 4, for convenience):

1
4

ns(A(G)) =
1
4

ns(G\{x, y}) + ch(x) + ch(y) − ch(e) + a + b + 2c + 1.

Applying the induction hypothesis to the graph G\{x, y} and observing that
ch(e) = a + b (since xyv is a cherry if and only if v ∈ A ∪ B), we obtain

1
4

ns(A(G)) ≤ n − 2
2

⌊
n − 2

2

⌋⌈
n − 2

2

⌉
−

⌊
n − 2

2

⌋
+ ch(x) + ch(y) + 2c + 2.

(A.1)
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In order to estimate ch(x), we note that there are three types of cherries
that contain the vertex x:

y

v ∈ B x

(a)

u ∈ A ∪ C

v ∈ B ∪ D x

(b)

x

u ∈ N(x) v ∈ N(x)

(c)

The number of cherries of type (a) is b, as yv ∈ E(G) and xv /∈ E(G) for all
v ∈ B. For cherries of type (b), we observe that xu ∈ E(G) for all u ∈ A ∪ C
and xv /∈ E(G) for all v ∈ B ∪ D, thus the number of such cherries is equal to
the number of edges between A∪C and B ∪D, which is at most (a+ c)(b+d).
To get a cherry of type (c), we can choose the pair {u, v} ⊆ N(x) = A ∪
C ∪ {y} in

(
a+c+1

2

)
many ways, but we must make sure that uv /∈ E(G) so

that we indeed obtain a cherry. Therefore, the number of cherries of type (c)
is

(
a+c+1

2

) − E(G|N(x)), where G|N(x) denotes the induced subgraph of G on
the vertex set N(x). For any u ∈ N(x), we have Δ(xu) = dG|N(x)

(u), since
xuv is a triangle if and only if v ∈ N(x) and uv ∈ E(G). We have seen that
min{Δ(e) : e ∈ E(G)} = c, so we can conclude that dG|N(x)

(u) ≥ c. Thus
every vertex of the graph G|N(x) has degree at least c, hence E(G|N(x)) ≥
1
2 · |N(x)| · c = 1

2 (a + c + 1)c. Consequently, the number of cherries of type (c)
is at most

(
a+c+1

2

) − 1
2 (a + c + 1)c. Adding our estimates for cherries of type

(a), (b) and (c), we get

ch(x) ≤ b + (a + c)(b + d) +
(

a + c + 1
2

)
− 1

2
(a + c + 1)c. (A.2)

Let us record for later reference that equality holds in this estimate if and only
if

∀u ∈ A ∪ C ∀v ∈ B ∪ D : uv ∈ E(G) and ∀u ∈ N(x) : dG|N(x)
(u) = c. (A.3)

We can treat ch(y) in a similar manner, we only need to interchange A and B:

ch(y) ≤ a + (b + c)(a + d) +
(

b + c + 1
2

)
− 1

2
(b + c + 1)c, (A.4)

and equality holds here if and only if

∀u ∈ A ∪ D ∀v ∈ B ∪ C : uv ∈ E(G) and ∀v ∈ N(y) : dG|N(y)
(v) = c.(A.5)

Substituting (A.2) and (A.4) into (A.1), we get

1
4

ns(A(G)) ≤ n − 2
2

⌊
n − 2

2

⌋⌈
n − 2

2

⌉
−

⌊
n − 2

2

⌋
+ 2 + f(a, b, c, d) (A.6)
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where f is the function considered in Lemma A.1. Since a + b + c + d = n − 2,
we have f(a, b, c, d) ≤ Mn−2 by Lemma A.1, and this gives

1
4

ns(A(G)) ≤ n − 2
2

⌊
n − 2

2

⌋⌈
n − 2

2

⌉
−

⌊
n − 2

2

⌋
+ 2 + Mn−2

=
n

2

⌊n

2

⌋ ⌈n

2

⌉
−

⌊n

2

⌋
+ 2, (A.7)

which is unfortunately 1 more than what we would need for (ii). As a remedy,
we shall prove that it is not possible that f(a, b, c, d) = Mn−2, and, at the
same time, equality holds in (A.2) as well as in (A.4).

