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Submaximal clones over a three-element
set up to minor-equivalence

Albert Vucaj and Dmitriy Zhuk

Abstract. We study clones modulo minor homomorphisms, which
are mappings from one clone to another preserving arities of oper-
ations and respecting permutation and identification of variables.
Minor-equivalent clones satisfy the same sets of identities of the
form f(x1, . . . , xn) ≈ g(y1, . . . , ym), also known as minor identi-
ties, and therefore share many algebraic properties. Moreover, it
was proved that the complexity of the CSP of a finite structure A

only depends on the set of minor identities satisfied by the poly-
morphism clone of A. In this article we consider the poset that
arises by considering all clones over a three-element set with the
following order: we write C �m D if there exists a minor homo-
morphism from C to D. We show that the aforementioned poset
has only three submaximal elements.
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1. Introduction

In 1959 Janov and Mučnik [18] proved that there exists a continuum of
clones over a k-element set, for every k ≥ 3. Thus, the goal to achieve
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a classification à la Post [23] for clones over a three-element set seemed
to falter. Subsequently, researchers in universal algebra focused on un-
derstanding particular aspects of clone lattices on finite domains. As
far as concerns clones over {0, 1, 2}, remarkable results in this direc-
tion are the description of all maximal clones [17] and of all minimal
clones [12]. Moreover, it turned out that all the aforementioned maxi-
mal clones, with the sole exception of the clone of all linear operations,
contain a continuum of subclones [13,20]. More recently, a complete
description of all clones of self-dual operations over a three-element set
was provided [25]. Note that this is a remarkable result since the clone
of all self-dual operations, which we denote by C3, is one of the maximal
clones over {0, 1, 2}; thus C3 is the first maximal clone besides the clone
of all linear operations that has such description. In particular, C3 is
the only maximal clone which has a full description of all its subclones,
despite having continuum many of them. Another result that seems to
be a setback in the research-line aimed at describing the entire lattice
of clones over {0, 1, 2} is the following: it is undecidable whether a given
clone over a finite domain is finitely related [21].

One might still hope to classify all operation clones over finite sets
up to some equivalence relation so that equivalent clones share many of
the properties that are of interest in universal algebra. Recently, Barto,
Opršal, and Pinsker [3] introduced a weakening of the notion of clone
homomorphism on the class of clones over a finite set, known in the
literature as minor homomorphism. We write C �m D if there exist a
minor homomorphism from C to D, that is, a map preserving arities
and taking minors, where a minor of an operation f is an operation
obtain from f by permuting its variables, identifying variables, or by
adding dummy variables (see Definitions 2.5 and 2.6). Moreover, we
write C ≡m D if C �m D and D �m C and say that C and D are
minor-equivalent ; by C we denote the ≡m-class of C, i.e., the class of
all clones over some finite set which are minor-equivalent to C. The
relation �m is a reflexive and transitive relation on the class of clones
over a finite set, hence ≡m is indeed an equivalence relation, thereby
making the use of these suggestive symbols justified. Minor-equivalent
clones satisfy the same sets of identities of a particular form, known as
minor conditions (see Section 2.2). In a recent turn of events, it turned
out that the complexity of the Constraint Satisfaction Problem of A

(CSP(A)), where A is a finite relational structure with finite signature,
only depends on the set of minor identities satisfied by Pol(A), i.e., by
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the polymorphism clone of A. Moreover, the relation �m preserves the
complexity CSPs, for short: if Pol(A) �m Pol(B) then there exists a
log-space reduction from CSP(B) to CSP(A) [3].

In this article we focus on the set of all clones over {0, 1, 2} or-
dered with respect to �m. More precisely, we describe the submaximal
elements of the poset P3:=({C | C is a clone over {0, 1, 2}};�m). A full
description of the subposet ↓C3 which contains all the elements of P3

which are smaller than C3, with respect to �m, was provided in [7].
From the latter description it follows that ↓C3 is a countably infinite
lattice. In the same article [7, Conjecture 6.2] it was conjectured that
P3 has exactly three submaximal elements, namely the ≡m-classes of
the following three clones:

C2:= Pol
(
({0, 1}; {(0, 1), (1, 0)})

)
,

C3:= Pol
(
({0, 1, 2}; {(0, 1), (1, 2), (2, 0)})

)
,

B2:= Pol
(
({0, 1}; {0}, {1}, {(0, 1), (1, 0), (1, 1)})

)
.

Note that C2 and B2 are clones over {0, 1}; we could equivalently con-
sider the ≡m-classes of the following clones: C′

2:= Pol
(
(E3; {(0, 1),

(1, 0)})
)

and B′
2:= Pol

(
(E3; {0}, {1}, {(0, 1), (1, 0), (1, 1)})

)
, where

E3:={0, 1, 2}.

Contributions

We give a positive answer to the aforementioned conjecture: we show
that P3 has exactly three submaximal elements, namely C2, C3, and B2

(see Corollary 3.13). Our proof is of syntactic nature: we prove several
statements that entail the existence of operations satisfying suitable
identities in some clone C, provided that C has certain operations. For
example, we prove that if C is an idempotent clone over an n-element
set, for some n ≥ 2, such that C has a Mal’cev operation and a cyclic
operation of arity p, for every prime p ≤ n, then C has a majority
operation (see Lemma 3.4). Statements of this form constitute results
of independent interest in universal algebra.

2. Preliminaries

In this section we present notation, definitions, and some basic results
from the literature which we are going to use throughout the article.
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2.1. A Galois connection for clones

We denote the set {0, . . . , k − 1} by Ek. For n ∈ N, we define

O(n)
k := {f | f : En

k → Ek} and Ok:=
⋃

n∈N

O(n)
k .

A clone over Ek is a subset C of Ok which is closed under composition of
operations and which contains all projections, where a projection is any
operation of the form prn

i : (a1, . . . , an) 	→ ai, for all a1, . . . , an ∈ Ek. If
F ⊆ Ok, then 〈F 〉 denotes the clone generated by F , i.e., the smallest
clone that contains F .

An alternative way of describing a clone of operations is to specify
the clone as the set all operations preserving a given set of relations. We
say that an n-ary operation f preserves a relation R on a finite set A
if, for every a1, . . . , an ∈ R, it holds that f(a1, . . . , an) ∈ R. In this case
we also say that R is invariant under f . If f preserves all the relations
in Γ, we say that f is a polymorphism of Γ.

Let Γ be a set of relations over Ek, for some k ∈ N. We define the
set

Pol(Γ) :=
⋃

n∈N

{
f : En

k → Ek | f preserves all the relations in Γ
}

.

We call the set Pol(Γ) the polymorphism clone of Γ.
Analogously, for every set of operations F over Ek, we define

Inv(F ) :=
⋃

n∈N

{
R ⊆ En

k | R is invariant under every operation in F
}

.

Theorem 2.1 [8,14]. Let F be a set of operations over a finite set. It
holds that Pol(Inv(F )) = 〈F 〉.

Let τ be a relational signature. A τ -structure is a relational struc-
ture over the signature τ . Let A and B be two relational τ -structures.
A map h : A → B is a homomorphism if for every R ∈ τ

if (a1, . . . , an) ∈ RA, then (h(a1), . . . , h(an)) ∈ RB.

