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Abstract. Equivalence relations or, more general, quasiorders (i.e., reflex-
ive and transitive binary relations) � have the property that an n-ary
operation f preserves �, i.e., f is a polymorphism of �, if and only if each
translation (i.e., unary polynomial function obtained from f by substitut-
ing constants) preserves �, i.e., it is an endomorphism of �. We introduce
a wider class of relations—called generalized quasiorders—of arbitrary ar-
ities with the same property. With these generalized quasiorders we can
characterize all algebras whose clone of term operations is determined
by its translations by the above property, what generalizes affine com-
plete algebras. The results are based on the characterization of so-called
u-closed monoids (i.e., the unary parts of clones with the above property)
as Galois closures of the Galois connection End–gQuord, i.e., as endomor-
phism monoids of generalized quasiorders. The minimal u-closed monoids
are described explicitly.
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Introduction

Equivalence relations � have the remarkable well-known property that an n-
ary operation f preserves � (i.e., f is a polymorphism of �) if and only if each
translation, i.e., unary polynomial function obtained from f by substituting
constants, preserves � (i.e., is an endomorphism of �). Checking the proof
one sees that symmetry is not necessary, thus the same property, called Ξ in
this paper (see Definition 2.2), also holds for quasiorders, i.e., reflexive and
transitive relations.
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No further relations with property Ξ were known and once we came
up with the interesting (for us) question, if there are other relations (than
quasiorders) which satisfy Ξ, we hoped to prove that Ξ(�) implies that � has
to be a quasiorder (or at least to be “constructible” from quasiorders). This
attempt failed, but a new notion was born: transitivity of a relation with higher
arity. The next step was to investigate reflexive and transitive m-ary relations
which naturally are called generalized quasiorders for m ≥ 3 (for m = 2 they
coincide with usual (binary) quasiorders) and which all have the property Ξ
(Theorem 3.8). Moreover, these generalized quasiorders are more powerful than
quasiorders or equivalence relations (see Remark 5.4) and therefore allow finer
investigations of the structure of algebras (A,F ).

The next challenging question was: are there further relations with prop-
erty Ξ, other than generalized quasiorders? The answer is “yes, but not really”:
there are relations � with Ξ(�), i.e., satisfying Ξ, and not being a generalized
quasiorder (see Example in Remark 4.5), but each such relation � is “construc-
tively equivalent” to generalized quasiorders in the sense that they generate
the same relational clone and therefore can be expressed mutually by primitive
positive formulas (Proposition 4.4).

With the property Ξ the clone Pol � of polymorphisms is completely
determined by the endomorphism monoid M = End �. Changing the point of
view and starting with an arbitrary monoid M of unary mappings on a set
A (notation M ≤ AA), one can ask for the set M∗ of all operations whose
translations belong to M. Then Ξ(�) means Pol � = (End �)∗ (for details see
Section 2), in particular, M∗ is a clone. But in general, M∗ is only a so-called
preclone (counterexample 2.4). This leads to the question When M∗ is a clone?
and to the notion of a u-closed monoid (namely if M∗ is a clone).

These u-closed monoids play a crucial role in this paper. Their character-
ization via generalized quasiorders, namely as Galois closed monoids (of the
Galois connection End–gQuord introduced in Section 4), is one of the main
results (Theorem 4.2) from which the answer to all above questions more or
less follows.

The paper is organized as follows. All needed notions and notation are
introduced in Section 1. Section 2 deals with the property Ξ and the u-closure
and clarifies the preclone structure of M∗. Section 3 is the stage for the main
player of this paper: the generalized quasiorders. In particular, Theorem 3.8
proves the property Ξ for them. As already mentioned, in Section 4 the Ga-
lois connection End–gQuord and the crucial role of u-closed monoids is con-
sidered. Moreover, the behavior of the u-closure under taking products and
substructures is clarified. In Section 5 we consider the u-closure of concrete
monoids M ≤ AA, in particular all minimal u-closed monoids are determined
(Theorem 5.3). In Section 6 we collect some facts and problems for further
research. In particular we show how the notion of an affine complete algebra
can be generalized via generalized quasiorders.
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1. Preliminaries

In this section we introduce (or recall) all needed notions and notation together
with some results. Throughout the paper, A is a finite, nonempty set. N :=
{0, 1, 2, . . .} (N+ := N\{0}) denotes the set of (positive) natural numbers.

Operations and Relations 1.1. Let Op(n)(A) and Rel(n)(A) denote the set of
all n-ary operations f : An → A and n-ary relations � ⊆ An, n ∈ N+, respec-
tively. Further, let Op(A) =

⋃
n∈N+

Op(n)(A) and Rel(A) =
⋃

n∈N+
Rel(n)(A).

The so-called projections en
i ∈ Op(n)(A) are defined by en

i (x1, . . . , xn) :=
xi (i ∈ {1, . . . , n}, n ∈ N+). The identity mapping is denoted by idA (= e11).

C := {ca | a ∈ A} is the set of all constants, considered as unary opera-
tions given by ca(x) := a for a ∈ A.

Special subsets of Rel(2)(A) are Eq(A) and Quord(A), i.e., all equivalence
relations (binary, reflexive, symmetric and transitive) and quasiorder relations
(binary, reflexive and transitive), respectively, on the set A.

For f ∈ Op(n)(A) and r1, . . . , rn ∈ Am, rj = (rj(1), . . . , rj(m)), (n,m ∈
N+, j ∈ {1, . . . , n}), let f(r1, . . . , rn) denote the m-tuple obtained from com-
ponentwise application of f, i.e., the m-tuple

(f(r1(1), . . . , rn(1)), . . . , f(r1(m), . . . , rn(m))).
For f ∈ Op(n)(A) and unary operations g1, . . . , gn ∈ Op(1)(A), the

composition f [g1, . . . , gn] is the unary operation given by f [g1, . . . , gn](x) :=
f(g1(x), . . . , gn(x)), x ∈ A.

The Galois connection Pol–Inv 1.2. An operation f ∈ Op(n)(A) preserves a
relation � ∈ Rel(m)(A) (n,m ∈ N+) if for all r1, . . . , rn ∈ � we have f(r1, . . . ,
rn) ∈ �, notation f � �.

The Galois connection induced by � gives rise to several operators as
follows. For Q ⊆ Rel(A) and F ⊆ Op(A) let

Pol Q := {f ∈ Op(A) | ∀� ∈ Q : f � �} (polymorphisms),

Inv F := {� ∈ Rel(A) | ∀f ∈ F : f � �} (invariant relations),

EndQ := {f ∈ Op(1)(A) | ∀� ∈ Q : f � �} (endomorphisms),

Con F := Con(A,F ) := Inv F ∩ Eq(A) (congruence relations),

QuordF := Quord(A,F ) := Inv F ∩ Quord(A) (compatible quasiorders).

