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Submaximal clones over a three-element
set up to minor-equivalence

Albert Vucaj and Dmitriy Zhuk

Abstract. We study clones modulo minor homomorphisms, which
are mappings from one clone to another preserving arities of oper-
ations and respecting permutation and identification of variables.
Minor-equivalent clones satisfy the same sets of identities of the
form f(zi1,...,2n) = g(y1,...,Ym), also known as minor identi-
ties, and therefore share many algebraic properties. Moreover, it
was proved that the complexity of the CSP of a finite structure A
only depends on the set of minor identities satisfied by the poly-
morphism clone of A. In this article we consider the poset that
arises by considering all clones over a three-element set with the
following order: we write C =< D if there exists a minor homo-
morphism from C to D. We show that the aforementioned poset
has only three submaximal elements.
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1. Introduction

In 1959 Janov and Muc¢nik [18] proved that there exists a continuum of
clones over a k-element set, for every k > 3. Thus, the goal to achieve
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a classification & la Post [23] for clones over a three-element set seemed
to falter. Subsequently, researchers in universal algebra focused on un-
derstanding particular aspects of clone lattices on finite domains. As
far as concerns clones over {0,1,2}, remarkable results in this direc-
tion are the description of all mazimal clones [17] and of all minimal
clones [12]. Moreover, it turned out that all the aforementioned maxi-
mal clones, with the sole exception of the clone of all linear operations,
contain a continuum of subclones [13,20]. More recently, a complete
description of all clones of self-dual operations over a three-element set
was provided [25]. Note that this is a remarkable result since the clone
of all self-dual operations, which we denote by Cs, is one of the maximal
clones over {0, 1,2}; thus Cs is the first maximal clone besides the clone
of all linear operations that has such description. In particular, C3 is
the only maximal clone which has a full description of all its subclones,
despite having continuum many of them. Another result that seems to
be a setback in the research-line aimed at describing the entire lattice
of clones over {0, 1,2} is the following: it is undecidable whether a given
clone over a finite domain is finitely related [21].

One might still hope to classify all operation clones over finite sets
up to some equivalence relation so that equivalent clones share many of
the properties that are of interest in universal algebra. Recently, Barto,
Oprsal, and Pinsker [3] introduced a weakening of the notion of clone
homomorphism on the class of clones over a finite set, known in the
literature as minor homomorphism. We write C <y, D if there exist a
minor homomorphism from C to D, that is, a map preserving arities
and taking minors, where a minor of an operation f is an operation
obtain from f by permuting its variables, identifying variables, or by
adding dummy variables (see Definitions 2.5 and 2.6). Moreover, we
write C =, D if C <, D and D =<, C and say that C and D are
minor-equivalent; by C we denote the =,-class of C, i.e., the class of
all clones over some finite set which are minor-equivalent to C. The
relation =<, is a reflexive and transitive relation on the class of clones
over a finite set, hence =, is indeed an equivalence relation, thereby
making the use of these suggestive symbols justified. Minor-equivalent
clones satisfy the same sets of identities of a particular form, known as
minor conditions (see Section 2.2). In a recent turn of events, it turned
out that the complexity of the Constraint Satisfaction Problem of A
(CSP(A)), where A is a finite relational structure with finite signature,
only depends on the set of minor identities satisfied by Pol(A), i.e., by
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the polymorphism clone of A. Moreover, the relation <, preserves the
complexity CSPs, for short: if Pol(A) <,, Pol(B) then there exists a
log-space reduction from CSP(B) to CSP(A) [3].

In this article we focus on the set of all clones over {0,1,2} or-
dered with respect to <;,. More precisely, we describe the submaximal
elements of the poset Pz:=({C | C is a clone over {0,1,2}}; <.). A full
description of the subposet |C3 which contains all the elements of B3
which are smaller than Cs, with respect to <, was provided in [7].
From the latter description it follows that |Cs is a countably infinite
lattice. In the same article [7, Conjecture 6.2] it was conjectured that
3 has exactly three submaximal elements, namely the =,,-classes of
the following three clones:

Cg:zPol(({O 1};{(0,1),(1,0)})),
:=Pol (({0,1,2}; {(0,1),(1,2),(2,0)})),
:=Pol (({0,1}; {0}, {1}, {(0,1),(1,0), (1,1)})).

Note that Co and By are clones over {0, 1}; we could equivalently con-
sider the =-classes of the following clones: Ch:=Pol ((Es;{(0,1),

(1,0)})) and  Byi=Pol ((Es; {0}, {1},{(0,1), (1,0), (1,1)})), where
E3:={0,1,2}.

Contributions

We give a positive answer to the aforementioned conjecture: we show
that P35 has exactly three submaximal elements, namely Cs, C3, and By
(see Corollary 3.13). Our proof is of syntactic nature: we prove several
statements that entail the existence of operations satisfying suitable
identities in some clone C, provided that C has certain operations. For
example, we prove that if C is an idempotent clone over an n-element
set, for some n > 2, such that C has a Mal’cev operation and a cyclic
operation of arity p, for every prime p < n, then C has a majority
operation (see Lemma 3.4). Statements of this form constitute results
of independent interest in universal algebra.

2. Preliminaries

In this section we present notation, definitions, and some basic results
from the literature which we are going to use throughout the article.
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2.1. A Galois connection for clones
We denote the set {0,...,k — 1} by Ex. For n € N, we define

oM .= {f| f: E} — Ey} and Op=J 0.
neN
A clone over Ey, is a subset C of O which is closed under composition of
operations and which contains all projections, where a projection is any
operation of the form pr?: (ai,...,an) — a;, for all a1, ..., a, € Ey. If
F C O, then (F) denotes the clone generated by F, i.e., the smallest
clone that contains F'.

An alternative way of describing a clone of operations is to specify
the clone as the set all operations preserving a given set of relations. We
say that an n-ary operation f preserves a relation R on a finite set A
if, for every ay,...,a, € R, it holds that f(a1,...,a,) € R. In this case
we also say that R is invariant under f.If f preserves all the relations
in I, we say that f is a polymorphism of T

Let I be a set of relations over Fj, for some k£ € N. We define the
set

Pol(T") := U {f: E} — E} | f preserves all the relations in F}.
neN
We call the set Pol(T") the polymorphism clone of T.
Analogously, for every set of operations F' over Ej, we define

Inv(F) := U {R C E} | R is invariant under every operation in F}
neN

Theorem 2.1 [8,14]. Let F' be a set of operations over a finite set. It
holds that Pol(Inv(F)) = (F).

Let 7 be a relational signature. A T-structure is a relational struc-
ture over the signature 7. Let A and B be two relational 7-structures.
A map h: A — B is a homomorphism if for every R € T

if (ay,...,an) € R®, then (h(ay),...,h(a,)) € RE.