We denote by Hom(A, B) the set of all homomorphisms from A to B.
We also write A → B if there exists a homomorphism from A to B,
and we say that A and B are homomorphically equivalent if A → B and
B → A. An endomorphism of A is a homomorphism from A to A. An
isomorphism between A and B is a bijective homomorphism h such that
the mapping h−1 : B → A that sends h(x) to x is a homomorphism,
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too. An automorphism of A is an isomorphism between A and itself.
A finite structure A is called a core if every endomorphism of A is an
automorphism. We say that C is a core of A if C is a core and C is
homomorphically equivalent to A. It is well known that every finite
relational structure has a core which is unique up to isomorphism, thus
it makes sense to speak about the core of a relational structure.

In this article, we are going to consider polymorphism clones of
relational structures in addition to polymorphism clones of a set of
relations: we define Pol(A; Γ):= Pol(Γ). For n ≥ 1, we denote by A

n

the structure with the same signature τ as A whose domain is An

such that for every k-ary R ∈ τ , it holds that (a1, . . . ,ak) is con-
tained in RA

n

if and only if it is contained in RA componentwise,
i.e., (a1j , . . . , akj) ∈ RA for every 1 ≤ j ≤ n. Note that, equivalently,
Pol(A) =

⋃
n∈N

Hom(An, A).
A primitive positive formula over τ is a first-order formula which

only uses relation symbols in τ , equality, conjunction and existential
quantification. If A is a τ -structure and φ(x1, . . . , xn) is a τ -formula
with free-variables x1, . . . , xn, then {(a1, . . . , an) | A |= φ(a1, . . . , an)}
is called the relation defined by φ in A. In particular, if φ is primitive
positive, then this relation is said to be pp-definable in A. Given two
relational structures A and B on the same domain – but with possibly
different signatures – we say that A pp-defines B if every relation in B

is pp-definable in A.

Theorem 2.2 [8,14]. Let A be a finite relational structure. A relation R
has a pp-definition in A if and only if R ∈ Inv(Pol(A)).

It is well known that all clones of operations over a fixed set En

form an algebraic lattice Ln under set inclusion. The lattice operations
are defined as follows: C∧D:=C∩D and C∨D:=〈C∪D〉. The top-element
of Ln is the clone On, its bottom-element is the clone of all projections
over En, which we denote by Pn. A celebrated result, due to Post [23],
is the full description of L2. Janov and Mučnik [18] proved that Ln has
a continuum of elements, for every n ≥ 3.

Moreover, Theorem 2.2 underlines that pp-definability among re-
lational structures translates to inclusion of the correspondent polymor-
phism clones.

Theorem 2.3 [8,14]. Let A and B be structures on the same finite set
A. Then A pp-defines B if and only if Pol(A) ⊆ Pol(B).
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2.2. The pp-constructability poset

In this section we briefly introduce the pp-constructability poset – the
main object of study in this article. For this purpose, we first define the
notions of pp-constructability and minor homomorphism.

Let A and B be finite relational structures. We say that B is a
pp-power of A if it is isomorphic to a structure with domain An, for
some n ≥ 1, whose relations are pp-definable from A. Notice that a
k-ary relation on An is regarded as a kn-ary relation on A.

Definition 2.4. Let A and B be finite relational structures. We say that
A pp-constructs B, and write A ≤Con B, if B is homomorphically equiv-
alent to a pp-power of A. We also write A ≡Con B if A ≤Con B and
B ≤Con A.

The question that naturally arises now is how pp-constructability
among relational structures translates in terms of the correspondent
polymorphism clones: in particular, whether there is a Galois connection
that would lead us to a result of the same flavour of Corollary 2.3.

Definition 2.5. Let f be any n-ary operation, and let σ be a map from
En to Er. We denote by fσ the following r-ary operation

fσ(x0, . . . , xr−1):=f(xσ(0), . . . , xσ(n−1)).

Any operation of the form fσ, for some σ : Em → En, is called a minor
of f .

A minor identity is a formal expression of the form

∀x1, . . . , xr(f(xσ(0), . . . , xσ(n−1)) = g(xπ(0), . . . , xπ(m−1))),

where f and g are function symbols and σ : En → Er and π : Em → Er

are some maps; in this case we write fσ ≈ gπ. A minor condition is a
finite set of minor identities.

Definition 2.6. Let A and B be clones and let ξ : A → B be a mapping
that preserves arities. We say that ξ is a minor homomorphism if

ξ(fσ) = ξ(f)σ

for any n-ary operation f ∈ A and σ : En → Er.

We say that a set of operations F satisfies a minor condition Σ,
and write F |= Σ, if every function symbol in Σ can be mapped to an
operation in F such that, for every fσ ≈ gπ in Σ, the equality fF

σ = gF
π



Submaximal clones over a three-element set Page 7 of 31    22 

holds for every evaluation of the variables. Moreover, we say that an
operation f satisfies a minor condition Σ if {f} |= Σ.

Next we are going to define some examples of minor conditions,
which we will use in Section 3.

Definition 2.7. We define the following minor conditions:

• We call cyclic identity of arity p, for some p ≥ 2, the following
identity

c(x1, x2, . . . , xp) ≈ c(x2, . . . , xp, x1). (Σp)

• We call quasi minority the following minor condition:

m(x, y, y) ≈ m(y, x, y) ≈ m(y, y, x) ≈ m(x, x, x).

• We call quasi Mal’cev the following minor condition:

m(x, y, y) ≈ m(y, y, x) ≈ m(x, x, x). (ΣM)

• We call quasi majority the following minor condition:

m(x, y, y) ≈ m(y, x, y) ≈ m(y, y, x) ≈ m(y, y, y).

• We call n-ary symmetric condition the minor condition that con-
sists of all identities of the form

f(x1, x2, . . . , xn) ≈ f(xπ(1), xπ(2), . . . , xπ(n)), (FS(n))

where π is a permutation of the set {1, 2, . . . , n}.
• We call n-ary totally symmetric condition the minor condition that

consists of all identities of the form

f(xi1 , xi2 , . . . , xin
) ≈ f(xj1 , xj2 , . . . , xjn

), (TS(n))

whenever {i1, i2, . . . , in} = {j1, j2, . . . , jn}.
• We call n-ary generalized minority condition, where n ≥ 3 is odd,

the minor condition that consists of all the identities from FS(n)
and

f(x, x, x3, x4, . . . , xn) ≈ f(y, y, x3, x4, . . . , xn). (GM(n))

• We call weak near-unanimity condition of arity n ≥ 3 the following
minor condition

w(x, . . . , x, y) ≈ w(x, . . . , x, y, x) ≈ . . . ≈ w(y, x, . . . , x).
(WNU(n))
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• We call quasi near-unanimity condition of arity n ≥ 3 the follow-
ing minor condition

w(x, . . . , x, y) ≈ w(x, . . . , x, y, x) ≈
≈ . . . ≈ w(y, x, . . . , x) ≈ w(x, . . . , x). (QNU(n))

A k-ary operation f is a quasi Mal’cev operation if it satisfies the
minor condition ΣM; we adopt an analogous convention for all other con-
ditions introduced so far. A Mal’cev operation is an idempotent quasi
Mal’cev operation; we adopt a similar convention in defining a minority
operation, a generalized minority operation, a majority operation, and a
near-unanimity operation. If f is a totally symmetric operation of arity
n we also write f({x1, x2, . . . , xn}) instead of f(x1, x2, . . . , xn). Note
that every totally symmetric operation is symmetric. The other impli-
cation does not hold: the majority operation over {0, 1} is symmetric
but not totally symmetric. The multiplicity of variables plays a role in
the definition of a symmetric operation: as a matter of fact, f(x, x, y)
need not be equal to f(x, y, y).