The Galois closures for Pol–Inv and End–Inv are known and can be character-
ized as follows: Pol Inv F = 〈F 〉 (clone generated by F ), Inv PolQ = [Q]∃,∧,=

(relational clone, generated by Q, equivalently characterizable as closure with
respect to primitive positive formulas, i.e., formulas containing variable and
relational symbols and only ∃,∧,=), End Inv M = 〈M〉 ((sub)monoid gener-
ated by M ⊆ AA), Inv EndQ = [Q]∃,∧,∨,= (weak Krasner algebra generated
by Q, equivalently characterizable as closure with respect to positive formulas,
i.e., formulas containing variable and relational symbols and ∃,∧,∨,=). We
refer to, e.g., [22, 1.2.1, 1.2.3, 2.1.3], [2], [21], [15].
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Definition 1.3. A set F ⊆ Op(A) is called a preclone if it contains idA and
is closed under the operations ζ, τ and ◦ that are defined as follows. Let
f ∈ Op(n)(A) and g ∈ Op(m)(A), n,m ∈ N+. Then
(1) idA(x) := x (identity operation);
(2) (ζf)(x1, x2, . . . , xn) := f(x2, . . . , xn, x1) (cyclic shift),

if n = 1 then ζf := f ;
(3) (τf)(x1, x2, x3, . . . , xn) := f(x2, x1, x3, . . . , xn)

(permuting the first two arguments), if n = 1 then τf := f ;
(4) (f ◦ g)(x1, . . . , xm, xm+1, . . . , xm+n−1)

:= f(g(x1, . . . , xm), xm+1, . . . , xm+n−1) (composition).
For later use we introduce here also the operations ∇ (adding a fictitious

argument at first place) and Δ (identification of the first two arguments):
(5) (∇f)(x1, x2, . . . , xn+1) := f(x2, . . . , xn+1),
(6) (Δf)(x1, . . . , xn−1) := f(x1, x1, . . . , xn−1) if n ≥ 2, and Δf = f for

n = 1.

Remarks. Clearly, because of (1) and (4), the unary part F ∩ Op(1)(A) of a
preclone F is a monoid. The (m + n − 1)-ary function f ◦ g (defined in (4))
sometimes is called linearized composition (or superposition), because this is a
special case of the general linearized composition, linearization or superposition
mentioned in [3, 2.1], [6, page 2] or [17, Section 2.1], respectively.

Preclones, also known as operads, can be thought as “clones where iden-
tification of variables is not allowed” (cf. Remark 1.4). The term preclone was
introduced by Ésik and Weil [4] in a study of the syntactic properties of recog-
nizable sets of trees. A general characterization of preclones as Galois closures
via so-called matrix collections can be found in [17]. The notion of operad orig-
inates from the work in algebraic topology by May [20] and Boardman and
Vogt [1]. For general background and basic properties of operads, we refer the
reader to the survey article by Markl [19].

Remark 1.4. Clones are special preclones. There are many (equivalent) defi-
nitions of a clone. One of these definitions is that a clone is a set F ⊆ Op(A)
closed under the operations 1.3(1)–(6), [22, 1.1.2]. Therefore we have:
A preclone is a clone if and only if it is also closed under ∇ (adding fictitious
variables) and Δ (identification of variables).

For F ⊆ Op(A), the clone generated by F is denoted by 〈F 〉 or 〈F 〉A.

2. The property Ξ and u-closed monoids

Equivalence relations or, more general, quasiorder relations � have the re-
markable property Ξ (see Definition 2.2 below) that for an operation f the
property of being a polymorphism, i.e., f ∈ Pol �, is completely determined by
its translations trl(f) defined as follows:

Definitions 2.1. For an n-ary operation f : An → A, i ∈ {1, . . . , n} and a
tuple a = (a1, . . . , ai−1, ai+1, . . . , an) ∈ An−1, let fa,i be the unary polynomial
function
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fa,i(x) := f(a1, . . . , ai−1, x, ai+1, . . . , an), (1)

called translation (see, e.g., [7, 1.4.7], 1-translation in [5, p. 375] or basic trans-
lation in [18]) and let trl(f) be the set of all such translations fa,i. For con-
stants (as well as for arbitrary unary functions) f we put trl(f) := {f}. For
F ⊆ Op(A) let

trl(F ) :=
⋃

f∈F

trl(f) ⊆ AA. (2)

Given a set M ⊆ AA we define

M∗ := {f ∈ Op(A) | trl(f) ⊆ M}. (3)

Remark. Because of (3) we have trl(M∗) ⊆ M and M ⊆ M∗. Moreover M =
trl(M) (since trl(f) = {f} for unary functions), thus M = trl(M) ⊆ trl(M∗) ⊆
M, i.e., trl(M∗) = M for every M ⊆ AA.

Definition 2.2 (The property Ξ). For a relation � ∈ Rel(A) we consider the
following property Ξ in three equivalent formulations:

Ξ(�) : ⇐⇒ ∀f ∈ Op(A) : f � � ⇐⇒ trl(f) � � (*)

⇐⇒ ∀f ∈ Op(A) : f ∈ Pol � ⇐⇒ trl(f) ⊆ End � (**)

⇐⇒ Pol � = (End �)∗. (***)

This can be extended to sets Q ⊆ Rel(A) just by substituting Q for � in the
above definition, e.g., Ξ(Q) ⇐⇒ Pol Q = (End Q)∗.

Remark 2.3. As noticed above, it is well-known that Ξ(�) holds for � ∈ Eq(A)
or, more general, for � ∈ Quord(A). Equivalently, expressed with the usual
notions of congruence or quasiorder lattices, this means

Con(A,F ) = Con(A, trl(F )) and Quord(A,F ) = Quord(A, trl(F ))

for each algebra (A,F ) (F ⊆ Op(A)).

Clearly, there arises the question already mentioned in the Introduction:
Do there exist other relations � with the property Ξ(�)?

Ξ(�) implies that (End �)∗ is a clone and therefore (End �)∗ is closed under
∇ (cf. Remark 1.4). As we shall see in Proposition 2.5 below this also implies
C ⊆ End �, what expresses the fact that � is reflexive (see Definition 3.2).
However, the converse is not true: not each reflexive relation satisfies Ξ(�) as
the following example shows.

Example 2.4. Let A = {0, 1, 2} and M := End � for the binary relation � =
{(0, 0), (1, 1), (2, 2), (0, 1), (1, 2)}. Note that � is reflexive but not transitive.
Define f : A2 → A by the following table:

f(x, y) y= 0 1 2
x= 0 0 0 1

1 0 0 1
2 1 1 2
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One can immediately check that each unary polynomial fa,i preserves �, i.e.,
trl(f) ⊆ M, but g := Δf (i.e., g(x) = f(x, x)) is the mapping 0 �→ 0, 1 �→ 0,
2 �→ 2 which does not belong to M (since g does not preserve � because g
maps (1, 2) ∈ � to (0, 2) /∈ �). Thus f ∈ M∗ but g /∈ M∗. Hence M∗ is not a
clone.