We denote by Hom(A,B) the set of all homomorphisms from A to B.
We also write A — B if there exists a homomorphism from A to B,
and we say that A and B are homomorphically equivalent if A — B and
B — A. An endomorphism of A is a homomorphism from A to A. An
isomorphism between A and B is a bijective homomorphism A such that
the mapping h=1: B — A that sends h(z) to x is a homomorphism,
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too. An automorphism of A is an isomorphism between A and itself.
A finite structure A is called a core if every endomorphism of A is an
automorphism. We say that C is a core of A if C is a core and C is
homomorphically equivalent to A. It is well known that every finite
relational structure has a core which is unique up to isomorphism, thus
it makes sense to speak about the core of a relational structure.

In this article, we are going to consider polymorphism clones of
relational structures in addition to polymorphism clones of a set of
relations: we define Pol(A;T"):=Pol(T"). For n > 1, we denote by A"
the structure with the same signature 7 as A whose domain is A™
such that for every k-ary R € 7, it holds that (aq,...,a) is con-
tained in RA" if and only if it is contained in R* componentwise,
ie., (aij,...,ak;) € R* for every 1 < j < n. Note that, equivalently,
Pol(A) = J,,cyy Hom(A™, A).

A primitive positive formula over T is a first-order formula which
only uses relation symbols in 7, equality, conjunction and existential
quantification. If A is a 7-structure and ¢(x1,...,x,) is a 7-formula
with free-variables x1,..., 2y, then {(a1,...,a,) | A E ¢(a1,...,a,)}
is called the relation defined by ¢ in A. In particular, if ¢ is primitive
positive, then this relation is said to be pp-definable in A. Given two
relational structures A and B on the same domain — but with possibly
different signatures — we say that A pp-defines B if every relation in B
is pp-definable in A.

Theorem 2.2 [8,14]. Let A be a finite relational structure. A relation R
has a pp-definition in A if and only if R € Inv(Pol(A)).

It is well known that all clones of operations over a fixed set E,,
form an algebraic lattice £,, under set inclusion. The lattice operations
are defined as follows: CAD:=CND and CVD:=(CUD). The top-element
of £, is the clone O,,, its bottom-element is the clone of all projections
over E,, which we denote by P,. A celebrated result, due to Post [23],
is the full description of £5. Janov and Muénik [18] proved that £, has
a continuum of elements, for every n > 3.

Moreover, Theorem 2.2 underlines that pp-definability among re-
lational structures translates to inclusion of the correspondent polymor-
phism clones.

Theorem 2.3 [8,14]. Let A and B be structures on the same finite set
A. Then A pp-defines B if and only if Pol(A) C Pol(B).
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2.2. The pp-constructability poset

In this section we briefly introduce the pp-constructability poset — the
main object of study in this article. For this purpose, we first define the
notions of pp-constructability and minor homomorphism.

Let A and B be finite relational structures. We say that B is a
pp-power of A if it is isomorphic to a structure with domain A™, for
some n > 1, whose relations are pp-definable from A. Notice that a
k-ary relation on A" is regarded as a kn-ary relation on A.

Definition 2.4. Let A and B be finite relational structures. We say that
A pp-constructs B, and write A <con B, if B is homomorphically equiv-
alent to a pp-power of A. We also write A =con B if A <con B and
B SCon A.

The question that naturally arises now is how pp-constructability
among relational structures translates in terms of the correspondent
polymorphism clones: in particular, whether there is a Galois connection
that would lead us to a result of the same flavour of Corollary 2.3.

Definition 2.5. Let f be any n-ary operation, and let o be a map from
FE, to E,.. We denote by f, the following r-ary operation
Jo(wo, .oy xr 1) =F(To@0)s- s To(n_1))-
Any operation of the form f,, for some o: E,, — E,, is called a minor
of f.
A minor identity is a formal expression of the form

Va1, 2 (f(2e(0)) - - 5 Ta(n-1)) = 9(Tr0)s -+ Tr(m=1))),
where f and ¢ are function symbols and o: E,, — E, and n: E,, — E,

are some maps; in this case we write f, =~ g.. A minor condition is a
finite set of minor identities.

Definition 2.6. Let A and B be clones and let £: A — B be a mapping
that preserves arities. We say that £ is a minor homomorphism if

E(fo') = f(f)o'
for any n-ary operation f € A and o: E,, — E,.

We say that a set of operations F' satisfies a minor condition X,
and write F' = X, if every function symbol in ¥ can be mapped to an
operation in F' such that, for every f, ~ g, in X, the equality fI" = g&’
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holds for every evaluation of the variables. Moreover, we say that an
operation f satisfies a minor condition ¥ if {f} = X.

Next we are going to define some examples of minor conditions,

which we will use in Section 3.

Definition 2.7. We define the following minor conditions:

We call cyclic identity of arity p, for some p > 2, the following
identity

c(x1,22,...,xp) = c(x2, ..., Tp,21). (2p)
We call quasi minority the following minor condition:
m(z,y,y) = m(y, x,y) = m(y,y,x) =~ m(z, z, ).
We call quasi Mal’cev the following minor condition:
m(z,y,y) = m(y,y,x) = m(z,z,z). (Xm)

We call quasi majority the following minor condition:

m(x,y,y) = m(y,r,y) = m(y,y,x) = m(y,y,y)

We call n-ary symmetric condition the minor condition that con-
sists of all identities of the form

f(xlwrQa e ,.’L'n) ~ f(mﬂ(l)axw(2)7 e 7x7r(n))u (FS(TL))

where 7 is a permutation of the set {1,2,...,n}.
We call n-ary totally symmetric condition the minor condition that
consists of all identities of the form

f@ig, @iy, xs,) = fz),x),, ..., x5,), (TS(n))

whenever {i1,i2,...,in} = {J1,J2, - Jn}-

We call n-ary generalized minority condition, where n > 3 is odd,
the minor condition that consists of all the identities from FS(n)
and

fle,x,ws, 24, 20) = [y, Y, X3, Tay - -+ Tny)- (GM(n))

We call weak near-unanimity condition of arity n > 3 the following
minor condition

w(z,...,x,y) 2 w(e,...,x,y,2)~...2wy,z,...,T).
(WNU(n))
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o We call quasi near-unanimity condition of arity n > 3 the follow-
ing minor condition

w(z,...,x,y) rw(x,...,z,y,)~=
ooy, ,x) 2w, .., x). (QNU(n))

A k-ary operation f is a quasi Mal’cev operation if it satisfies the
minor condition Xyr; we adopt an analogous convention for all other con-
ditions introduced so far. A Mal’cev operation is an idempotent quasi
Mal’cev operation; we adopt a similar convention in defining a minority
operation, a generalized minority operation, a majority operation, and a
near-unanimity operation. If f is a totally symmetric operation of arity
n we also write f({z1,22,...,2,}) instead of f(z1,x2,...,2,). Note
that every totally symmetric operation is symmetric. The other impli-
cation does not hold: the majority operation over {0,1} is symmetric
but not totally symmetric. The multiplicity of variables plays a role in
the definition of a symmetric operation: as a matter of fact, f(x,z,y)
need not be equal to f(x,y,y).