In Remark 2.8 we show an example of a minor condition that is not
satisfied by the polymorphisms of a certain structure: the polymorphism
clone of a directed cycle of length p does not satisfy the cyclic identity
of arity p. This is an easy observation that will nevertheless come in
handy later in this article, more precisely, in the proof of Theorem 2.14.

Remark 2.8. Consider the relational structure Cp = (Ep;RCp), where

RCp :={(0, 1), . . . , (p − 2, p − 1), (p − 1, 0)}.

It is easy to see that, for every prime p, it holds that Pol(Cp) does
not satisfy the cyclic identity of arity p, i.e., Pol(Cp) �|= Σp. Indeed,
suppose that there exists a polymorphism f of Cp satisfying Σp, then

f(0, . . . , p − 1) = f(1, . . . , p − 1, 0) = a, for some a ∈ Ep.

It would follow that (a, a) ∈ RCp , a contradiction.

The connection between pp-constructability and minor homomor-
phisms is given by the following theorem.

Theorem 2.9 [3]. Let A, B be finite relational structures and A = Pol(A),
B = Pol(B). The following are equivalent:
(1) There exists a minor homomorphism from A to B;
(2) A pp-constructs B;
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(3) if A satisfies a minor condition Σ, then B |= Σ.

We would like to remark that, unfortunately, the latter theorem
does not yield a Galois connection for clones: Barto, Opršal, and Pinsker
also provide a semantic characterization of minor homomorphisms, by
introducing a new operator called reflection [3]. However, a reflection
of a clone need not contain projections or be closed under composition;
thus, the reflection of a clone is, in general, not a clone. What we obtain
by taking a reflection of a clone is known in the literature as minion;
they play a crucial role in Promise Constraint Satisfaction Problems
[2].

Corollary 2.10 [3]. Let A be a finite relational structure, let C be the core
of A and let C

c be the expansion of C by all unary relations {a}a∈C .
Then:
(1) A ≡Con C ≡Con C

c;
(2) for every minor condition Σ, Pol(A) |= Σ if and only if Pol(Cc) |=

Σ.

We write A �m B if there exists a minor homomorphism ξ : A → B,
and we denote by ≡m the equivalence relation where A ≡m B if A �m B
and B �m A. Note that A ⊆ B implies A �m B. Moreover, we denote
by A the ≡m-class of A, that is

A := {C | C is a clone over some finite set and C ≡m A}
and we write A �m B if and only if A �m B.

We finally define the following posets:

Pfin := ({C | C is a clone over a finite set};�m);

Pn := ({C | C is a clone over En};�m)

and call them the pp-constructability poset and the pp-constructability
poset restricted to clones over an n-element set, respectively. Note that
a full description of P2 was presented in [6], and this article entirely
focuses on P3.

A constant operation of arity n is an operation c(n) defined as
follows

c(n)(x1, . . . , xn) := c

where c ∈ Em, for some n,m ≥ 1; if n = 1, we simply write c to denote
the unary constant operation c(1). We want to remark that if C has a
constant operation c(n), for some n, then it has a constant operation for
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every arity. It is easy to show that 〈0〉 is the top-element of P3. Indeed,
for every clone over {0, 1, 2} the map that sends every n-ary operation
to 0(n) is minor-preserving.

2.3. The unique coatom

In this section we prove that both the posets Pfin and P3 have exactly
one coatom, – i.e., a unique maximal element – namely I2, that is, the
≡m-class of the clone of all idempotent operations over {0, 1}.

Let us define the following relational structures

C1 := ({0}; {(0, 0)});

In := (En; {0}, . . . , {n − 1}), for every n ≥ 2.

Proposition 2.11. For every finite relational structure A exactly one of
the following holds: either C1 ≤Con A or A ≤Con I2.

Proof. Let A be a relational structure and let B be its core expanded by
all unary relations. By Corollary 2.10 it holds that C1 pp-constructs A

if and only if C1 pp-constructs B and A pp-constructs I2 if and only if B

pp-constructs I2. Thus, we are going to prove the claim for B. Let B =
{b0, . . . , bn−1} be the domain of B. If n = 1, then it is straightforward
to see that C1 ≤Con B. Let us assume that n > 1, we need to show that
B ≤Con I2. Consider the pp-power S:=({b0, . . . , bn−1};O, I) of B, where
O and I are the unary relations defined by the formulae O(x):=(x = b0)
and I(x):=(x = b1), respectively. Let us define the maps g : S → I2 that
maps b0 to 0 and every other element to 1 and h : I2 → S that maps
0 to b0 and 1 to b1. It is straightforward to check that g and h are
homomorphisms. Thus I2 and S are homomorphically equivalent and B

pp-constructs I2. �

Note that, for every n ≥ 2, Pol(C1) �m Pol(In), since Pol(C1) sat-
isfies the minor identity f(x) ≈ f(y), while Pol(In) does not. Therefore,
for every n ≥ 2, the structure C1 does not pp-construct In.

Proposition 2.12. For every n ≥ 2 it holds that I2 ≡Con In.

Proof. First, we show that I2 ≤Con In. Consider the relational structure
S:=({0, 1}n; Φ0, . . . ,Φn−1) where each Φi is defined as follows:

Φi :=

⎧
⎨

⎩
(x0, . . . , xn−1) | (xi = 1) ∧

∧

j∈En\{i}
(xj = 0)

⎫
⎬

⎭
.
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Let us denote by ei ∈ {0, 1}n the tuple that has a 1 in the i-th coordi-
nate and 0 s elsewhere. The maps

g : i 	→ ei h : x 	→
{

i if x = ei,

0 otherwise.

are respectively homomorphisms from In to S and from S to In. This
proves that I2 ≤Con In. The other inclusion follows from Proposition 2.11
and the fact that C1 does not pp-construct In, which is observed in the
paragraph preceding Proposition 2.12. �

Let us denote Pol(In) by In, for every n ≥ 2. It follows from
Proposition 2.12 and Theorem 2.9 that I2 ≡m I3. Thus, I2 is the unique
coatom in P3. In Section 3 we classify all elements covered by I2 in P3.

2.4. Auxiliary theorems

Here, we present two results that are going to serve as auxiliary state-
ments in Section 3. We would like to point out that both of the state-
ments we present in this section are known in the literature. However,
in its original form, Theorem 2.13 is not formulated in terms of pp-
constructability. Similarly, although it is not found with this formulation
anywhere in the literature, Theorem 2.14 can be obtained with a little
work from Lemma 6.8 in [5]. We therefore prefer to include two relatively
simple and self-contained proofs with the aim of helping the reader. We
define the structure: B2:=({0, 1}; {0}, {1}, {(0, 1), (1, 0), (1, 1)}).

Theorem 2.13 [22, Proposition 7.7]. Let A be a finite structure. Then
A pp-constructs B2 if and only if Pol(A) does not satisfy ΣM.