Since M∗ is not always a clone, there also arises the question: what is the
algebraic nature of the sets M∗? The answer gives the following proposition.

Proposition 2.5. Let M ≤ AA be a monoid. Then M∗ is a preclone (cf. Defi-
nition 1.3). Moreover, M∗ is closed under ∇ (cf. Definition 1.3(5)) if and only
if C ⊆ M.

Proof. Clearly idA ∈ M ⊆ M∗. It is straightforward to check that for f, g ∈ M∗

also ζf, τf and f ◦g belong to M∗ (notation see Definition 1.3). We show it for
the operation 1.3(4): if all variables x1, . . . , xm, . . . , xm+n−1, with exception of
xi, are constant, say a = (a1, . . . , am, . . . , am+n−1), then, for i ≥ m + 1, we
have (f ◦ g)a,i(xi) = f(b, am+1, . . . , xi, . . . , am+n−1) with b := g(a1, . . . , am),
what obviously belongs to trl(f) ⊆ M. If i ≤ m, then we have ga′,i ∈ M
(because g ∈ M∗) for a′ := (a1, . . . , am) (without the i-th component) and
fa′′,1(x) = f(x, am+1, . . . , am+n−1) belongs to M (because f ∈ M∗), where
a′′ := (am+1, . . . , am+n−1), consequently (f ◦ g)a,i(x) = fa′′,1(ga′,i(x)) also
belongs to the monoid M. Thus trl(f ◦ g) ⊆ M, i.e., f ◦ g ∈ M∗.

Further we observe ∇f = f ◦ e22 and e22 = ∇idA where e22 is the binary
projection e22(x1, x2) = x2. Thus the preclone M∗ is closed under ∇ if and only
if e22 ∈ M∗. But trl(e22) = {idA} ∪ C (since e22(a, x) = idA(x) and e22(x, a) = ca

for a ∈ A), therefore e22 ∈ M∗ ⇐⇒ trl(e22) ⊆ M ⇐⇒ C ⊆ M, and we are
done. �

Remark 2.6. M∗ is a preclone for a monoid M by Proposition 2.5. Conversely,
for a preclone P the translations trl(P ) form a monoid (because of Defini-
tion 1.3(1) and (4)). Thus we can consider the following two mappings between
monoids and preclones:

ϕ : P �→ trl(P ), where P is a preclone on A.

ψ : M �→ M∗, where M ≤ AA is a monoid on A.

Then (ϕ,ψ) is a residuated pair of mappings (covariant Galois connec-
tion) between the lattice of submonoids of AA and the lattice of preclones
on A. We have ϕ(P ) ⊆ M ⇐⇒ P ⊆ ψ(M). Moreover, the corresponding
kernel operator ϕ(ψ(M)) = trl(M∗) = M is trivial (cf. remark in Defini-
tion 2.1). However, the corresponding closure operator P �→ ψ(ϕ(P )) is non-
trivial and it is an open problem which preclones are closed, i.e., when do we
have P = ψ(ϕ(P )) = (trl(P ))∗?

Lemma 2.7. Let Mi ≤ AA, i ∈ I. Then (
⋂

i∈I Mi)∗ =
⋂

i∈I M∗
i .

Proof. Since, for a residuated pair (ϕ,ψ), the residual ψ is meet-preserving,
the Lemma immediately follows from Remark 2.6. We add a direct proof just
using the definitions:
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f ∈ (
⋂

i∈I Mi)∗ ⇐⇒ trl(f) ⊆ ⋂
i∈I Mi ⇐⇒ ∀i ∈ I : trl(f) ⊆ Mi

⇐⇒ ∀i ∈ I : f ∈ M∗
i ⇐⇒ f ∈ ⋂

i∈I M∗
i .

�

Since M∗ is not always a clone, the question arises: For which monoids
M ≤ AA the preclone M∗ is a clone? To attack this problem we introduce the
u-closure M what shall lead to the equivalent problem (cf. Remark 2.9(iii)) of
characterizing u-closed monoids.

Definition 2.8. For M ⊆ AA let

M :=
⋂

{N | M ⊆ N ≤ AA, and N∗ is a clone}.

A set M ⊆ AA is called u-closed if M = M.

Remarks 2.9. Let M ⊆ AA.

(i) The operator M �→ M is a closure operator (in fact, due to Lemma 2.7,
M is the least monoid N containing M such that N∗ is a clone, thus the
operator is monoton and M = M).

(ii) M is a monoid containing C and (M)∗ is a clone (the latter follows from
Lemma 2.7 because, by definition, M is the intersection of monoids N
with N∗ being a clone; thus from Proposition 2.5 follows C ⊆ M, too).
In particular we have 〈M〉 = M = 〈M〉.

(iii) M is u-closed (i.e. M = M) if and only if M∗ is a clone (in fact, “⇒”
follows from (ii), “⇐” follows from Definition 2.8).

A characterization of u-closed monoids M will be given in the next sec-
tions (Proposition 3.10, Theorem 4.2 and Corollary 4.3).

3. Generalized quasiorders

Notation 3.1. Let A = {a1, . . . , ak} and M ≤ AA. We define the following
|A|-ary relation:

ΓM := {(ga1, . . . , gak) | g ∈ M}.

Thus ΓM consists of all “function tables” rg := (ga1, . . . , gak) (considered as
elements (columns) of a relation) of the unary functions g in M.
In particular, we have

M = End ΓM .

In fact, h ∈ End ΓM , i.e., h � ΓM , implies h(rid) ∈ ΓM , i.e., ∃g ∈ M : h(rid) =
rg what gives h = g ∈ M. Conversely , if h ∈ M, then h(rg) = rh◦g ∈ ΓM for
all rg ∈ ΓM , i.e., h � ΓM .

Moreover, it is known that Pol ΓM coincides with the so-called stabilizer
Sta(M) of M and it is the largest element in the monoidal interval defined by
M (all clones with unary part M form an interval in the clone lattice, called
monoidal interval, cf., e.g., [23, 3.1]). If F is a clone with F (1) = M, then ΓM

is the so-called first graphic of F denoted by ΓF (χ1) in [22].
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Figure 1. Transitivity for an m-ary relation �

Definition 3.2 (Generalized quasiorder). An m-ary relation � ⊆ Am is called
reflexive if (a, . . . , a) ∈ � for all a ∈ A, and it is called (generalized) transitive if
for every m×m-matrix (aij) ∈ Am×m we have: if every row and every column
belongs to � — for this property we write � |= (aij) — then also the diagonal
(a11, . . . , amm) belongs to �, cf. Figure 1.