So let us assume for contradiction that f(a, b, c, d) = Mn−2 and that
(A.3) and (A.5) both hold. Then, according to Lemma A.1, we have d = 0,
c ≤ 1 and the difference of a and b is at most one. By the first parts of (A.3)
and (A.5), all edges across the sets A, B, C are drawn, thus our graph has the
following structure:

A

B

C

x

y

Since each vertex of A is connected to each vertex of C by an edge, the second
part of (A.3) implies that there are no edges inside the set A (recall that
N(x) = A∪C∪{y}); similarly, there are no edges within B either, by the second
part of (A.5). This shows that if c = 0, then G ∼= K�n/2�,�n/2�, contradicting the
assumption of (ii). If c = 1 and u is the unique element of C, then dG|N(x)

(u) =
a + 1, hence the second part of (A.3) gives c = a + 1, i.e., a = 0. Similarly, we
have b = 0, and then n = a + b + c + d + 2 = 3, which is again a contradiction.

We have proved that the inequality in (A.7) cannot be equality, and this
implies 1

4 ns(A(G)) ≤ n/2 · n/2� · �n/2� − n/2� + 1, which is equivalent to
(ii). �

Appendix B. Proof of Theorem 4.10

We will construct a family of graphs that cover a large part of rangen(ns). The
graphs are parameterized by tuples of natural numbers, and in the first three
lemmas we establish the required properties of these tuples.

For positive integers h and k, let

Ωh,k = {(ω1, . . . , ωh) : 0 ≤ ω1 ≤ · · · ≤ ωh ≤ k} ⊆ {0, 1, . . . , k}h.

We consider the following property for tuples ω = (ω1, . . . , ωh) ∈ Ωh,k:

∀i ∈ {1, . . . , h} : ωi ≤ ω1 + · · · + ωi−1 + 1. (B.1)
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(Note that this implies that the leftmost nonzero entry of the tuple ω is 1.) For
(ω1, . . . , ωh) ∈ Ωh,k, this property guarantees that each integer between 0 and
ω1+· · ·+ωh can be written as the sum of some of the numbers ω1, . . . , ωh. This
fact is almost trivial, but we provide the proof in the next lemma (however,
it might be easier for the reader to prove it for themselves than reading the
proof).

Lemma B.1. If ω = (ω1, . . . , ωh) ∈ Ωh,k has property (B.1), then for each
nonnegative integer s with s ≤ ω1 + · · · + ωh, there exist ε1, . . . , εh ∈ {0, 1}
such that s = ε1ω1 + · · · + εhωh.

Proof. We may assume without loss of generality that ω1 = 1 (hence ωi > 0
for each i), since the zero entries in ω (if there are any) are irrelevant for the
lemma. We prove the lemma by induction on h. For h = 1 the claim is obvious,
as ω1 = 1, hence s is either 0 or ω1. Now let h ≥ 2 and let s ≤ ω1 + · · ·+ωh. If
s ≤ ω1 + · · · + ωh−1, then we can apply the induction hypothesis to the tuple
(ω1, . . . , ωh−1) ∈ Ωh−1,k with the number s. If s > ω1+· · ·+ωh−1, then s ≥ ωh,
since ωh ≤ ω1 + · · · + ωh−1 + 1 holds by (B.1). Thus s − ωh is a nonnegative
integer, and s − ωh ≤ ω1 + · · · + ωh−1. Therefore, we can apply the induction
hypothesis to the tuple (ω1, . . . , ωh−1) ∈ Ωh−1,k with the number s−ωh: there
are coefficients ε1, . . . , εh−1 ∈ {0, 1} such that s−ωh = ε1ω1 + · · ·+ εh−1ωh−1.
Setting εh = 1, we can write s as s = (s−ωh)+ωh = ε1ω1 + · · ·+ εh−1ωh−1 +
εhωh. �

For ω = (ω1, . . . , ωh) ∈ Ωh,k\{(0, . . . , 0)}, let m = m(ω) denote the
multiplicity of the maximal (i.e., rightmost) entry: ωh−m < ωh−m+1 = · · · =
ωh.

Lemma B.2. If ω = (ω1, . . . , ωh) ∈ Ωh,k\{(0, . . . , 0)} has property (B.1), then
for each nonnegative integer s with s ≤ m(ω) + ω1 + · · · + ωh, there exist
ε0, ε1, . . . , εh ∈ {0, 1} such that s = ε0m(ω) + ε1ω1 + · · · + εhωh.