Proof. Note that by Corollary 2.10 it is sufficient to prove the claim
for a core expanded by all unary relations; we therefore assume A to
be such a structure. Suppose that A pp-constructs B2 and that Pol(A)
satisfies ΣM. By Theorem 2.9 it follows that Pol(B2) |= ΣM. Hence,
there exists a ternary operation m ∈ Pol(B2) such that m(0, 1, 1) =
m(1, 1, 0) = m(0, 0, 0) = 0 (note that m must preserve {0}). Since m
is a polymorphism of B2, we obtain that (0, 0) is a tuple in a rela-
tion of B2, a contradiction. For the other direction, assume that Pol(A)
does not satisfy ΣM. Our goal is to build a pp-power C of A that is
homomorphically equivalent to B2. The domain of C is A|A|2 and the
elements of C can be interpreted as operations A2 → A. The structure
C has a binary relation RC and two unary relations {pr22} and {pr21};
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the relation RC is defined as the set of all pairs (f, g) such that there
exists a ternary operation w ∈ Pol(A) such that w(x, x, y) = f(x, y)
and w(y, x, x) = g(x, y).

Let us show that any s-ary operation u ∈ Pol(A) preserves RC.
Consider some tuples (f1, g1), . . . , (fs, gs) from RC. By definition, for
every i, there exists wi ∈ Pol(A) such that wi(x, x, y) = fi(x, y) and
wi(y, x, x) = gi(x, y). The operation u applied to the considered tuples
gives us the tuple (f, g) where

f(x, y) = u(f1(x, y), . . . , fs(x, y)), and

g(x, y) = u(g1(x, y), . . . , gs(x, y)).

Since f(x, y) = w(x, x, y) and g(x, y) = w(y, x, x) for

w(x, y, z) := u(w1(x, y, z), . . . , ws(x, y, z)),

we obtain that (f, g) is in RC. By Theorem 2.3, RC is pp-definable
over A. Since every u ∈ Pol(A) is idempotent, u preserves two unary
relations {pr22} and {pr21}; thus both {pr22} and {pr21} are pp-definable
over A.

It remains to define homomorphisms from B2 to C and back.
The homomorphism h : B2 → C maps 0 to pr22 and maps 1 to the
first projection pr21. Since all projections are in Pol(A) we have the
tuples (pr21,pr22), (pr21,pr21), and (pr22,pr21) in RC. Hence h is a homo-
morphism. The homomorphism h′ : C → B2 maps pr22 to 0 and all
the remaining values to 1. Note that the tuple (pr22,pr22) is not in
RC, otherwise there would exist an operation w ∈ Pol(A) such that
pr22(x, y) = w(x, x, y) = w(y, x, x) = pr22(y, y) = w(y, y, y); this cannot
hold since we assumed that Pol(A) does not satisfy ΣM. This proves
that h′ is a homomorphism. Thus, A ≤Con B2 as desired. �

Recall the relational structure Cp introduced in Remark 2.8.

Theorem 2.14 [5,27]. Let A be a finite structure. Then, for every prime
p, A pp-constructs Cp if and only if Pol(A) does not satisfy Σp.

Proof. Suppose that A pp-constructs Cp, for some prime p, and that
Pol(A) satisfies Σp; by Theorem 2.9 we obtain that Pol(Cp) satisfies
Σp, too. This would lead to a contradiction, as shown in Remark 2.8.
For the other direction, assume that Pol(A) does not satisfy the cyclic
identity Σp. Let us build a pp-power B of A which is homomorphically
equivalent to Cp. The domain of B is A|A|p and every element of the



Submaximal clones over a three-element set Page 13 of 31    22 

domain can be viewed as an operation Ap → A. The structure B has
only one binary relation RB which is defined as follows: it consists of all
pairs (f, g) such that f, g ∈ Pol(A) and g(x1, . . . , xp) = f(x2, . . . , xp, x1)
(here we interpret operations as tuples).

Let us partition all the operations of Pol(A) of arity p into equiv-
alence classes such that two operations are equivalent if one can be
obtained from another by a cyclic shift of the variables. Choose one
representative from each class and denote the obtained set of opera-
tions by F0. Let us define

Fi = {g | ∃f ∈ F0 : g(x1, . . . , xp) = f(xi, . . . , xp, x1, . . . , xi−1)}.

Thus, operations from Fi are obtained from operations from F0 by the
corresponding cyclic shift of the variables. If Fi ∩Fj �= ∅ for some i �= j,
then there is an operation that stays the same after some cyclic shift of
the variables. Since p is prime, we derive that this operation is cyclic,
which contradicts our assumption.

Thus, we assume that Fi ∩ Fj = ∅ whenever i �= j. Let us
show that any operation w ∈ Pol(A) preserves RB. Consider tuples
(f1, g1), . . . , (fs, gs) from RB. Then w applied to these tuples gives us
the pair (f, g), where

f(x1, . . . , xp) = w(f1(x1, . . . , xp), . . . , fs(x1, . . . , xp)), and

g(x1, . . . , xp) = w(g1(x1, . . . , xp), . . . , gs(x1, . . . , xp)).

Hence, f and g are from Pol(A). Moreover, it holds that g(x1, . . . , xp) =
f(x2, . . . , xp, x1). Thus, we showed that w preserves RB. By Theorem
2.3, RB is pp-definable over A. Thus, we proved that B is a pp-power of
A.

It remains to show that B and Cp are homomorphically equivalent.
The homomorphism h : B → Cp just sends operations from Fi to i, for
every i. To define the homomorphism h′ : Cp → B we just choose some
operation f0 ∈ F0, then consider all its cyclic shifts fi ∈ Fi. Then h′

sends each i to fi. Thus, A pp-constructs Cp. �
We would like to mention that the proofs in this section can be

considered rather standard, since in the literature the auxiliary struc-
tures that we define in Theorems 2.13 and 2.14 – denoted by C and B,
respectively – are known as the free structure of Pol(A) generated by
B2 and the free structure of Pol(A) generated by Cp, respectively. To
keep the proofs simple and self-contained we refrain from defining free
structures and refer the interested reader to [2].



   22 Page 14 of 31 A. Vucaj and D. Zhuk Algebra Univers.

3. Submaximal elements of P3

In this section we prove that C2, C3, and B2 are the only submaximal
elements of P3. In particular, we show that if S is an idempotent clone
over {0, 1, 2} such that

S �m C2, S �m C3, and S �m B2 (♠)

then there exists a minor homomorphism from I2 to S, i.e., I2 �m S. In
order to prove this, we show that every idempotent clone over E3 satis-
fying (♠) has a generalized minority of arity k, for every odd k ≥ 3 – we
are going to define such operations in Section 3.1 – and a totally sym-
metric operation of arity n, for every n ≥ 2. Recall that we say that an
n-ary operation f is totally symmetric if it satisfies the condition TS(n)
from Definition 2.7. Also, note that we can reduce to the case where
we only consider idempotent clones: in fact, every clone S = Pol(S)
is minor-equivalent to some idempotent clone, that is, S ≡m Pol(S′)
where S

′ is the core of S expanded by all unary relations (see Corol-
lary 2.10). As a first step, we want to prove that every idempotent clone
S over E3 satisfying (♠) has a majority operation. For this purpose, we
introduce some more notions and terminology concerning relations. In
particular, we are going to consider essential and critical relations.

Definition 3.1. Let R be an n-ary relation on a finite set A. We say that
• R is an essential relation if it cannot be represented by a quantifier-

free conjunctive formula over relations of smaller arities. Moreover,
a tuple (a1, . . . , an) ∈ An\R is essential for R if for every i ∈
{1, . . . , n} there exists b such that

(a1, . . . , ai−1, b, ai+1, . . . , an) ∈ R.