A reflexive and transitive m-ary relation is called generalized quasiorder.
The set of all generalized quasiorders on the base set A shall be denoted by
gQuord(A), and gQuord(m)(A) := Rel(m)(A) ∩ gQuord(A) will denote the m-
ary generalized quasiorders.

Examples 3.3. From the definitions easily follows:
(i) Each quasiorder (i.e., binary reflexive and transitive relation) is also a

generalized quasiorder. The converse is also true: Each binary gener-
alized quasiorder is a usual quasiorder relation, consequently we have
gQuord(2)(A) = Quord(A).

(ii) Each diagonal relation is a generalized quasiorder where an m-ary re-
lation δ ∈ Rel(A) (m ∈ N+) is called diagonal relation if there ex-
ists an equivalence relation ε on the set {1, . . . , m} of indices such that
δ = {(a1, . . . , am) ∈ Am | ∀i, j ∈ {1, . . . , m} : (i, j) ∈ ε =⇒ ai = aj}.

We generalize the notation � |= (aij) to n-dimensional “m × . . . × m-
matrices” (tensors) (ai1,...,in) ∈ Am×···×m where i1, . . . , in ∈ {1, . . . ,m}): � |=
(ai1,...,in) denotes the fact that every “row” in each dimension belongs to �,
i.e., for each index j ∈ {1, . . . , n} and any fixed i1, . . . , ij−1, ij+1, . . . , in the m-
tuple ai1,...,[j],...,in := (ai1,...,1,...,in , . . . , ai1,...,m,...,in) (the indices 1, . . . ,m are
on the j-th place in the index sequence) belongs to �.
Example: For n = 3, � |= (ai1,i2,i3) means that for all indices i1, i2, i3 ∈
{1, . . . , m} we have (a1,i2,i3 , . . . , am,i2,i3) ∈ �, (ai1,1,i3 , . . . , ai1,m,i3) ∈ � and
(ai1,i2,1, . . . , ai1,i2,m) ∈ �. The (main) diagonal of (ai1,i2,i3) is the m-tuple
(a1,1,1, . . . , am,m,m).

Remark 3.4. Let A = {1, . . . , k}. We mention that for an n-ary function f :
An → A and a monoid M ≤ AA we have f ∈ M∗ ⇐⇒ ΓM |= (ai1,...,in) where
ai1,...,in := f(i1, . . . , in), i1, . . . , in ∈ {1, . . . , k}.

Definitions 3.5. For � ⊆ Am let �tra denote the transitive closure of �, i.e.,
�tra =

⋂{σ ⊆ Am | σ is transitive and � ⊆ σ} is the least transitive relation
containing � (it is easy to check that the intersection of transitive relations is
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again transitive). Analogously, the generalized quasiorder closure �gqu is the
least generalized quasiorder containing �. The reflexive closure is naturally
defined as �ref := � ∪ {(c, . . . , c) ∈ Am | c ∈ A}.

These closures can be constructed (inductively) as follows.

Proposition 3.6. For � ∈ Rel(m)(A) define ∂(�) := {(a11, . . . , amm) ∈ Am |
∃(aij) ∈ Am×m : � |= (aij)} and let �(0) := �, �(n+1) := �(n) ∪ ∂(�(n)) for
n ∈ N. Then we have

�tra =
⋃

n∈N

�(n) and �gqu = �ref tra.

Remark. If � is reflexive, then � ⊆ ∂(�). For binary relations � the operator ∂
is just the relational product: ∂(�) = �◦�. Note that ∂(�) is always pp-definable
from �, i.e., ∂(�) ∈ [�]∃,∧,=.

Lemma 3.7. Let � ∈ gQuord(m)(A). For every n-dimensional m × · · · × m-
matrix (ai1,...,in)i1,...,in∈{1,...,m} we have

� |= (ai1,...,in) =⇒ (a1,...,1, . . . , am,...,m) ∈ �.

Proof. For n = 2 the condition follows from the definition of a generalized
quasiorder. Thus we can assume n ≥ 3. Let Mk = (bk

i1,...,in−k
) denote the

(n − k)-dimensional m × · · · × m-matrix with bk
i1,...,in−k

:= ai1,...,i1,i2,...,in−k

(the first k coordinates are equal i1). . Thus M0 = (ai1...,in) and Mn−1 =
(b1i ) = (ai,...,i)i∈{1,...,m} = (a1,...,1, . . . , am,...,m). We have to show Mn−1 ∈ �
(formally � |= Mn−1). This can be done by induction on k. By assumption we
have � |= Mk for k = 0. Assume � |= Mk for some k ∈ {0, 1, . . . , n − 2}. We
are going to show � |= Mk+1 what will finish the proof.

Let i1, . . . , in−k ∈ {1, . . . , m}. We fix i3, . . . , in−k and consider the 2-
dimensional m × m-matrix M ′

k := (bk
i,j,i3,...,in−k

)i,j∈{1,...,m}. Clearly, � |= Mk

implies � |= M ′
k. Therefore (bk

1,1,i3,...,in−k
, . . . , bk

m,m,i3,...,in−k
) ∈ � because � is

a generalized quasiorder. Since i3, . . . , in−k were chosen arbitrarily, this im-
plies (together with � |= Mk) that we have � |= Mk+1 (note bk+1

i1,i3,...,in−k
=

bk
i1,i1,i3,...,in−k

). �
One of the crucial properties of generalized quasiorders is that preserva-

tion of a relation only depends on the translations, i.e., it extends the property
Ξ (see Definition 2.2(*)) from (usual) quasiorders to generalized quasiorders.

Theorem 3.8. For f ∈ Op(A) and � ∈ gQuord(A) we have:

f � � ⇐⇒ trl(f) � �.

Thus Ξ(�) holds.

Proof. “⇒”: Since each g ∈ trl(f) is a composition of f and constants c ∈ C
and since constants preserve � because of reflexivity, we have trl(f) ⊆ 〈{f} ∪
C〉 � �.

“⇐”: Let ar(f) = n, ar(�) = m, trl(f) � � and let r1, . . . , rn ∈ �. We are going
to show f(r1, . . . , rn) ∈ � what implies f � � and will finish the proof. Define
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ai1,...,in := f(r1(i1), . . . , rn(in)). Then ai1,...,[j],...,in = fb,j(rj) ∈ � for b =
(r1(i1), . . . , rj−1(ij−1), rj+1(ij+1), . . . , rn(in)) (notation see Definition 2.1(1))
because fb,j ∈ trl(f) � �, j ∈ {1, . . . , n}. Thus � |= (ai1,...,in) and we have

f(r1, . . . , rn) = (f(r1(1), . . . , rn(1)), . . . , f(r1(m), . . . , rn(m)))

= (a1,...,1, . . . , am,...,m) ∈ �

by Lemma 3.7, and we are done. �

Corollary 3.9. Let F ⊆ Op(A) and Q ⊆ gQuord(A). Then
(i) gQuord(A,F ) = gQuord(A, trl(F )) (cf. Remark 2.3)
(ii) Ξ(Q) holds, i.e., Pol Q = (End Q)∗, in particular, (EndQ)∗ is a clone

and EndQ is u-closed.