In Remark 2.8 we show an example of a minor condition that is not
satisfied by the polymorphisms of a certain structure: the polymorphism
clone of a directed cycle of length p does not satisfy the cyclic identity
of arity p. This is an easy observation that will nevertheless come in
handy later in this article, more precisely, in the proof of Theorem 2.14.

Remark 2.8. Consider the relational structure C, = (E,; R®), where

RCP:: (07 1)a ) (p - 27p - 1)7 (p - 170)}
It is easy to see that, for every prime p, it holds that Pol(C,) does

not satisfy the cyclic identity of arity p, i.e., Pol(C,) ¥ X,. Indeed,
suppose that there exists a polymorphism f of C, satisfying X, then

fO,....,p—1)=f(1,...,p—1,0) = a, for some a € E,.
It would follow that (a,a) € R®», a contradiction.

The connection between pp-constructability and minor homomor-
phisms is given by the following theorem.

Theorem 2.9 [3]. Let A, B be finite relational structures and A = Pol(A),
B = Pol(B). The following are equivalent:

(1) There exists a minor homomorphism from A to B;
(2) A pp-constructs B;
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(3) if A satisfies a minor condition X, then B = X.

We would like to remark that, unfortunately, the latter theorem
does not yield a Galois connection for clones: Barto, Oprsal, and Pinsker
also provide a semantic characterization of minor homomorphisms, by
introducing a new operator called reflection [3]. However, a reflection
of a clone need not contain projections or be closed under composition;
thus, the reflection of a clone is, in general, not a clone. What we obtain
by taking a reflection of a clone is known in the literature as minion;
they play a crucial role in Promise Constraint Satisfaction Problems

[2].

Corollary 2.10 [3]. Let A be a finite relational structure, let C be the core
of A and let C¢ be the expansion of C by all unary relations {a}qcc-
Then:
(1) A =Con C =Con CC;
(2) for every minor condition ¥, Pol(A) & ¥ if and only if Pol(C°) E
3.

We write A <, B if there exists a minor homomorphism £: A — B,
and we denote by =, the equivalence relation where A =, Bif A <., B
and B <, A. Note that A C B implies A <., B. Moreover, we denote
by A the =,,-class of A, that is

A :={C|C is a clone over some finite set and C =,,, A}

and we write A <, B if and only if 4 <., B.
We finally define the following posets:

Pén = ({E | C is a clone over a finite set}; <y,);
L., ;= ({C | C is a clone over E,}; =)

and call them the pp-constructability poset and the pp-constructability
poset restricted to clones over an n-element set, respectively. Note that
a full description of B2 was presented in [6], and this article entirely
focuses on Ps.

A constant operation of arity n is an operation ¢ defined as
follows

Az, a) = c

where ¢ € E,,, for some n,m > 1; if n = 1, we simply write ¢ to denote
the unary constant operation c(!). We want to remark that if C has a
constant operation ¢(™, for some n, then it has a constant operation for
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every arity. It is easy to show that (0) is the top-element of 33. Indeed,
for every clone over {0, 1,2} the map that sends every n-ary operation
to 0" is minor-preserving.

2.3. The unique coatom

In this section we prove that both the posets Pg, and B3 have exactly
one coatom, — i.e., a unique maximal element — namely Z,, that is, the
= -class of the clone of all idempotent operations over {0, 1}.

Let us define the following relational structures

Cy = ({0}:{(0,0)});
I, := (En;{0},...,{n —1}), for every n > 2.

Proposition 2.11. For every finite relational structure A exactly one of
the following holds: either C1 <con A or A <con Is.

Proof. Let A be a relational structure and let B be its core expanded by
all unary relations. By Corollary 2.10 it holds that C; pp-constructs A
if and only if C; pp-constructs B and A pp-constructs I if and only if B
pp-constructs Is. Thus, we are going to prove the claim for B. Let B =
{bo,...,bn_1} be the domain of B. If n = 1, then it is straightforward
to see that C; <con B. Let us assume that n > 1, we need to show that
B <con I2. Consider the pp-power S:=({bg, ...,bn—1};0,I) of B, where
O and I are the unary relations defined by the formulae O(x):=(z = by)
and I(z):=(x = by), respectively. Let us define the maps g: S — I that
maps by to 0 and every other element to 1 and h: I — S that maps
0 to by and 1 to by. It is straightforward to check that g and h are
homomorphisms. Thus Iy and S are homomorphically equivalent and B
pp-constructs Is. O

Note that, for every n > 2, Pol(Cy) £y, Pol(I,), since Pol(Cy) sat-
isfies the minor identity f(z) ~ f(y), while Pol(L,,) does not. Therefore,
for every n > 2, the structure C; does not pp-construct I,.

Proposition 2.12. For every n > 2 it holds that s =con 1.

Proof. First, we show that Iy <con I,. Consider the relational structure
S:=({0,1}"™; @y, ..., P,,_1) where each ®; is defined as follows:

O; =S (20, .. 1) [ (@i =1)A  J\  (x;=0)
JEE (i}



Submaximal clones over a three-element set Page 11 of 31 22

Let us denote by e; € {0,1}" the tuple that has a 1 in the i-th coordi-
nate and 0s elsewhere. The maps

. i if x = ey,
g:i—e; h: x— )
0 otherwise.

are respectively homomorphisms from I,, to S and from S to I,,. This
proves that Iy <con I,,. The other inclusion follows from Proposition 2.11
and the fact that C; does not pp-construct I,,, which is observed in the
paragraph preceding Proposition 2.12. O

Let us denote Pol(I,) by Z,, for every n > 2. It follows from
Proposition 2.12 and Theorem 2.9 that Zy =,, Z3. Thus, Z5 is the unique
coatom in P3. In Section 3 we classify all elements covered by Zs in B3.

2.4. Auxiliary theorems

Here, we present two results that are going to serve as auxiliary state-
ments in Section 3. We would like to point out that both of the state-
ments we present in this section are known in the literature. However,
in its original form, Theorem 2.13 is not formulated in terms of pp-
constructability. Similarly, although it is not found with this formulation
anywhere in the literature, Theorem 2.14 can be obtained with a little
work from Lemma 6.8 in [5]. We therefore prefer to include two relatively
simple and self-contained proofs with the aim of helping the reader. We
define the structure: By:=({0,1}; {0}, {1},{(0,1),(1,0), (1,1)}).

Theorem 2.13 [22, Proposition 7.7]. Let A be a finite structure. Then
A pp-constructs By if and only if Pol(A) does not satisfy Y.