We denote by Ess(R) the set of all essential tuples for R. It is not
hard to see that a relation has an essential tuple if and only if it
is essential [24,25].

• R is critical if it is essential and there do not exist relations
R1, . . . , Rm pp-definable from R and different from R such that
R = R1 ∩ · · · ∩ Rm.

Notice that originally in [19] a critical relation was defined to be
a directly indecomposable and completely ∩-irreducible relation in a
relational clone; our definition of critical relation relates to the original
one as follows: a relation is critical if and only if it is critical – in the
sense of [19] – in the relational clone generated by the relation. As it
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was shown in [26], every critical relation has internal symmetries, and
relations having these symmetries are called key relations. Thus, every
critical relation is a key relation (see [26], Lemma 2.4). In this section we
will use a classification of key relations preserved by a weak unanimity
operation from [26] but to avoid additional notations we formulate it
for critical relations.

To formulate the classification we will need the notion of block
of a relation R over a finite domain A. We denote by R̃ the relation
R ∪ Ess(R). Again following [26], we define a graph GR̃:=(R̃;E) as
follows: if a, b ∈ R̃ ⊆ An, then we have (a, b) ∈ E if and only if a and
b differ just in one element, i.e., there exists a unique i ∈ {1, . . . , n}
such that ai �= bi. A block of R is a connected component of GR̃. A
block is called trivial if it only contains tuples from R.

Theorem 3.2 (c.f. [26, Theorem 3.11]). Let R be a critical relation of
arity n ≥ 3, preserved by a Mal’cev operation. Then

• Every block of R equals B1 × · · · × Bn, for some B1, . . . , Bn ⊆ A.
• For every nontrivial block B:=B1 × · · · × Bn of R, the intersec-
tion R ∩B can be defined as follows: there exists an abelian group
(G; +,−, 0) whose order is a power of a prime, and surjective map-
pings φi : Bi → G, for i = 1, 2, . . . , n such that

R ∩ B = {(x1, . . . , xn) | φ1(x1) + φ2(x2) + . . . + φn(xn) = 0}.

Theorem 3.3 [1]. Let C be an idempotent clone over a finite set. Then,
for every k ≥ 2, the following are equivalent:

• C has a near-unanimity operation of arity k + 1;
• every (k + 1)-ary relation in Inv(C) can be obtained as a conjunc-
tion of relations of arity k in Inv(C).

We want to remark that, if an idempotent clone C does not have a
near-unanimity operation of arity k, then Inv(C) has an essential rela-
tion R of arity k. Furthermore, this essential relation can be represented
as a conjunction of critical relations and the arity of at least one of them
should also be k. Thus, every clone C not having a near-unanimity op-
eration of arity k preserves a critical relation of arity k.

Lemma 3.4. Let C be an idempotent clone over En, for some n ≥ 2,
such that
(1) C |= Σp, for every prime p ≤ n, and
(2) C |= ΣM, i.e., C has a Mal’cev operation.
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Then C has a majority operation.

Proof. Let C be a clone satisfying all the hypotheses and suppose that
C does not have a ternary near-unanimity operation, i.e., a majority
operation. Then by Theorem 3.3 we have that Inv(C) has a critical
relation R of arity k ≥ 3. Therefore, by Theorem 3.2, for every nontrivial
block B of R, there exists an abelian group G = (G,+,−, 0) whose order
� ≤ n is the power of some prime and surjective mappings φi : Bi → G,
for i = 1, 2, . . . , k such that R ∩ B = {(x1, . . . , xk) | φ1(x1) + φ2(x2) +
. . . + φk(xk) = 0}.

Let us show that the relation R cannot be preserved by a cyclic
operation cp of arity p, where p divides �. Choose a mapping ψi : G →
Bi, for every i, such that φi(ψi(x)) = x, for every x ∈ G. Let a be an
element in G of order p. Notice, that

B1(x1) = ∃x2 . . . ∃xk

k∧

i=2

R(x1, ψ2(0), . . . , ψi−1(0), xi, ψi+1(0), . . . , ψk(0)),

which means that B1 is pp-definable from R and constants. Combining
this with the idempotency of C we derive that the cyclic operation
cp preserves B1. Similarly, we show that cp preserves Bi, for every i.
Applying cp to the rows of the matrices

⎛

⎜
⎜
⎜
⎜
⎜
⎝

ψ1(0) ψ1(a) ψ1(2a) . . . ψ1((p − 1)a)
ψ2(0) ψ2(−a) ψ2(−2a) . . . ψ2(−(p − 1)a)
ψ3(0) ψ3(0) ψ3(0) . . . ψ3(0)

...
...

...
. . .

...
ψk(0) ψk(0) ψk(0) . . . ψk(0)

⎞

⎟
⎟
⎟
⎟
⎟
⎠

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

ψ1(0) ψ1(a) . . . ψ1((p − 2)a) ψ1((p − 1)a)
ψ2(−a) ψ2(−2a) . . . ψ2(−(p − 1)a) ψ2(0)
ψ3(a) ψ3(a) . . . ψ3(a) ψ3(a)
ψ4(0) ψ4(0) . . . ψ4(0) ψ4(0)

...
...

...
...

...
ψk(0) ψk(0) . . . ψk(0) ψk(0)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

we get respectively the tuples

(c, d, ψ3(0), ψ4(0), . . . , ψk(0)), and

(c, d, ψ3(a), ψ4(0), . . . , ψk(0))
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from R∩B, which contradicts the definition of R∩B. This contradiction
proves that such a relation R cannot exist in Inv(C), thus C has a
majority operation. �

Remark 3.5. The result presented in Lemma 3.4 can be alternatively
proved using an argument coming from Tame Congruence Theory (see
[16]). One can show that, assuming the same hypotheses as in Lemma 3.4,
a sufficient condition for the existence of a majority operation provided
in [15] holds.

Corollary 3.6. Let S be an idempotent clone over E3 such that S �m C2,
S �m C3, and S �m B2. Then S has a symmetric majority operation.

Proof. From Theorem 2.13 it follows that S has a Mal’cev operation,
and from Theorem 2.14 it follows that there exist c2, c3 ∈ C such that
c2 |= Σ2 and c3 |= Σ3. Thus, it follows from Lemma 3.4 that S has a
majority operation M ′. We define the operation M as follows:

M(x, y, z):= c2(c3(M ′(x, y, z),M ′(y, z, x),M ′(z, x, y)),

c3(M ′(x, z, y),M ′(z, y, x),M ′(y, x, z))). (♥)

It is easy to check that M is a symmetric majority operation. �

Lemma 3.7. Let S be an idempotent clone over E3 such that S �m C2,
S �m C3, and S �m B2. Then S has a symmetric minority operation.

Proof. Let S be as in the hypothesis. It follows from Theorem 2.13 that
S has a Mal’cev operation d. Also, from Corollary 3.6 we know that S
has a majority operation M . We define m′

3 as follows:

m′
3(x, y, z):= M(d(x, y, z), d(y, z, x), d(z, x, y)).