Proof. (i) directly follows from Theorem 3.8. Concerning (ii), we have
Pol Q =

⋂
�∈Q Pol � =3.8,2.2(***)

⋂
�∈Q(End �)∗ =2.7 (

⋂
�∈Q End �)∗ =

(End Q)∗, i.e., Ξ(Q). �

Now we characterize the u-closed monoids M ≤ AA (i.e., M = M) by
various properties. The condition (iii) Proposition 3.10 will show that the
situation as in Example 2.4 is characteristic for being not u-closed.

Proposition 3.10. For a monoid M ≤ AA the following are equivalent:
(i) M is u-closed (equivalently, M∗ is a clone),
(ii) M∗ = Pol ΓM ,
(iii) C ⊆ M and for every binary f ∈ M∗ we have Δf ∈ M,
(iv) ΓM is a generalized quasiorder.

Proof. Each of the conditions (i), (ii) and (iv) implies C ⊆ M (cf. Proposi-
tion 2.5 for (i), (ii) and note that ΓM is reflexive if and only if C ⊆ M). Thus
we can assume C ⊆ M in the following.

(ii) =⇒ (i) =⇒ (iii) is clear (each set of the form Pol Q is a clone, and
any clone is closed under Δ).

(i) =⇒ (ii): M is just the unary part F (1) of the clone F := M∗. It is
well-known (cf., e.g., [23, 3.1]) that Pol ΓM is the largest clone F with unary
part F (1) = M, thus M∗ = F ⊆ Pol ΓM .

Conversely, let f ∈ Pol ΓM , i.e., f � ΓM . Remember that the elements
of ΓM are of the form rg for some g ∈ M (notation see Notation 3.1).
Thus f � ΓM means f(rg1 , . . . , rgn

) ∈ ΓM whenever g1, . . . , gn ∈ M. Since
f(rg1 , . . . , rgn

) = rf [g1,...,gn], this equivalently can be expressed by the condi-
tion that the composition f [g1, . . . , gn] belongs to M whenever g1, . . . , gn ∈ M.
Consequently, any translation g := fa,i derived from f (w.l.o.g. we take i = 1),
say g(x) := f(x, a2, . . . , an) for some a2, . . . , an ∈ A, must belong to M, since
g = f [idA, ca2 , . . . , can

] and M contains the identity idA and the constant
functions. Thus trl(f) ⊆ M, hence f ∈ M∗, and we get Pol ΓM ⊆ M∗.

(iii) =⇒ (i): Assume (iii) and assume on the contrary that M∗ is not
a clone. We lead this to a contradiction. Since M∗ is a preclone by Propo-
sition 2.5, M∗ cannot be closed under Δ and there must exist a function
f ∈ M∗, say n-ary, such that h := Δf /∈ M∗ (clearly n ≥ 3, otherwise we



Generalized quasiorders Page 11 of 26    23 

have a contradiction to (iii)). Thus some translation g := ha,i derived from h
cannot belong to M. If i �= 1, then g(x) = h(c1, . . . , ci−1, x, ci+1 . . . , cn−1) =
f(c1, c1, ci−1, x, ci+1 . . . , cn−1) would belong to M since f ∈ M∗. Therefore
i = 1 and g(x) = h(x, c2, . . . , cn−1) = f(x, x, c2, . . . , cn−1) does not belong
to M. Consider the binary function f ′(x1, x2) := f(x1, x2, c2, . . . , cn−1). We
have f ′ ∈ M∗ (since f ∈ M∗) and Δf ′ /∈ M (since g = Δf ′ by definition), in
contradiction to (iii).

(iii) ⇐⇒ (iv): Let A = {1, . . . , k}. There is a bijection between binary
operations f : A2 → A and (k × k)-matrices (aij) via aij = f(i, j) for
i, j ∈ {1, . . . , k}. Note that rows and columns of (aij) are just the function
tables (f(i, 1), . . . , f(i, k)) and (f(1, j), . . . , f(k, j)) of the translations f(i, x)
and f(x, j). Therefore f ∈ M∗ (i.e., trl(f) ⊆ M by definition) is equivalent
to the property that all rows and columns of (aij) belong to ΓM (since the
columns of ΓM are just the function tables of the unary functions in M),
i.e., ΓM |= (aij). Further, Δf ∈ M is equivalent to the property that the
diagonal (a11, . . . , akk) of (aij) belongs to ΓM . Thus condition (iii) is equiva-
lent to the reflexivity (because C ⊆ M) and transitivity of ΓM (according to
Definition 3.2), and therefore to ΓM being a generalized quasiorder. �

The following corollary is a simple tool to construct functions in the u-
closure of a monoid.

Corollary 3.11. Let A = {1, . . . , k} and M ≤ AA. If, for a binary operation
h : A2 → A, we have h ∈ (M)∗, in particular if h ∈ M∗, then Δh ∈ M.

Proof. The statement is just Proposition 3.10(iii) for the u-closed monoid
M. �

Note that (according to Remark 3.4) for a binary operation h we have
h ∈ (M)∗ if and only if ΓM |= V for the matrix V := (h(i, j))i,j∈A.

4. The Galois connection End–gQuord

The Galois connection End–gQuord 4.1. The preservation property � induces
a Galois connection between unary mappings and generalized quasiorders given
by the operators

EndQ := {h ∈ AA | ∀� ∈ Q : h � �} (endomorphisms) and

gQuordM := {� ∈ gQuord(A) | ∀h ∈ M : h � �} (generalized quasiorders)

for M ⊆ AA and Q ⊆ gQuord(A). The corresponding Galois closures are
End gQuordM and gQuord EndQ.

Now we can show one of our main results, namely that the u-closed
monoids are just the Galois closures with respect to the Galois connection End–
gQuord . As a consequence (as shown in Corollary 4.3 and Proposition 4.4) we
can answer the questions raised in the Introduction.

Theorem 4.2. Let M ⊆ AA. Then we have:

M = End gQuordM.
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Proof. At first we observe M ⊆ End gQuordM (this holds for every Galois
connection), M ⊆ M = End ΓM , in particular M � ΓM , and by Proposi-
tion 3.10(iv) we know ΓM ∈ gQuord(A). Thus ΓM ∈ gQuordM. Consequently
we get M ⊆ End gQuordM =3.9(ii) End gQuordM ⊆ End ΓM = M, and we
are done. �

In addition to the characterization in Proposition 3.10 we give some fur-
ther consequences of Theorem 4.2, characterizing M∗ (4.3(a)) and u-closed
monoids M (4.3(b)). Since every monoid can be given as endomorphism monoid
of invariant relations, M = EndQ, we also look for the characterization of
those Q with u-closed endomorphism monoid (4.3(c)):

Corollary 4.3. (a) (M)∗ = Pol gQuordM for M ⊆ AA.
(b) The following are equivalent for M ≤ AA:

(i) M is u-closed, (i)′ M∗ is a clone, (i)′′ ΓM ∈ gQuord(A),
(ii) M = EndQ for some Q ⊆ gQuord(A),
(iii) M∗ = Pol Q for some Q ⊆ gQuord(A),
where the same Q can be taken in (ii) and (iii).