Proof. Note that by Corollary 2.10 it is sufficient to prove the claim
for a core expanded by all unary relations; we therefore assume A to
be such a structure. Suppose that A pp-constructs By and that Pol(A)
satisfies ¥y By Theorem 2.9 it follows that Pol(Bs2) = Xy. Hence,
there exists a ternary operation m € Pol(Bsy) such that m(0,1,1) =
m(1,1,0) = m(0,0,0) = 0 (note that m must preserve {0}). Since m
is a polymorphism of By, we obtain that (0,0) is a tuple in a rela-
tion of By, a contradiction. For the other direction, assume that Pol(A)
does not satisfy 3. Our goal is to build a pp-power C of A that is
homomorphically equivalent to By. The domain of C is AAP and the
elements of C can be interpreted as operations A2 — A. The structure
C has a binary relation R® and two unary relations {pr3} and {pr?};
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the relation RC is defined as the set of all pairs (f, g) such that there
exists a ternary operation w € Pol(A) such that w(z,z,y) = f(x,y)
and w(y, z,z) = g(x,y).

Let us show that any s-ary operation u € Pol(A) preserves RC.
Consider some tuples (f1,91),-..,(fs,gs) from RC. By definition, for
every i, there exists w; € Pol(A) such that w;(z,z,y) = fi(z,y) and
w;(y, x,x) = g;(x,y). The operation u applied to the considered tuples
gives us the tuple (f, g) where

f(zay) = u(fl(xvy)a ) fs(z,y)), and
g(xvy) = u(gl(x,y)v s ags(x’y))'
Since f(z,y) = w(z,z,y) and g(z,y) = w(y, x, z) for

w(:v,y, Z) = u(wl(x,y,z), e ,ws(:my, Z))a

we obtain that (f,g) is in R®. By Theorem 2.3, R® is pp-definable
over A. Since every u € Pol(A) is idempotent, u preserves two unary
relations {pr3} and {pr?}; thus both {pr3} and {pr?} are pp-definable
over A.

It remains to define homomorphisms from By to C and back.
The homomorphism h: B — C maps 0 to pr3 and maps 1 to the
first projection pr?. Since all projections are in Pol(A) we have the
tuples (pr?,pr3), (pr?,pr?), and (pr3,pr?) in RC. Hence h is a homo-
morphism. The homomorphism h': C — By maps pr3 to 0 and all
the remaining values to 1. Note that the tuple (pr3,pr3) is not in
R, otherwise there would exist an operation w € Pol(A) such that
pri(z,y) = w(x,z,y) = w(y,x,z) = pr3(y,y) = w(y,y,y); this cannot
hold since we assumed that Pol(A) does not satisfy Y. This proves
that A’ is a homomorphism. Thus, A <con Bs as desired. O

Recall the relational structure C, introduced in Remark 2.8.

Theorem 2.14 [5,27]. Let A be a finite structure. Then, for every prime
p, A pp-constructs C,, if and only if Pol(A) does not satisfy ¥,.

Proof. Suppose that A pp-constructs C,, for some prime p, and that
Pol(A) satisfies ¥,; by Theorem 2.9 we obtain that Pol(C,) satisfies
Yp, too. This would lead to a contradiction, as shown in Remark 2.8.
For the other direction, assume that Pol(A) does not satisfy the cyclic
identity ¥,. Let us build a pp-power B of A which is homomorphically
equivalent to C,. The domain of B is A" and every element of the
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domain can be viewed as an operation A? — A. The structure B has
only one binary relation R® which is defined as follows: it consists of all
pairs (f, g) such that f,g € Pol(A) and g(z1,...,2p) = f(z2,...,2p, T1)
(here we interpret operations as tuples).

Let us partition all the operations of Pol(A) of arity p into equiv-
alence classes such that two operations are equivalent if one can be
obtained from another by a cyclic shift of the variables. Choose one
representative from each class and denote the obtained set of opera-
tions by Fy. Let us define

Fo={g|3f € Fo: g(x1,...,2p) = f(Tir- -, @p, T1,. .., Ti—1) }-
Thus, operations from F; are obtained from operations from Fy by the
corresponding cyclic shift of the variables. If F;NF; # & for some i # 7,
then there is an operation that stays the same after some cyclic shift of
the variables. Since p is prime, we derive that this operation is cyclic,
which contradicts our assumption.

Thus, we assume that F; N F; = & whenever ¢ # j. Let us
show that any operation w € Pol(A) preserves R®. Consider tuples
(f1,91)s---,(fs,gs) from RE. Then w applied to these tuples gives us
the pair (f,g), where

flxe, . zp) =w(fi(zr,. .. xp), ..., fs(z1,...,2p)),and

g(x1, ... zp) = w(gr(T1, .-, xp)s o5 Gs(T1, -, Tp)).
Hence, f and g are from Pol(A). Moreover, it holds that g(z1,...,z,) =
f(za,...,2p,x1). Thus, we showed that w preserves RE. By Theorem

2.3, R® is pp-definable over A. Thus, we proved that B is a pp-power of
A.

It remains to show that B and C, are homomorphically equivalent.
The homomorphism h: B — C, just sends operations from F; to i, for
every 4. To define the homomorphism A': C, — B we just choose some
operation fy € Fjp, then consider all its cyclic shifts f; € F;. Then b’/
sends each ¢ to f;. Thus, A pp-constructs C,. ([

We would like to mention that the proofs in this section can be
considered rather standard, since in the literature the auxiliary struc-
tures that we define in Theorems 2.13 and 2.14 — denoted by C and B,
respectively — are known as the free structure of Pol(A) generated by
Bo and the free structure of Pol(A) generated by C,, respectively. To
keep the proofs simple and self-contained we refrain from defining free
structures and refer the interested reader to [2].
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3. Submaximal elements of 33

In this section we prove that Cq, Cs, and By are the only submaximal
elements of P3. In particular, we show that if S is an idempotent clone
over {0, 1,2} such that

S Zm Cay 8 Zm Cs, and S 2 Bo (®)

then there exists a minor homomorphism from Zs to S, i.e., 7o <, S. In
order to prove this, we show that every idempotent clone over Fs3 satis-
fying (#) has a generalized minority of arity k, for every odd k > 3 — we
are going to define such operations in Section 3.1 — and a totally sym-
metric operation of arity n, for every n > 2. Recall that we say that an
n-ary operation f is totally symmetric if it satisfies the condition T'S(n)
from Definition 2.7. Also, note that we can reduce to the case where
we only consider idempotent clones: in fact, every clone § = Pol(S)
is minor-equivalent to some idempotent clone, that is, S =, Pol(S’)
where §' is the core of S expanded by all unary relations (see Corol-
lary 2.10). As a first step, we want to prove that every idempotent clone
S over Ej3 satisfying (#) has a majority operation. For this purpose, we
introduce some more notions and terminology concerning relations. In
particular, we are going to consider essential and critical relations.