It is easy to check that m′
3 is indeed a minority operation: note that,

since d is a Mal’cev operation, whenever we identify two variables in
m′

3 at least two of the values among d(x, y, z), d(y, z, x), and d(z, x, y)
are equal to the variable that occurs only once. Hence, applying M we
obtain this variable, again. Furthermore, it follows from Theorem 2.14
that S has a binary cyclic operation c2 and a ternary cyclic operation c3.
We then define a symmetric minority m3 in the same way we obtained a
symmetric majority in Corollary 3.6: we simply replace every occurrence
of M in (♥) by m3. �
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Remark 3.8. Note that the value of a symmetric minority m3(x, y, z)
has to be a constant c ∈ {0, 1, 2} whenever the three values in the scope
of m3 are all distinct, i.e.,

m3(0, 1, 2) = m3(0, 2, 1) = m3(1, 0, 2) =

= m3(1, 2, 0) = m3(2, 0, 1) =

= m3(2, 1, 0) = c.

In this case we also denote the symmetric minority operation by mc
3.

We follow the same convention for symmetric majority operations.

3.1. Generalized minority operations

Recall that a generalized minority of arity n is an n-ary operation sat-
isfying the minor condition GM(n) from Definition 2.7. If a generalized
minority mn is idempotent and only ai occurs an odd number of times
in the tuple (a1, . . . , an), then mn(a1, . . . , an) = ai. Moreover, if mn is
a generalized minority on E3, then mn(a1, . . . , an) returns a constant
c ∈ E3 on all the other tuples, that is on the tuples containing an odd
number of each element from E3.

Note that the minority operation m3(x, y, z) = x ⊕ y ⊕ z on the
set E2 = {0, 1} is indeed a generalized minority of arity 3. Also note
that if a clone C over {0, 1} contains the minority operation m3(x, y, z)
then, for every n ≥ 2, the generalized minority

m2n+1(x1, . . . , x2n+1) := m3(m2n−1(x1, . . . , x2n−1), x2n, x2n+1)
= x1 ⊕ x2 ⊕ . . . ⊕ x2n+1

is also in C. We prove an analogous result for the three-element case:
we show that every clone S over E3 satisfying condition (♠) has a
generalized minority of every odd arity. Recall that Theorem 3.7 implies
that S has a symmetric minority operation mc

3 where c ∈ {0, 1, 2} is
some constant value that mc

3(x, y, z) returns whenever |{x, y, z}| = 3,
see Remark 3.8. We denote by +3 the addition of the group of integers
modulo 3 and define the following auxiliary operation

Dc(x, y, z) :=

⎧
⎪⎨

⎪⎩

c+3 1 if (x, y, z) ∈ {(c+3 2, c, c+3 1), (c+3 2, c+3 1, c)},
c+3 2 if (x, y, z) ∈ {(c+3 1, c, c+3 2), (c+3 1, c+3 2, c)},
x otherwise.

(♦)
Note that Dc(x, y, z) = mc

3(m
c
3(x, y, z), y, z), hence Dc(x, y, z) ∈ S.
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Theorem 3.9. Let S be an idempotent clone over E3 such that S �m C2,
S �m C3, and S �m B2. Then S has generalized minorities of arity k
for every odd k ≥ 3.

Proof. From Lemma 3.7 we know that S has a symmetric minority
operation mc

3; let Dc the operation defined as in (♦). For every n ≥ 2,
we define the operation

mc
2n+1(x1, . . . , x2n+1) := mc

3(t2n+1(x1, x2, x3, x4, . . . , x2n+1),

t2n+1(x2, x1, x3, x4, . . . , x2n+1),

t2n+1(x3, x1, x2, x4, . . . , x2n+1))

where

t2n+1(x1, . . . , x2n+1) := mc
3(D

c(mc
2n−1(x1, x4, x5, . . . , x2n+1), x1, x1),

Dc(mc
2n−1(x1, x4, x5, . . . , x2n+1), x1, x2),

Dc(mc
2n−1(x1, x4, x5, . . . , x2n+1), x1, x3)).

Note that the first argument of mc
3 in the latter formula is always equal

to mc
2n−1(x1, x4, x5, . . . , x2n+1) however, for the sake of symmetry, we

instead prefer to write Dc(mc
2n−1(x1, x4, x5, . . . , x2n+1), x1, x1) in the

definition.
We are going to prove the claim of the theorem by induction over

n. Let us first make a few remarks on the symmetries of mc
2n+1 in order

to make the formula more digestible for the reader. As an inductive
hypothesis we assume that mc

2n−1 is a generalized minority. It follows
from the symmetry of mc

2n−1 that t2n+1 is invariant under any permuta-
tion of the variables x4, . . . , x2n+1. Hence mc

2n+1 is also invariant under
any permutation of the variables x4, . . . , x2n+1. Since mc

3 is symmetric,
t2n+1 is invariant under permutation of x2 and x3 and therefore mc

2n+1

is invariant under any permutation of the variables x1, x2, and x3. No-
tice that mc

1(x) := x. Moreover, since mc
2n−1 is a generalized minority,

it holds

mc
2n−1(x1, x2, . . . , x2n−3, x, x) = mc

2n−3(x1, x2, . . . , x2n−3),

thus, we obtain that

t2n+1(x1, x2, . . . , x2n−1, x, x) = t2n−1(x1, x2, . . . , x2n−1),

and therefore mc
2n+1(x1, x2, . . . , x2n−1, x, x) = mc

2n−1(x1, x2, . . . , x2n−1).
Combining this with the symmetry of mc

2n+1 over permutation
of the last 2n − 2 coordinates, we obtain that mc

2n+1 behaves as a
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generalized minority for all the tuples having repetitive elements in
x4, . . . , x2n+1. Thus, if n ≥ 3 then 2n + 1 − 3 > 3 and mc

2n+1 is a
generalized minority.

Let us check how the identification of variables transforms mc
5.

mc
5(x1, x, x, x4, x5) = mc

3

(
t5(x1, x, x, x4, x5), (	1)

t5(x, x1, x, x4, x5),

t5(x, x1, x, x4, x5)
)

= t5(x1, x, x, x4, x5)

= mc
3(D

c(mc
3(x1, x4, x5), x1, x1),

Dc(mc
3(x1, x4, x5), x1, x),

Dc(mc
3(x1, x4, x5), x1, x))

= Dc(mc
3(x1, x4, x5), x1, x1)

= mc
3(x1, x4, x5)

This proves that mc
5 behaves well on all the tuples having repetitive

elements in the first 3 coordinates. It only remains to consider the
case when there are no repeated elements in the first three compo-
nents and no repeated elements in the last two components of mc

5.
By making use of the known symmetries, it suffices to verify that
mc

5(x1, x2, x3, x1, x2) = x3.

t5(x1, x2, x3, x1, x2) = mc
3

(
Dc(mc

3(x1, x1, x2), x1, x1),

Dc(mc
3(x1, x1, x2), x1, x2),

Dc(mc
3(x1, x1, x2), x1, x3)

)

= mc
3(x2, x2,D

c(x2, x1, x3)) = Dc(x2, x1, x3);

t5(x1, x2, x3, x2, x3) = mc
3(D

c(mc
3(x1, x2, x3), x1, x1),

Dc(mc
3(x1, x2, x3), x1, x2),

Dc(mc
3(x1, x2, x3), x1, x3)) = mc

3(x1, x2, x3).

We check the last equality as follows. If |{x, y, z}| < 3, then Dc(x, y, z) =
x. Hence if |{x1, x2, x3}| < 3, then Dc(mc

3(x1, x2, x3), x1, x3) = mc
3(x1,

x2, x3). Otherwise, if |{x1, x2, x3}| = 3, then mc
3(x1, x2, x3) = c and,

since Dc returns c whenever the first coordinate is c, we get the equal-
ity.
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Finally, we obtain the following equation

mc
5(x1, x2, x3, x1, x2) = mc

3

(
t5(x1, x2, x3, x1, x2), (	2)

t5(x2, x1, x3, x1, x2),

t5(x3, x1, x2, x1, x2)
)

= mc
3

(
Dc(x2, x1, x3),

Dc(x1, x2, x3),

mc
3(x1, x2, x3)

)
= x3.