(c) The following are equivalent for Q ⊆ Rel(A):
(i) EndQ is u-closed, (i)′ (End Q)∗ is a clone, (i)′′ΓEndQ∈ gQuord(A),
(ii) ∃Q′ ⊆ gQuord(A) : EndQ = EndQ′,
(ii)′ ∃Q′ ⊆ gQuord(A) : [Q]∃,∧,∨,= = [Q′]∃,∧,∨,=

(closure under positive formulas)
(iii) ∃Q′ ⊆ gQuord(A) : (End Q)∗ = Pol Q′,
where the same Q′ can be taken in (ii) and (iii). Instead of “∃Q′ ⊆
gQuord(A)” one can take “∃� ∈ gQuord(A)” and Q′ = {�}.

Proof. (a): Let Q := gQuordM. Then Ξ(Q) by Theorem 3.8, i.e., Pol Q =
(End Q)∗ (cf. Definition 2.2(*)). Thus PolQ = (End gQuordM)∗ = (M)∗ by
Theorem 4.2.
(b): For (i) ⇐⇒ (i)′ ⇐⇒ (i)′′ see Remark 2.9(iii) and Proposition 3.10(iv).

(i) =⇒ (ii): Take Q := gQuordM. If M is u-closed, then M = M =4.2
EndQ.

(ii) =⇒ (iii): (EndQ)∗ = Pol Q directly follows from Corollary 3.9(ii).
(iii) =⇒ (i)′ is obvious, because M∗ = Pol Q is a clone.

(c) is just (b) for M = EndQ. (ii) ⇐⇒ (ii)′ follows from the properties of
the Galois connection End–Inv (in particular [Q]∃,∧,∨,= = Inv EndQ, cf. 1.2).
Further note, that Q′ = {ΓEndQ} also will do the job (instead of arbitrary Q′)
since End Q = End ΓEndQ. �

Now we are also able to answer the question which (sets of) relations
satisfy the property Ξ (cf. Definition 2.2):

Proposition 4.4. The following are equivalent for Q ⊆ Rel(A):
(i) Ξ(Q) holds, i.e., Pol Q = (EndQ)∗,
(ii) ∃Q′ ⊆ gQuord(A) : Pol Q = Pol Q′,
(ii)′ ∃Q′ ⊆ gQuord(A) : [Q]∃,∧,= = [Q′]∃,∧,=

(closure under primitive positive formulas),
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(ii)′′ [Q]∃,∧,= = [[Q]∃,∧,= ∩ gQuord(A)]∃,∧,=.

Proof. (i) =⇒ (ii): Assume Pol Q = (End Q)∗ and let M := EndQ and Q′ :=
gQuordM. M is u-closed (since M∗ is a clone), therefore Pol Q = M∗ =
(M)∗ =4.3(a) Pol Q′.

(ii) =⇒ (i): Assume Pol Q = Pol Q′ (Q′ ⊆ gQuord(A)). Then EndQ =
EndQ′ and we have Pol Q = Pol Q′ =3.9(ii) (EndQ′)∗ = (EndQ)∗, conse-
quently Ξ(Q) by Definition 2.2.

(ii) ⇐⇒ (ii)′ follows from the properties of the classical Galois connec-
tion Pol–Inv (in particular [Q]∃,∧,= = Inv PolQ, cf. 1.2). (ii)′ ⇐⇒ (ii)′′ is
obvious. �
Remark 4.5. We know from Theorem 3.8 that � ∈ gQuord(A) implies Ξ(�).
The converse is not true: Ξ(�) does not imply � ∈ gQuord(A) in general!
A counterexample is the binary relation � = {(i, j) | 1 ≤ i, j ≤ n, j ≤
i + 1, j �= i − 1} in [16, 3.5] on an at least 5-element set A = {1, . . . , n}. This
relation is strongly C-rigid (what means Pol � = 〈{idA} ∪ C〉) and reflexive,
but not transitive, i.e., � /∈ gQuord(A). Nevertheless Ξ(�) holds. To see this
we have to show Pol � = M∗, where M := End �, i.e., M = {idA} ∪ C = T.
M is u-closed (what we shall prove in Proposition 5.1), thus M∗ = Pol ΓM

by Proposition 3.10(ii). By [16, 2.2.], for a clone F, if its unary part F (1)

equals {idA} ∪ C, then F = 〈{idA} ∪ C〉. Consequently, for F = M∗ we have
F (1) = M = {idA} ∪ C and therefore we get M∗ = 〈{idA} ∪ C〉 = Pol �.

For n = 5 we get the relation � shown in Figure 2 (this is a so-called
tournament).

Nevertheless, by Proposition 4.4, � must be “constructively equivalent”
to some Q′ ⊆ gQuord(A), i.e., [�]∃,∧,= = [Q′]∃,∧,=. In this concrete case we
can take Q′ = {ΓM}, i.e., we have [�]∃,∧,= = [ΓM ]∃,∧,=, since Pol � = Pol ΓM .

Before we investigate the u-closure for concrete monoids we show how
this closure behaves under taking products and substructures. For this we
need some notation.

Definition 4.6. Let gi ∈ AAi
i (i ∈ {1, 2}) and A = A1 × A2. Then g := g1 ⊗ g2

denotes the unary operation g ∈ AA defined componentwise by g(a1, a2) :=

Figure 2. A reflexive but not transitive relation � with Ξ(�)
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(g1a1, g2a2). For Mi ⊆ AAi
1 we put M1 ⊗ M2 := {g1 ⊗ g2 | g1 ∈ M1 and g2 ∈

M2}.

Further, for �i ∈ Rel(m)(Ai) and Qi ⊆ Rel(Ai), i ∈ {1, 2}, let

�1 ⊗ �2 := {((a1, b1), . . . , (am, bm)) | (a1, . . . , am) ∈ �1 ∧ (b1, . . . , bm) ∈ �2},

Q1 ⊗ Q2 := {�1 ⊗ �2 | �1 ∈ Q
(m)
1 ∧ �2 ∈ Q

(m)
2 , m ∈ N+}.