Definition 3.1. Let R be an n-ary relation on a finite set A. We say that

e Risan essential relation if it cannot be represented by a quantifier-
free conjunctive formula over relations of smaller arities. Moreover,
a tuple (a1,...,a,) € A™\R is essential for R if for every i €
{1,...,n} there exists b such that

(al,.. .7ai,1,b7ai+1,.. .7(ln) € R.

We denote by Ess(R) the set of all essential tuples for R. It is not
hard to see that a relation has an essential tuple if and only if it
is essential [24,25].

e R is critical if it is essential and there do not exist relations
Ri,..., R,, pp-definable from R and different from R such that
R=RiN:---NRy.

Notice that originally in [19] a critical relation was defined to be
a directly indecomposable and completely N-irreducible relation in a
relational clone; our definition of critical relation relates to the original
one as follows: a relation is critical if and only if it is critical — in the
sense of [19] — in the relational clone generated by the relation. As it
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was shown in [26], every critical relation has internal symmetries, and
relations having these symmetries are called key relations. Thus, every
critical relation is a key relation (see [26], Lemma 2.4). In this section we
will use a classification of key relations preserved by a weak unanimity
operation from [26] but to avoid additional notations we formulate it
for critical relations.

To formulate the classification we will need the notion of block
of a relation R over a finite domain A. We denote by R the relation
R U Ess(R). Again following [26], we define a graph Gz:=(R;E) as
follows: if @, b € R C A™, then we have (a,b) € E if and only if @ and
b differ just in one element, i.e., there exists a unique ¢ € {1,...,n}
such that a; # b;. A block of R is a connected component of Gz. A
block is called trivial if it only contains tuples from R.

Theorem 3.2 (c.f. [26, Theorem 3.11]). Let R be a critical relation of
arity n > 3, preserved by a Mal’cev operation. Then

e FEvery block of R equals By X --- X By, for some By,...,B, C A.

o For every nontrivial block B:=By X --- X By, of R, the intersec-
tion RN B can be defined as follows: there exists an abelian group
(G;+, —,0) whose order is a power of a prime, and surjective map-
pings ¢;: B; — G, fori=1,2,... n such that

Theorem 3.3 [1]. Let C be an idempotent clone over a finite set. Then,
for every k > 2, the following are equivalent:
e C has a near-unanimity operation of arity k + 1;
o cvery (k+ 1)-ary relation in Inv(C) can be obtained as a conjunc-
tion of relations of arity k in Inv(C).

We want to remark that, if an idempotent clone C does not have a
near-unanimity operation of arity k, then Inv(C) has an essential rela-
tion R of arity k. Furthermore, this essential relation can be represented
as a conjunction of critical relations and the arity of at least one of them
should also be k. Thus, every clone C not having a near-unanimity op-
eration of arity k preserves a critical relation of arity k.

Lemma 3.4. Let C be an idempotent clone over E,, for some n > 2,
such that

(1) C EX,, for every prime p < n, and
(2) C =2, i.e., C has a Mal’cev operation.



22 Page 16 of 31 A. Vucaj and D. Zhuk Algebra Univers.

Then C has a majority operation.

Proof. Let C be a clone satisfying all the hypotheses and suppose that
C does not have a ternary near-unanimity operation, i.e., a majority
operation. Then by Theorem 3.3 we have that Inv(C) has a critical
relation R of arity & > 3. Therefore, by Theorem 3.2, for every nontrivial
block B of R, there exists an abelian group G = (G, +, —, 0) whose order
¢ < n is the power of some prime and surjective mappings ¢;: B; — G,
for i = 1,2,...,k such that RNB = {(z1,...,zx) | ¢1(z1) + ¢2(z2) +
oo+ dp(z) = 0}

Let us show that the relation R cannot be preserved by a cyclic
operation ¢, of arity p, where p divides . Choose a mapping ©;: G —
B, for every i, such that ¢;(v;(z)) = z, for every x € G. Let a be an
element in G of order p. Notice, that

k

Bi(z1) = Jwz...3zy, [\ R(z1,92(0), ..., %i-1(0),zi, i11(0), . .., ¥ (0)),
1=2

which means that B; is pp-definable from R and constants. Combining

this with the idempotency of C we derive that the cyclic operation

cp preserves B;. Similarly, we show that c, preserves B;, for every i.

Applying ¢, to the rows of the matrices

$P1(0)  ¢1(a) Y1(2a) ... Pi((p—1)a)
¥2(0)  Wa(—a) ta(-2a) ... ta(=(p—1)a)
¥3(0)  ¥3(0) ¥3(0) - ¥3(0)
G0 U0 ) .. (0)
¥1(0) Y1(a) cooi((p—2)a)  Pi((p—1)a)
Yo(—a)  Pa(—2a) ... Pa(—(p—1)a) ¥2(0)
P3(a) P3(a) e Y3(a) V3(a)
14(0) Pa(0) ... 14(0) ¥4(0)
G0 wl0) .. (0 i (0)

we get respectively the tuples

(C, d7 ¢3(0)7¢4(0), .o f(ﬂk(O)), and
(C, d, wg(a),w4(0), e ,’l/)k(O))
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from RNB, which contradicts the definition of RNB. This contradiction
proves that such a relation R cannot exist in Inv(C), thus C has a
majority operation. (I

Remark 3.5. The result presented in Lemma 3.4 can be alternatively
proved using an argument coming from Tame Congruence Theory (see
[16]). One can show that, assuming the same hypotheses as in Lemma 3.4,
a sufficient condition for the existence of a majority operation provided
in [15] holds.

Corollary 3.6. Let S be an idempotent clone over E3 such that S ﬁm Co,
S Am Cs, and S A Ba. Then S has a symmetric majority operation.

Proof. From Theorem 2.13 it follows that S has a Mal’cev operation,
and from Theorem 2.14 it follows that there exist cs,c3 € C such that
co = Y9 and c3 | X3. Thus, it follows from Lemma 3.4 that S has a
majority operation M’. We define the operation M as follows:

M(z,y,2):= ca(es(M'(z,y,2), M'(y, z,x), M' (2, z,y)),
C3(M/($,Z,y),M’(Z,y,l‘),M’(y,l‘,Z))). (0)

It is easy to check that M is a symmetric majority operation. O

Lemma 3.7. Let S be an idempotent clone over Es such that S Ay, Ca,
S ZAm C3, and S A Ba. Then S has a symmetric minority operation.

Proof. Let S be as in the hypothesis. It follows from Theorem 2.13 that
S has a Mal’cev operation d. Also, from Corollary 3.6 we know that S
has a majority operation M. We define mj as follows:

my(z,y, 2):= M(d(x,y, 2),d(y, z,x),d(z,,y)).