Proof. Let m = m(ω) and σ = ω1 + · · · + ωh, for brevity. Lemma B.1 shows
that each integer in the interval [0, σ] can be written as the sum of some of the
numbers ω1, . . . , ωh. Adding m to each of these numbers, we find that each
integer in the interval [m,m + σ] can be written as the sum of some of the
numbers m,ω1, . . . , ωh. To finish the proof, we just need to verify that the
intervals [0, σ] and [m,m + σ] cover [0,m + σ]. Indeed, m ≤ σ, as the sum
σ = ω1 + · · · + ωh contains m copies of the positive integer ωh. �

For ω = (ω1, . . . , ωh) ∈ Ωh,k\{(0, . . . , 0)}, we define ω− as the tuple that
is obtained from ω by decreasing the leftmost occurrence of ωh by 1:

ω− = (ω1, . . . , ωh−m, ωh−m+1 − 1, ωh−m+2, . . . , ωh),

where m = m(ω). For example, if ω = (0, 1, 2, 4, 5, 5, 5), then we have ω− =
(0, 1, 2, 4, 4, 5, 5), and if ω = (0, 1, 2, 3, 4, 7, 9), then ω− = (0, 1, 2, 3, 4, 7, 8). It is
clear that if ω ∈ Ωh,k\{(0, . . . , 0)}, then ω− ∈ Ωh,k; moreover, property (B.1)
is preserved under the map ω �→ ω− (this is straightforward to verify, so we
omit the proof).
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Lemma B.3. If ω ∈ Ωh,k\{(0, . . . , 0)} has property (B.1), then ω− also satisfies
(B.1).

Now we describe the promised graph construction: we assign a bipartite
graph Gω to each tuple ω ∈ Ωh,k. Let V (Gω) = {a1, . . . , ah, b1, . . . , bk} and

E(Gω) = {aibj : 1 ≤ i ≤ h and 1 ≤ j ≤ ωi}.

We can regard ω as a partition of the number ω1+· · ·+ωh, and we can visualize
this by a Ferrers diagram. The left hand side of the figure below shows this
Ferrers diagram for ω = (0, 1, 2, 4, 5, 5, 5) ∈ Ω7,5.

b1 b2 b3 b4 b5
a7 • • • • •
a6 • • • • •
a5 • • • • •
a4 • • • •
a3 • •
a2 •
a1

a1 a2 a3 a4 a5 a6 a7

b1 b2 b3 b4 b5

This Ferrers diagram can be considered as a kind of adjacency matrix for the
bipartite graph Gω, as indicated by the row and column indices of the diagram.
The graph Gω can be seen on the right hand side the figure above. (Removing
the gray dot we obtain the diagram of ω− = (0, 1, 2, 4, 4, 5, 5), and removing
the dashed edge from the graph we get Gω− .) The degrees of the vertices ai

are determined by the rows of the Ferrers diagram: d(ai) = ωi for i = 1, . . . , h.
The vertices bj correspond to the columns of the diagram. One could expess
the degrees d(bj) in terms of the conjugate partition, but we will not formalize
this; we will only need that d(bωh

) = m(ω).
The next lemma is crucial to obtain graphs whose indices of nonassocia-

tivity cover all even numbers in a “large” interval.

Lemma B.4. Let ω ∈ Ωh,k\{(0, . . . , 0)}, let G = Gω and G− = Gω− . If t is an
even number and ns(A(G−)) ≤ t ≤ ns(A(G)), then there is a graph G∗ with
n = h + k vertices, such that ns(A(G∗)) = t.

Proof. By Proposition 4.1, the index of nonassociativity of any graph algebra
is even, thus we can write ns(A(G)) − t = 2s for some nonnegative integer s
with s ≤ 1

2 ns(A(G))− 1
2 ns(A(G−)). We have to construct a graph G∗ such that
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1
2 ns(A(G∗)) = 1

2 ns(A(G))− s. We will do this by adding loops to appropriate
vertices of G.

Let V = {a1, . . . , ah, b1, . . . , bk} be the common vertex set of G and G−.
We can obtain G− from G by deleting one edge: E(G−) = E(G)\{ah−m+1bωh

}.
Therefore, dG(ah−m+1) = ωh, dG−(ah−m+1) = ωh − 1 and dG(bωh

) = m,
dG−(bωh

) = m−1, where m = m(ω), but apart from these two exceptions, the
degrees of the vertices are the same in G and in G−. This implies, with the
help of Proposition 4.2 that

1
2

ns(A(G)) − 1
2

ns(A(G−)) =
∑
v∈V

dG(v)2 −
∑
v∈V

dG−(v)2

= dG(ah−m+1)2 − dG−(ah−m+1)2 + dG(bωh
)2 − dG−(bωh

)2

= ω2
h − (ωh − 1)2 + m2 − (m − 1)2

= 2ωh + 2m − 2.