The equation (	2) above can be checked manually. If {x1, x2, x3} �=
{0, 1, 2}, then it again follows from the fact that mc

3 is the minority and
Dc is the first projection on every 2-element subset.

If {x1, x2, x3} = {0, 1, 2} and x3 = c, then

mc
3(D

c(x2, x1, x3),Dc(x1, x2, x3),mc
3(x1, x2, x3)) = mc

3(x1, x2, c) = c.

If {x1, x2, x3} = {0, 1, 2} and x1 = c, then

mc
3(D

c(x2, x1, x3),Dc(x1, x2, x3),mc
3(x1, x2, x3)) = mc

3(x3, c, c) = x3.

Similarly, if {x1, x2, x3} = {0, 1, 2} and x2 = c, then

mc
3(D

c(x2, x1, x3),Dc(x1, x2, x3),mc
3(x1, x2, x3)) = mc

3(c, x3, c) = x3.

The equations (	1) and (	2) imply that mc
5 is a generalized minor-

ity. �

3.2. Totally symmetric operations of every arity

Here we prove that every idempotent clone S over E3 satisfying the
condition (♠) has totally symmetric operations of every arity n ≥ 2
(see Definition 2.7).

Theorem 3.10. Let S be an idempotent clone over E3 such that S �m C2,
S �m C3, and S �m B2. Then S has a totally symmetric operation sn

of arity n, for every n ≥ 2.

Proof. From Corollary 3.6 and Lemma 3.7 it follows that S has a sym-
metric majority operation M c and a symmetric minority operation m,
respectively. Also, from Theorem 2.14 it follows that there exists a bi-
nary cyclic operation s2 ∈ S, thus S |= TS(2). For every n ≥ 3 we
define:
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sn(x1, . . . , xn) := m(sn−1(x1,M
c(x1, x2, x3), x4, . . . , xn),

sn−1(x2,M
c(x1, x2, x3), x4, . . . , xn),

sn−1(x3,M
c(x1, x2, x3), x4, . . . , xn)).

We will prove by induction on n ≥ 2 that

(i) if {x1, . . . , xn} = {a, b} ⊂ {0, 1, 2}, then sn(x1, . . . , xn) = s2(a, b);
(ii) if {x1, . . . , xn} = {0, 1, 2}, then

sn(x1, . . . , xn) = m(s2(0, c), s2(1, c), s2(2, c)).

For n = 2 this is obvious. Notice that, for every n ≥ 3,

sn(x, x, x3, x4, . . . , xn) := m(sn−1(x,M c(x, x, x3), x4, . . . , xn),

sn−1(x,M c(x, x, x3), x4, . . . , xn),

sn−1(x3,M
c(x, x, x3), x4, . . . , xn))

= sn−1(x3, x, x4, . . . , xn)

Hence, by the inductive assumption we have the required properties (i)
and (ii) on all tuples whose first two elements are equal. Since the opera-
tions M c and m are symmetric, sn is symmetric under any permutation
of the first 3 variables. Therefore, the property (i) always holds and the
property (ii) holds on all tuples such that the first three elements are
not different.

Let us prove the property (ii) on all tuples (x1, x2, . . . , xn) such
that {x1, x2, x3} = {0, 1, 2}. For s3 it immediately follows from the
definition. To prove this for n > 3 consider 3 cases.

Case 1. If {x4, . . . , xn} = {a} ⊂ {0, 1, 2} then

sn(x1, . . . , xn) = m(sn−1(x1, c, a, . . . , a),

sn−1(x2, c, a, . . . , a),

sn−1(x3, c, a, . . . , a))
�= m(sn−1(0, c, a, . . . , a), (•1)

sn−1(1, c, a, . . . , a),

sn−1(2, c, a, . . . , a)).

The equality �= holds because m is symmetric. In case a = c, we obtain,
by the induction hypothesis, that

sn(x1, . . . , xn) = m(s2(0, c), s2(1, c), s2(2, c)).
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If a �= c, then in (•1) we have an argument of the form sn−1(a, c, a, . . . , a),
one of the form sn−1(c, c, a, . . . , a), and one where 0,1, and 2 occur.
Therefore, by property (i) of the induction hypothesis we get sn−1

(a, c, a, . . . , a) = s2(a, c) and sn−1(c, c, a, . . . , a) = s2(a, c). Moreover,
by properties of m, we get

sn(x1, . . . , xn) = m(s2(a, c), s2(a, c), s3(0, 1, 2)) = s3(0, 1, 2).

Case 2. If {x4, . . . , xn} = {a, b} ⊂ {0, 1, 2} then, by using the fact
that sn−1 and m are symmetric, we get

sn(x1, . . . , xn) = m(sn−1(0, c, a, . . . , a, b, . . . , b), (•2)
sn−1(1, c, a, . . . , a, b, . . . , b),

sn−1(2, c, a, . . . , a, b, . . . , b)).

If c /∈ {a, b} then each argument of m in the latter formula is equal to
s3(0, 1, 2), by the induction hypothesis. Otherwise, if c ∈ {a, b} then in
(•2) we have an argument of the form sn−1(a, . . . , a, b, . . . , b), one of the
form sn−1(b, a, . . . , a, b . . . , b), and one where 0, 1, and 2 occur. By the
induction hypothesis, we get

sn(x1, . . . , xn) = m(s2(a, b), s2(a, b), s3(0, 1, 2)).

Case 3. If {x4, . . . , xn} = {0, 1, 2}, then, by the symmetry of m
and sn−1, we have

sn(σ(x1), . . . , σ(xn)) = m(sn−1(0, c, 0, . . . , 0, 1, . . . , 1, 2 . . . , 2), (•3)
sn−1(1, c, 0, . . . , 0, 1, . . . , 1, 2 . . . , 2),

sn−1(2, c, 0, . . . , 0, 1, . . . , 1, 2 . . . , 2))

It follows, by the the induction hypothesis, that each argument of m in
(•3) is equal to s3(0, 1, 2); hence, we obtain sn(x1, . . . , xn) = s3(0, 1, 2).
This concludes the proof. �

3.3. The main result

In Section 2.3 we proved that I2 is the unique coatom in P3. Here
we prove that, whenever a clone has totally symmetric operations and
generalized minorities of an arbitrary large arity, there exists a minor
homomorphism from I2 to this clone. Combining this with the results
of the previous sections we derive the main result of our paper: C2, C3,
and B2 are the only submaximal elements in P3.

It is well known that every operation over {0, 1} has a unique poly-
nomial representation if we forbid repetitive monomials and disrespect
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the order of monomials. Applying this fact to idempotent operations
from I2 we obtain the following lemma, in which operations ⊕ and ∧
denote the usual sum and multiplication modulo 2, respectively.

Lemma 3.11. For every operation f ∈ I2 there exists an up to the order
of monomials unique representation of the form f(x1, . . . , xn):=

⊕�
i=1∧

Wi, where � is odd and the sets W1, . . . , Wl ⊆ {x1, . . . , xn} are dif-
ferent and nonempty.