It is easy to check that mj is indeed a minority operation: note that,
since d is a Mal’cev operation, whenever we identify two variables in
m4 at least two of the values among d(z,y, z), d(y, z,z), and d(z,z,y)
are equal to the variable that occurs only once. Hence, applying M we
obtain this variable, again. Furthermore, it follows from Theorem 2.14
that S has a binary cyclic operation ¢ and a ternary cyclic operation cs.
We then define a symmetric minority mg in the same way we obtained a
symmetric majority in Corollary 3.6: we simply replace every occurrence
of M in (V) by msg. O
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Remark 3.8. Note that the value of a symmetric minority ms(z,y, 2)
has to be a constant ¢ € {0, 1,2} whenever the three values in the scope
of mg are all distinct, i.e.,

m3(07 172) = m3(0527 1) = m3(15072) =
= m3(1a270) - m3(2307 1) =
=m3(2,1,0) =c.

In this case we also denote the symmetric minority operation by ms.
We follow the same convention for symmetric majority operations.

3.1. Generalized minority operations

Recall that a generalized minority of arity n is an n-ary operation sat-
isfying the minor condition GM(n) from Definition 2.7. If a generalized
minority m,, is idempotent and only a; occurs an odd number of times
in the tuple (aq,...,a,), then my,(ay,...,a,) = a;. Moreover, if m,, is
a generalized minority on FE3, then my,(ay,...,a,) returns a constant
c € F5 on all the other tuples, that is on the tuples containing an odd
number of each element from Fj.

Note that the minority operation ms(z,y,2) = © @ y @ z on the
set Fy = {0,1} is indeed a generalized minority of arity 3. Also note
that if a clone C over {0,1} contains the minority operation ms(z,y, 2)
then, for every n > 2, the generalized minority

Mont1(T1, ... Tant1) = mg(Man—1(T1,. .., T2n—1), Ton, T2n+1)

:x1®x2@...@x2n+1

is also in C. We prove an analogous result for the three-element case:
we show that every clone § over F3 satisfying condition (#) has a
generalized minority of every odd arity. Recall that Theorem 3.7 implies
that S has a symmetric minority operation m§ where ¢ € {0, 1,2} is
some constant value that m§(x,y, z) returns whenever [{z,y,z}| = 3,
see Remark 3.8. We denote by +3 the addition of the group of integers
modulo 3 and define the following auxiliary operation

ct+sl if (37,3172) € {(C +32,¢,c+3 1)7 (C +32,c+s LC)}?
D(z,y,2z) :=qc+32 if (x,9,2) € {(c+31,c,c+32),(c+31,c+32,0)},

T otherwise.

()
Note that D°(x,y, z) = m§(m$5(z,y, 2),y, 2), hence D°(x,y,z2) € S.
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Theorem 3.9. Let S be an idempotent clone over E3 such that S ﬁm Co,
S Zm C3, and S £ Ba. Then S has generalized minorities of arity k
for every odd k > 3.

Proof. From Lemma 3.7 we know that S has a symmetric minority
operation m$§; let D¢ the operation defined as in (). For every n > 2,
we define the operation

M5y 1 (1, Tong1) = M (tang1 (21, T2, T3, T4, - .., Tong1),
tont1(®2, T1, 23,24, .. ., Tant1),
t2n+1(1'3, T1,L2,T4y... ,I2n+1))

where

tont1(X1, ..., Tang1) = m§(D(mS,,_1(z1,%4,T5, .., T2nt1), T1,21),
Dé(m$,, 1 (z1,24,T5, ..., Tont1), T1,22),
Dc(mgnfl(xl, T4,T5,... ,$2n+1), T, 1‘3))

Note that the first argument of m§ in the latter formula is always equal

to m$,,_q1(x1, 24,5, ..., Tany1) however, for the sake of symmetry, we

instead prefer to write D¢(m§,,_;(z1,24,T5,...,Tont1),T1,21) in the

definition.

We are going to prove the claim of the theorem by induction over
n. Let us first make a few remarks on the symmetries of m$,  ; in order
to make the formula more digestible for the reader. As an inductive
hypothesis we assume that m§,,_; is a generalized minority. It follows
from the symmetry of m$§,,_; that ts,41 is invariant under any permuta-
tion of the variables x4, ..., T2, 1. Hence m3, , is also invariant under
any permutation of the variables x4, ..., z2,4+1. Since m§ is symmetric,
ton+1 is invariant under permutation of 2 and x3 and therefore mg, |
is invariant under any permutation of the variables x1, z2, and x3. No-
tice that m§(z) := x. Moreover, since m$§,_; is a generalized minority,
it holds

(& (&
m2n—1(x17m27 ce ey L2n—3,T, m) = m2n73<x17$2; e aw2n73)a
thus, we obtain that
tong1(21, %2, .. -, Ton—1,2,%) = top_1(21, T2, ..., Tan_1),

and therefore m$,, \(v1,22,...,Ton—1,2,2) =ms5, | (v1,72,...,T2p_1).
Combining this with the symmetry of m$,,; over permutation
of the last 2n — 2 coordinates, we obtain that mS, ; behaves as a
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generalized minority for all the tuples having repetitive elements in
Tyg,...,Topq1. Thus, if n > 3 then 2n +1 -3 > 3 and m3,,, is a
generalized minority.

Let us check how the identification of variables transforms mg.

me (21, T, @, Tg,T5) = mg(t5(x1,x,x,x4,x5), (*1)
ts(x, 1, T, x4, T5),
t5(x,x1,x,x4,x5))
ts(z1,z, @, 24, x5)
= mg(D(m§(21, 24, T5), ¥1, 21),
D¢(m§(x1, x4, T5), 21, ),
D¢(m§(z1, x4, 5),21,))
= D(m5(x1, T4, 25), 21, 21)
= m5(T1, %4, Ts5)
This proves that mg behaves well on all the tuples having repetitive
elements in the first 3 coordinates. It only remains to consider the
case when there are no repeated elements in the first three compo-
nents and no repeated elements in the last two components of mg.

By making use of the known symmetries, it suffices to verify that
mg($1,$2ax37x17$2) = x3.

t5(x1, 22, 23,21, T2) = mg(DC(mg(xl,xl,xg) Z1,T1),

Dé(m§(x1, 1, 22), 1, T2),

z3))

= m5(za, T2, D (22,21, 23)) = D(x2,21,23);
ts(x1, T2, 3, T2, x3) = ms5(D°(m5(x1, x2, T3), 1, T1

D¢(m3(x1,21,22), 21,2

);
De(mg(w1, w2, x3), 1, T2)
)

D¢(m3(x1, 22, 23), 1, 23)) = m3(x1, T2, 23).
We check the last equality as follows. If |{z, y, z}| < 3, then D¢(z,y, 2) =
x. Hence if {1, z2,23}| < 3, then D¢(m§(z1,x2,x3), 21, 23) = m§(z1,
X2, x3). Otherwise, if [{x1, 2z, 23} = 3, then m§(z1,x2,25) = ¢ and,
since D€ returns ¢ whenever the first coordinate is ¢, we get the equal-
ity.
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Finally, we obtain the following equation

me(x1, T2, T3, X1, Ta) = M4 (t5(x1, X9, X3, T1,T2), (*2)
t5(xa, 21,23, %1, T2),
t5(zs, zl,xg,:cl,xg))
“(x9,x1,x3),
“(w1, 22, 73),
mg(thg,x;;)) = I3.
The equation (x3) above can be checked manually. If {x1, x5, 23} #
{0,1,2}, then it again follows from the fact that m$§ is the minority and