Remarks. For monoids M1,M2, the product M1⊗M2 is isomorphic (as monoid)
to the direct product M1 × M2. In the proof of Proposition 4.7(ii) below, the
notation g1 ⊗ g2 is used also for n-ary operations. This is a straightforward
generalization of the above definition, given explicitly in [22, 2.3.6]; there also
F1 ⊗ F2 := {f1 ⊗ f2 | f1 ∈ F

(n)
1 , f2 ∈ F

(n)
2 , n ∈ N+} is defined for clones

F1 ⊆ Op(A1) and F2 ⊆ Op(A2).

Proposition 4.7. Let idAi
∈ Mi ⊆ AAi

i , i ∈ {1, 2} and A = A1 × A2. Then we
have

(i) gQuordA(M1 ⊗ M2) = (gQuordA1
M1) ⊗ (gQuordA2

M2).
(ii) M1 ⊗ M2 = M1 ⊗ M2.

Proof. (i): According to [22, 2.3.7] and because the identity map belongs to
Mi, we have InvA(M1 ⊗ M2) = (InvA1 M1) ⊗ (InvA2 M2) for the invariant
relations. Thus, in order to prove (i), it only remains to show that

�1 ⊗ �2 ∈ gQuord(A) ⇐⇒ �1 ∈ gQuord(A1) and �2 ∈ gQuord(A2)

for �1 ∈ Rel(m)(A1) and �2 ∈ Rel(m)(A2). But this follows from (notation see
Definition 3.2)

�1 |= (aij) and �2 |= (bij) ⇐⇒ (�1 ⊗ �2) |= ((aij , bij)), and

(a11, . . . , amm) ∈ �1 and (b11, . . . , bmm) ∈ �2

⇐⇒ ((a11, b11), . . . , (amm, bmm)) ∈ �1 ⊗ �2,

what is clear from the definitions in 4.6.
(ii): The trivial equivalence relations ΔAi

and ∇Ai
are (generalized) qua-

siorders and thus belong to gQuordAi
Mi (i ∈ {1, 2}). Therefore we can apply

(PolA1 Q1) ⊗ (PolA2 Q2) = PolA(Q1 ⊗ Q2) from [22, Satz 2.3.7(vi) and Üb
2.4, p.73] (restricting to unary mappings, i.e., taking End instead of Pol and
Qi = gQuordMi) in order to get the second equality in the following conclu-
sions:

M1 ⊗ M2
4.2= (End gQuordM1) ⊗ (End gQuordM2)

= End((gQuordM1) ⊗ (gQuord M2))

(i)
= End gQuord(M1 ⊗ M2)

4.2= M1 ⊗ M2.

�
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Proposition 4.8. Let M ⊆ AA and B ∈ Inv M for some ∅ �= B ⊂ A. Then

gQuordB(M�B) = (gQuordA M)�B .

Proof. “⊆”: Let σ ∈ gQuord(m)(M�B) and � := σ ∪ {(a, . . . , a) ∈ Am | a ∈
A\B}. Then σ = ��B . We are going to show � ∈ gQuordA M. Clearly, �
is reflexive by construction. To show transitivity, let � |= (aij) ∈ Am×m. If
(aij) ∈ Bm×m, then σ |= (aij) and we get (a11, . . . , amm) ∈ σ ⊆ � (since σ
is transitive). If some row or column of (aij) contains an element a ∈ A\B,
then by definition of � this row or column must be (a, . . . , a). Thus aij = a for
all i, j, and the diagonal obviously belongs to �. Thus � is transitive, i.e., � ∈
gQuord(A). It remains to show M � �. Let f ∈ M and (a1, . . . , am) ∈ �. Let
g := f�B ∈ M�B and note g � σ by assumption. If (a1, . . . , am) = (a, . . . , a)
for some a ∈ A\B, then obviously (fa, . . . , fa) ∈ �. Otherwise (a1, . . . , am) ∈
σ ⊆ Bm and we have (fa1, . . . , fam) = (ga1, . . . , gam) ∈ σ ⊆ �, i.e., f � �.
Consequently, σ = ��M ∈ (gQuordA M)�B .

“⊇”: Let σ ∈ (gQuordA M)�B , i.e., there is some � ∈ gQuordA M such that
σ = ��B . Then obviously σ is reflexive (on B) and also transitive (since each
matrix (bij) ∈ Bm×m can be considered as a matrix in Am×m). Thus σ ∈
gQuord(B). It remains to prove M�B � σ. Take g = f�B ∈ M�B (for some
f ∈ M) and (b1, . . . , bm) ∈ σ. Since f � � and f � B we also have that f
preserves � ∩ Bm = σ. Thus (gb1, . . . , gbm) = (fb1, . . . , fbm) ∈ σ, i.e., g � σ.
Consequently, σ ∈ gQuord(M�B). �

Remark 4.9. We do not consider here the other side of the Galois connec-
tion, i.e., the Galois closures of the form gQuord EndQ for Q ⊆ gQuord(A).
In general, they are not relational clones (contrary to the Galois connection
End− Inv). In particular, Quord(A) is not a relational clone. It contains all
diagonal relations and is closed under several relational clone operations, but,
e.g., not under pr (i.e., deleting of coordinates). For example, the relation
� := {(0, 0, 0), (1, 1, 1), (2, 2, 2), (2, 0, 1), (1, 1, 2)} on A = {0, 1, 2} is a general-
ized quasiorder (this is easy to check), but pr2,3(�) = {(x, y) | ∃a : (a, x, y) ∈
�} = {(0, 0), (1, 1), (2, 2), (0, 1), (1, 2)} is not (because it is not transitive).

5. Minimal u-closed monoids

In this section we investigate some special monoids and their u-closure. For a
unary function f ∈ AA let Mf := 〈f〉 ∪ C. This is the least monoid containing
f and all constants. What can be said about the u-closure of such monoids
Mf?

In the following we have to deal much with the relation ΓM for a monoid
M = Mf and with the situation that ΓM |= V for some k×k-matrix V = (vij),
k := |A|. Therefore it is convenient to identify a g ∈ M with the vector
rg = (ga1, . . . , gak) (cf. Notation 3.1, here we assume A = {a1, . . . , ak} where
A is implicitly ordered by the indices of ai). Thus we can say that a row or
column r of V equals some “vector” (k-tuple) g ∈ M and write r = g meaning
r = (ga1, . . . , gak). This will be used very often in the proofs (in great detail
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in the proof of Proposition 5.1). Furthermore, let vi,∗ := (vi1, . . . , vik) and
v∗,i := (v1i, . . . , vki) denote the i-th row and the i-th column of V = (vij),
respectively (i ∈ {1, . . . , k}). Note that ΓMf

is reflexive since Mf contains all
constants.

For the trivial monoid T := MidA = {idA} ∪ C we have:

Proposition 5.1. The monoid T = {idA} ∪ C is u-closed.