This proves that s ≤ 2ωh + 2m − 2.

We would like to use Lemma B.2, so we need to verify that 2ωh+2m−2 ≤
m + ω1 + · · · + ωh. By property (B.1) and by the definition of m = m(ω), we
can estimate ω1 + · · · + ωh as follows:

ω1 + · · · + ωh = ω1 + · · · + ωh−m︸ ︷︷ ︸
≥ωh−1

+ ωh + · · · + ωh︸ ︷︷ ︸
=m·ωh

≥ (m + 1) · ωh − 1.

We can derive the desired inequality as follows:

m + ω1 + · · · + ωh ≥ m + (m + 1) · ωh − 1

= (m − 1)(ωh − 1) + 2ωh + 2m − 2
≥ 2ωh + 2m − 2 ≥ s.

Now we can apply Lemma B.2: s = ε0m(ω) + ε1ω1 + · · · + εhωh for suitable
ε0, ε1, . . . , εh ∈ {0, 1}. Let us modify the graph G by adding a loop to bωh

if
ε0 = 1, and let us add a loop to ai if εi = 1. By Lemma 4.5, the index of
nonassociativity of the resulting graph G∗ can be computed as follows:
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1
2

ns(A(G∗)) =
1
2

ns(A(G)) − ε0dG(bωh
) −

h∑
i=1

εidG(ai)

=
1
2

ns(A(G)) − (
ε0m(ω) + ε1ω1 + · · · + εhωh

)
=

1
2

ns(A(G)) − s.

As we have already mentioned, this is equivalent to ns(A(G∗)) = t. �

Now we are ready to prove Theorem 4.10.

Proof of Theorem 4.10. Theorem 4.6 shows that rn ≤ n3/2, so our task is
to give a lower estimate that is asymptotically n3/2. To this end, let us fix
positive integers h and k such that h + k = n, and let us consider the graphs
Gω for ω ∈ Ωh,k.

We claim that if ω ∈ Ωh,k satisfies (B.1), then rn ≥ ns(A(Gω)). Accord-
ing to Lemma B.4, rangen(ns) contains all even numbers from ns(A(Gω−)) to
ns(A(Gω)). Since, by Lemma B.3, ω− also has property (B.1), we can apply
Lemma B.4 again, and we get that rangen(ns) contains all even numbers from
ns(A(G(ω−)−)) to ns(A(Gω−)). We can continue this process, until, after ap-
plying the transformation ω �→ ω− sufficiently many times (more precisely:
ω1 + · · · + ωh times), we reach the tuple (0, . . . , 0) and the corresponding
“edgeless” graph, whose graph algebra is obviously associative. This proves
that each even number from 0 to ns(A(Gω)) occurs as index of nonassociativ-
ity of a graph algebra of a graph with n vertices, hence rn ≥ ns(A(Gω)), as
claimed.

Now we only need to find a tuple ω ∈ Ωh,k satisfying (B.1), such that
ns(A(Gω)) is large enough. Let h = n/2�, k = �n/2�, and let
ω = (1, 2, 4, . . . , 2�, k, . . . , k), where � = log2 k� and the number of copies
of k is m = m(ω) = h − � − 1. The identity 1 + 2 + 4 + · · · + 2i−1 = 2i − 1
guarantees that ω ∈ Ωh,k has property (B.1). The graph Gω has m vertices of
degree k (namely, a�+2, . . . , ah), and each of the vertices b1, . . . , bk has degree
at least m. Therefore, since Gω is irreflexive and triangle-free, Proposition 4.2
implies that

ns(A(Gω)) = 2 ·
∑

v∈V (G)

d(v)2 ≥ 2 · (mk2 + km2).

Clearly, limn→∞ k/n = limn→∞ m/n = 1/2, hence we can conclude that
limn→∞ 2(mk2 + km2)/n3 = 1/2, and this gives the desired lower estimate
for rn. �
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Appendix C. Tables

Table 1. Possible values of ns(A(G)) and sdistgr(A(G)) for
undirected graphs on 3 vertices

Table 2. Possible values of ns(A(G)) and sdistgr(A(G)) for
undirected graphs on 4 vertices
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Table 3. Possible values of ns(A(G)) and sdistgr(A(G)) for
undirected graphs on 5 vertices
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