D¢ is the first projection on every 2-element subset.
If {x1,22,23} = {0,1,2} and z3 = ¢, then

ms(D(xq, 21, x3), D(x1, 22, x3), m§ (21, T2, 23)) = m§(x1, 22,¢) = c.
If {z1, 29,23} = {0,1,2} and x; = ¢, then
ms(D(z2, x1,x3), D°(21, 22, x3), m5(x1, T2, x3)) = m4(xs, ¢, ¢) = 3.
Similarly, if {21, 22,23} = {0,1,2} and x5 = ¢, then
ms(D(xa, 21, x3), D(x1, 22, x3), m§(21, T2, 23)) = m§(c, x3,¢) = 3.
The equations (x1) and (%2) imply that m§ is a generalized minor-
ity. ([l

3.2. Totally symmetric operations of every arity

Here we prove that every idempotent clone S over Ej satisfying the
condition (#) has totally symmetric operations of every arity n > 2
(see Definition 2.7).

Theorem 3.10. Let S be an idempotent clone over E3 such that S £y, Ca,
S ﬁm Cs3, and S ﬁm Bs. Then S has a totally symmetric operation s,
of arity n, for everyn > 2.

Proof. From Corollary 3.6 and Lemma 3.7 it follows that S has a sym-
metric majority operation M€ and a symmetric minority operation m,
respectively. Also, from Theorem 2.14 it follows that there exists a bi-
nary cyclic operation sy € S, thus § | TS(2). For every n > 3 we
define:
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Sn(@1, .oy @n) = m(sp_1(x1, M(21,22,23),Tay ..., Tn),
Sn—l(an Mc($1,$2,l‘3),l‘47 cee axn)a
Sn_l(l‘g, Mc(xl,xg,arg),a:4, e ,xn))

We will prove by induction on n > 2 that

(1) if {1’1, . -;xn} = {avb} - {07 172}7 then Sn(ajl, s axn) - 52(a7b);
(ii) if {z1,...,2,} ={0,1,2}, then

Sn (X1, xn) = m(s2(0,¢), s2(1, ¢), $2(2,¢)).

For n = 2 this is obvious. Notice that, for every n > 3,

Sn(T, 2,23, T4, . .., Ty) = m(Sp_1(x, M°(x,2,23), T4, ..., Ty),
Sn—1(x, M(z,x,23),Ta, ..., Ty),
Sn—1(x3, M°(x,2,23), 4, ...,2n))
= S$p_1(T3,2,24,...,2p)

Hence, by the inductive assumption we have the required properties (i)
and (ii) on all tuples whose first two elements are equal. Since the opera-
tions M€ and m are symmetric, s, is symmetric under any permutation
of the first 3 variables. Therefore, the property (i) always holds and the
property (ii) holds on all tuples such that the first three elements are
not different.

Let us prove the property (ii) on all tuples (z1,xs,...,z,) such
that {z1,z2,z3} = {0,1,2}. For s3 it immediately follows from the
definition. To prove this for n > 3 consider 3 cases.

Case 1. If {z4,...,2,} = {a} C {0,1,2} then

Sn(x1,. .o xn) = m(sp—1(21,0,a,...,a),
Sn—1(z2,c,a,...,a),
Sn—1(x3,¢,a,...,a))

Z m(sn_1(0,¢,qa,...,a), (e1)

IS}

( )
5n—1(17 C Q.. ., Cl),
The equality = holds because m is symmetric. In case a = ¢, we obtain,
by the induction hypothesis, that

Sn (X1, xn) = m(s2(0,¢), s2(1, ¢), $2(2,¢)).

)
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If a # ¢, then in (e;) we have an argument of the form s, _1(a, ¢, a,...,a),
one of the form s,_1(¢,c,a,...,a), and one where 0,1, and 2 occur.
Therefore, by property (i) of the induction hypothesis we get s,_1
(a,c,a,...,a) = sz(a,c) and s,—1(c,¢,a,...,a) = s3(a,c). Moreover,
by properties of m, we get
sn(l'la B xn) = m(SQ(aﬂ C)v 52(a7 C), 83(07 1, 2)) = 53(07 1, 2)
Case 2. If {z4,...,2,} = {a,b} C {0,1,2} then, by using the fact
that s,,—1 and m are symmetric, we get
Sn(x1,. . xn) = m(sp-1(0,c,a,...,a,b,...,b), (o3)
Sn—1(1,¢,a,...,a,b,...,b),
Sn—1(2,¢,a,...,a,b,...,b)).
If ¢ ¢ {a,b} then each argument of m in the latter formula is equal to
s3(0,1,2), by the induction hypothesis. Otherwise, if ¢ € {a, b} then in
(e3) we have an argument of the form s,,_1(a,...,a,b,...,b), one of the
form s,_1(b,a,...,a,b...,b), and one where 0, 1, and 2 occur. By the
induction hypothesis, we get
Sn(x1,. .., xn) = m(s2(a,b),s2(a,b),s3(0,1,2)).
Case 3. If {x4,...,2,} = {0,1,2}, then, by the symmetry of m
and s,_1, we have
sn(o(x1),...,0(xs)) = m(sp-1(0,¢,0,...,0,1,...,1,2...,2), (e3)
$n_1(1,6,0,...,0,1,...,1,2...,2),
S$n_1(2,¢,0,...,0,1,...,1,2...,2))
It follows, by the the induction hypothesis, that each argument of m in
(e3) is equal to s3(0, 1,2); hence, we obtain s, (z1,...,2,) = s3(0,1,2).
This concludes the proof. O

3.3. The main result

In Section2.3 we proved that Z, is the unique coatom in 933. Here
we prove that, whenever a clone has totally symmetric operations and
generalized minorities of an arbitrary large arity, there exists a minor
homomorphism from Zs to this clone. Combining this with the results
of the previous sections we derive the main result of our paper: Cs, Cs,
and By are the only submaximal elements in 3.

It is well known that every operation over {0, 1} has a unique poly-
nomial representation if we forbid repetitive monomials and disrespect
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the order of monomials. Applying this fact to idempotent operations
from Z, we obtain the following lemma, in which operations @ and A
denote the usual sum and multiplication modulo 2, respectively.

Lemma 3.11. For every operation f € I there exists an up to the order
of monomials unique representation of the form f(xq,...,2,):= @521
A W;, where £ is odd and the sets Wy,...,W; C {z1,...,2,} are dif-
ferent and nonempty.