Proof. It is sufficient to check that every polynomial preserving {0}
does not have the constant 1 as a monomial, and that every polynomial
preserving {1} has an odd number of monomials. �

Theorem 3.12. Let S be a clone over Ek, for some k ≥ 2, such that
• S |= TS(n), for every n ≥ 2, and
• S |= GM(n), for every odd n ≥ 3.

Then there exists a minor homomorphism from I2 to S.
Proof. Let f be any operation in I2. Notice that the identification of
two variables of a totally symmetric operation of arity n gives a totally
symmetric operation of a smaller arity. Similarly, the identification of
three variables of a generalized minority gives a generalized minority of
a smaller arity. Then by König’s lemma there exist an infinite sequence
of totally symmetric operations s2, s3, s4, . . . , and an infinite sequence
of generalized minorities m3,m5,m7, . . . , such that sn and mn are of
arity n for every n, and they are compatible in the following sense. The
identification of two variables of sn gives sn−1 and the identification of
three variables of m2k+1 gives m2k−1.

By Lemma 3.11 there exists an up to permutation of monomials
unique representation f(x1, . . . , xk) =

⊕�
i=1

∧
Wi, where � is odd and

the sets W1, . . . , Wl ⊆ {x1, . . . , xn} are different. Notice that, for every
i ≥ 2, the operation si only depends on the set of variables occurring
in it, i.e., the order of the variables and their multiplicity can be ig-
nored. Thus, we write s|Wi|(Wi) to stress this fact; moreover, we set
s1({x}):=x, for every x ∈ {x1, . . . , xk}. We define the map ξ : I2 → S
as follows

ξ :

(
�⊕

i=1

∧
Wi

)

	→ m�

(
s|W1|(W1), . . . , s|W�|(W�)

)
.

Since m� is symmetric, the map ξ is well defined.
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Note that both the operation ⊕ and m� only depend on the parity
of the elements occurring among their arguments.

Let π : {1, . . . , k} → {1, . . . , r} be a map. By first applying ξ we
obtain m�

(
s|W1|(W1), . . . , s|W�|(W�)

)
and then, via π, we obtain

m�

(
s|W π

1 |(Wπ
1 ), . . . , s|W π

� |(Wπ
� )

)
, where Wπ

i :={xπ(j) | xj ∈ Wi}.

Let {U1, . . . , Ut} be the set of all different subsets in {Wπ
1 , . . . , Wπ

� }.
Without loss of generality we assume that Ui appears an odd number
of times in Wπ

1 , . . . , Wπ
� for i ∈ {1, 2 . . . , d} and Ui appears an even

number of times in Wπ
1 , . . . , Wπ

� for i ∈ {d + 1, d + 2 . . . , t}. Then using
properties of m� we have

m�

(
s|W π

1 |(Wπ
1 ), . . . , s|W π

� |(Wπ
� )

)
= md

(
s|U1|(U1), . . . , s|Ud|(Ud)

)
.

On the other side, if we first apply π, we get
⊕�

i=1

∧
Wπ

i =
⊕d

i=1

∧
Ui. Since all the monomials in

⊕d
i=1

∧
Ui are different, ξ ap-

plied to it gives us md

(
s|U1|(U1), . . . , s|Ud|(Ud)

)
, which is exactly what

we need. �
Corollary 3.13. Let S be an idempotent clone over E3 such that S �m C2,
S �m C3, and S �m B2. There is a minor homomorphism from I2 to
S.
Proof. From Theorem 3.9 we know that S has a generalized minority
m�, for every odd number � ≥ 3. Moreover, from Theorem 3.10 it follows
that S has a totally symmetric operation sn of arity n, for every n ≥ 2.
Thus, the claim follow from Theorem 3.12. �

4. Conclusion

The results presented in this article together with the work from [7]
give hope that a complete description of P3 might be achievable. We
conclude this article by stating three open problems, with the aim of
suggesting a path leading to a full description of P3.

Problem 4.1. Find all the atoms of P3. Is every atom of P3 of the form
C, for some finitely related clone C?

Note that a positive solution to Problem 4.1 would provide a con-
crete list of the hardest tractable CSPs over {0, 1, 2}, refining [10].

By Corollary 3.13 it immediately follows that C2, C3, and B2 are
exactly the submaximal elements of P3. Furthermore, in order to prove
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that P3 has at most countably infinite many elements, we can even
focus only on those clones for which there exists a minor homomor-
phism to B2. Indeed, we prove that every clone C over a finite set has a
Mal’cev operation (Theorem 2.13) if and only if there is no minor ho-
momorphism from C to B2 and Bulatov [9] proved that there are only
finitely many clones over {0, 1, 2} containing a Mal’cev operation.

Problem 4.2. Find all elements of P3 that are below C2.

It follows from Theorems 3.13 and 2.13 that all clones over {0, 1, 2}
with a Mal’cev operation are below C2 or C3 in P3. Since all the elements
of P3 which are below C3 were found in [7], in order to solve Problem 4.2,
we have to consider all clones over {0, 1, 2} with a Mal’cev operation
and a cyclic operation of arity 3, and order them with respect to �m.

Problem 4.3. Find all elements of P3 that are below B2.

We would like to emphasise that, out of the three problems pro-
posed in this section, Problem 4.3 is the more challenging one as, a
priori, there might exist continuum many elements below B2.

An alternative direction that this research strand can take is to in-
vestigate whether Corollary 3.13 can be generalized to domains strictly
larger than three. More precisely, one could ask if the following holds:
for every n > 3, if S is an idempotent clone over En such that, for every
prime p ≤ n, it holds that S �m Cp and S �m B2, then there exists a
minor homomorphism from I2 to S. The latter statement was proved
to be true if we only consider polymorphism clones of finite directed
graphs [4].

However, there is a structure in the literature that proves the
statement to be false in general. Carvalho and Krokhin [11] – for dif-
ferent purposes – presented a structure K with 21 elements that has
cyclic polymorphisms of all arities, a Mal’cev polymorphism, and that
does not have any symmetric polymorphism of arity 5. Note that, from
Theorem 2.14 and Pol(K) |= Σp for every prime p, it follows that
Pol(K) �m Cp. Moreover, it follows from Pol(K) |= ΣM and Theo-
rem 2.13 that Pol(K) �m B2. However, we have that I2 �m Pol(K),
since I2 |= FS(5) while Pol(K) �|= FS(5).

For the sake of full disclosure, the structure K is defined as follows:
K:=(K;R,S), where K = {0, 1, 2, . . . , 9, 10, a, b, c, d, e, f, g, h, i, j}, and
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Figure 1. The structure K := (K;R,S)

R and S are binary relations that are the graphs of the following per-
mutations r and s, respectively (see Figure 1),

r = (0 1 2)(5 6 7)(8 9 10)(e b a)(d g i)(f h c),

s = (1 4)(2 3)(5 6)(7 8)(j e)(b c)(a d)(i f).

In the light of this, we conclude this article with the following
conjecture.

Conjecture 4.4. Let S be a clone over Ek, for some k ≥ 2, such that
• S satisfies TS(n), for every n ≥ 2, and
• S satisfies ΣM.

Then there exists a minor homomorphism from I2 to S.
Note that Conjecture 4.4 implies Theorem 3.12: indeed, the as-

sumption of having a quasi Mal’cev operation is a strictly weaker as-
sumption than that of requiring the existence of a generalized minority
of every odd arity.
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