Proof. Tt is sufficient to check that every polynomial preserving {0}
does not have the constant 1 as a monomial, and that every polynomial
preserving {1} has an odd number of monomials. O

Theorem 3.12. Let S be a clone over Ey, for some k > 2, such that

o S =TS(n), for everyn > 2, and
e S E GM(n), for every odd n > 3.

Then there exists a minor homomorphism from Iy to S.

Proof. Let f be any operation in Zs. Notice that the identification of
two variables of a totally symmetric operation of arity n gives a totally
symmetric operation of a smaller arity. Similarly, the identification of
three variables of a generalized minority gives a generalized minority of
a smaller arity. Then by Konig’s lemma there exist an infinite sequence
of totally symmetric operations ss, s3, S4, - .., and an infinite sequence
of generalized minorities ms, ms, my7, ..., such that s, and m,, are of
arity n for every n, and they are compatible in the following sense. The
identification of two variables of s,, gives s,,_1 and the identification of
three variables of mag11 gives mog_1.

By Lemma 3.11 there exists an up to permutation of monomials
unique representation f(x1,...,Tx) = @le A\ W;, where ¢ is odd and
the sets Wh,...,W; C {x1,...,z,} are different. Notice that, for every
1 > 2, the operation s; only depends on the set of variables occurring
in it, i.e., the order of the variables and their multiplicity can be ig-
nored. Thus, we write 5|Wz.|(Wi) to stress this fact; moreover, we set
s1({z}):=xz, for every x € {x1,...,2}. We define the map £: 7o — S
as follows

‘
€: (@/\Wz> — mz(8|W1|(W1), .. ~75|Wg\(W£))-

Since my is symmetric, the map £ is well defined.
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Note that both the operation & and my only depend on the parity
of the elements occurring among their arguments.

Let w: {1,...,k} — {1,...,r} be a map. By first applying & we
obtain my (s‘W1|(W1), cee S‘WM(WZ)) and then, via 7, we obtain

me(sjwr (W), ..., sjwr (W])), where W :={xr¢;) | z; € Wi}

Let {Ui,...,U;} be the set of all different subsets in {W7,..., W[}
Without loss of generality we assume that U; appears an odd number
of times in W{,...,W/J for i € {1,2...,d} and U; appears an even
number of times in W7, ..., W[ for i € {d+1,d+2...,¢}. Then using
properties of m; we have

mg(S‘Wﬂ(Wf), .. -aS\Wﬂ(W;)) = md(S\U1|(U1)7 . ~»3|Ud|(Ud))~

On the other side, if we first apply m, we get G}le/\VV{r =
@Ll A U;. Since all the monomials in @;‘1:1 AU, are different, & ap-
plied to it gives us mq(s)u,|(U1), - .., s, (Ua)), which is exactly what
we need. (|

Corollary 3.13. Let S be an idempotent clone over E3 such that S ﬁm Co,
S Zm C3, and S £ Bs. There is a minor homomorphism from Iy to
S.

Proof. From Theorem 3.9 we know that S has a generalized minority
my, for every odd number ¢ > 3. Moreover, from Theorem 3.10 it follows
that S has a totally symmetric operation s,, of arity n, for every n > 2.
Thus, the claim follow from Theorem 3.12. (]

4. Conclusion

The results presented in this article together with the work from [7]
give hope that a complete description of B3 might be achievable. We
conclude this article by stating three open problems, with the aim of
suggesting a path leading to a full description of 3.

Problem 4.1. Find all the atoms of Ps. Is every atom of P of the form
C, for some finitely related clone C?

Note that a positive solution to Problem 4.1 would provide a con-
crete list of the hardest tractable CSPs over {0, 1,2}, refining [10].

By Corollary 3.13 it immediately follows that Cs, C3, and Bo are
exactly the submaximal elements of B3. Furthermore, in order to prove
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that B3 has at most countably infinite many elements, we can even
focus only on those clones for which there exists a minor homomor-
phism to Bs. Indeed, we prove that every clone C over a finite set has a
Mal’cev operation (Theorem 2.13) if and only if there is no minor ho-
momorphism from C to B2 and Bulatov [9] proved that there are only
finitely many clones over {0, 1,2} containing a Mal’cev operation.

Problem 4.2. Find all elements of Ps that are below Cy.

It follows from Theorems 3.13 and 2.13 that all clones over {0, 1,2}
with a Mal’cev operation are below Cy or Cs in B3. Since all the elements
of P53 which are below C3 were found in [7], in order to solve Problem 4.2,
we have to consider all clones over {0, 1,2} with a Mal’cev operation
and a cyclic operation of arity 3, and order them with respect to <.

Problem 4.3. Find all elements of B3 that are below Bo.

We would like to emphasise that, out of the three problems pro-
posed in this section, Problem 4.3 is the more challenging one as, a
priori, there might exist continuum many elements below Bs.

An alternative direction that this research strand can take is to in-
vestigate whether Corollary 3.13 can be generalized to domains strictly
larger than three. More precisely, one could ask if the following holds:
for every n > 3, if S is an idempotent clone over E,, such that, for every
prime p < n, it holds that S A, C, and S Ay, B, then there exists a
minor homomorphism from 75 to S. The latter statement was proved
to be true if we only consider polymorphism clones of finite directed
graphs [4].

However, there is a structure in the literature that proves the
statement to be false in general. Carvalho and Krokhin [11] — for dif-
ferent purposes — presented a structure K with 21 elements that has
cyclic polymorphisms of all arities, a Mal’cev polymorphism, and that
does not have any symmetric polymorphism of arity 5. Note that, from
Theorem 2.14 and Pol(K) |= X, for every prime p, it follows that
Pol(K) A, Cp. Moreover, it follows from Pol(K) |= Xy and Theo-
rem 2.13 that Pol(K) £, Bs. However, we have that 7, 4., Pol(K),
since Zo = FS(5) while Pol(K) & FS(5).

For the sake of full disclosure, the structure K is defined as follows:
K:=(K;R,S), where K = {0,1,2,...,9,10,a,b,¢,d,e, f,g,h,i,7}, and
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FIGURE 1. The structure K := (K; R, 5)

R and S are binary relations that are the graphs of the following per-
mutations r and s, respectively (see Figure 1),

r=(012)(567)(8910)(eba)(dgi)(fhc),
5= (14)(23)(56)(78)(4 €)(bc)(a d)(i f).

In the light of this, we conclude this article with the following
conjecture.

Conjecture 4.4. Let S be a clone over Ey, for some k > 2, such that
e S satisfies TS(n), for every n > 2, and
o S satisfies Y.

Then there exists a minor homomorphism from Iy to S.

Note that Conjecture 4.4 implies Theorem 3.12: indeed, the as-
sumption of having a quasi Mal’cev operation is a strictly weaker as-
sumption than that of requiring the existence of a generalized minority
of every odd arity.
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