Proof. Let A = {a1, . . . , ak}. We show that ΓT is a generalized quasiorder
(then we are done due to Proposition 3.10(iv)). ΓT is reflexive, thus it remains
to show that ΓT is transitive. Let V = (vij)i,j∈{1,...,k} be a k × k-matrix
such that ΓT |= V, i.e., each row and each column is one of the “vectors”
g ∈ T, namely idA = (a1, . . . , ak) or one of the constants c1 = (a1, . . . , a1),. . . ,
ck = (ak, . . . , ak) (ci denotes the constant mapping ci(x) = ai). If vjj = ai for
some i �= j, then ΓT |= V can hold only if all rows and columns are equal to
the constant ci (since ci is the only vector where ai is on the j-th place), in
particular, the main diagonal of V also equals ci and therefore belongs to ΓT .
It remains the case vii = ai for all i ∈ {1, . . . , k}. Then the diagonal of V is
idA, also belonging to ΓT . Consequently, ΓT is transitive. �

For |A| = 2 there exist only two monoids containing all constants, namely
T and AA, both are u-closed (the first by Proposition 5.1, the second trivially).
Therefore, in the following, we always can assume |A| ≥ 3.

We are going to characterize the minimal u-closed monoids, i.e., u-closed
monoids M ≤ AA which properly contain no other u-closed monoid except
the trivial monoid T = {idA} ∪ C. Such minimal u-closed monoids must be
generated by a single function, i.e., they must be of the form Mf for some unary
f, moreover, Mf can be assumed to be C-minimal, i.e., minimal among all
monoids properly containing T (otherwise Mf ′ < Mf would imply Mf ′ ≤ Mf

and Mf could be canceled in the list of minimal u-closed monoids).
It is well-known which unary functions f generate a C-minimal monoid

Mf ≤ AA (it follows, e.g., from [22, 4.1.4]), namely if and only if f ∈ AA is a
nontrivial (i.e., f /∈ T ) function satisfying one of the following conditions:

(i) f2 = f,
(ii) f2 is constant,
(iii) f is a permutation, such that fp = idA for some prime number p.

As shown in [10, Theorem 3.1], among these functions are those for which
the quasiorder lattice Quord f is maximal among all quasiorder lattices (on
A), equivalently, for which End Quord f is minimal (among all endomorphism
monoids of quasiorders). These functions are of so-called type I, II or III,
defined as follows:

(I) f2 = f,
(II) f2 is constant, say v, and |{x ∈ A | fx = v}| ≥ 3,

(III) f is a permutation with at least two cycles of length p, such that fp =
idA for some prime number p.

Note that 〈f〉 = {idA, f} for f of type I and II, while for f of type III,
〈f〉 = {idA, f, f2, . . . , fp−1} is a cyclic group of prime order.



Generalized quasiorders Page 17 of 26    23 

Surprisingly it turns out (see Theorem 5.3) that for each candidate Mf

with f satisfying (i)–(iii), the u-closure Mf is either not a minimal u-closed
monoid or Mf itself is already u-closed. Thus the minimal u-closed monoids
coincide with the u-closed C-minimal monoids. We start with the functions of
type I, II and III.

Proposition 5.2. Let f be a function of type I, II or III. Then Mf is a minimal
u-closed monoid, in particular Mf = Mf . Moreover, for these monoids we have
End gQuordMf = End QuordMf .

Proof. Clearly, 〈f〉 ∪ C = Mf ⊆ End gQuordMf ⊆ End QuordMf . But
we have End QuordMf = 〈f〉 ∪ C as it was explicitly stated in [13, Theo-
rem 2.1(B)] (but it already follows from the results in [8], [9] and also from
[11, 4.8]). Thus we have equality instead of the above inclusions and Mf is
u-closed (by Theorem 4.2). Since Mf has no proper submonoids except T be-
cause f satisfies one of the above conditions (i)–(iii), it is a minimal u-closed
monoid. �

Theorem 5.3. Let 3 ≤ |A| < ∞. The minimal u-closed monoids M ≤ AA are
exactly those of the form Mf = 〈f〉∪C where f ∈ AA is nontrivial and satisfies

(I) f2 = f, or
(II′) f2 is a constant and |A| ≥ 4, or

(III′) fp = idA for some prime p such that f has at least two fixed points or
f is of type III.

In particular, each minimal u-closed monoid is C-minimal, too.

Proof. Part 1: At first we show that Mf is u-closed for all functions of type I,
and of the new type II′ or III′. Because of Proposition 5.2, it remains to check
only those functions which are of type II′ or III′, but not of type II or III,
respectively.

Case 1: f is of type II′ but not of type II, i.e., f2 is constant, denoted by
1, |{x ∈ A | fx = 1}| = 2 and |A| ≥ 4.

For simplicity we denote the elements of A by natural numbers, A =
{1, 2, . . . , k}, where f1 = 1 and f2 = 1 (otherwise fx = 2), k ≥ 4. Thus f has
the form as given in Figure 3(a). Observe that Mf = {idA, f, c1, . . . , ck} (ci

denotes the constant function i).
As in the proof of Proposition 5.1 it is enough to show that ΓMf

is
transitive. Assume ΓMf

|= V for a matrix V = (vij)i,j∈A, i.e., the rows and
columns of V all are of the form idA = (1, 2, 3, . . . , k), f = (1, 1, 2, . . . , 2)
or ci = (i, i, i, . . . , i) (i ∈ {1, . . . , k}). We have to show that the diagonal
dV := (v11, . . . , vmm) belongs to ΓMf

. Step by step we reduce the cases to be
checked.

(a) We start with v11 = i �= 1 for some i ∈ {2, . . . , k}. Then v1,∗ = ci

(otherwise v1,∗ /∈ ΓMf
), thus, for each j ∈ {2, . . . , k} we have v1j = i what

implies v∗,j = ci. Consequently dV = ci ∈ ΓMf
and we are done.

(b) Now we can assume v11 = 1. Then v1,∗,v∗,1 ∈ {idA, f, c1} what
implies v2,∗ ∈ {idA, f, c1} and therefore we have v12, v21, v22 ∈ {1, 2}.
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Figure 3. The function f for Case 1 and Case 2 in the proof
of Theorem 5.3

Let v22 = 1 . Then v∗,2,v2,∗ ∈ {f, c1} (because f and c1 are the only
elements of ΓMf

with value 1 in the second component), in particular v2i ∈
{1, 2} for all i.

If v∗,i = cj is constant for some i ≥ 3, then j ∈ {1, 2} (because v2i ∈
{1, 2}) and all rows v�,∗ must be equal to cj for all  ≥ 3, consequently dV =
(1, 1, j, . . . , j) ∈ ΓMf

for j ∈ {1, 2}. The same argument applies for the cases
where vi,∗ = cj for some i ≥ 3 (change the role of rows and columns).

If v∗,i = f for some i ≥ 3, then all rows v�,∗ must be equal to f for all
 ≥ 3 (in no other element of ΓMf

appears 2 at the i-th place; the constant c2
can be excluded because this case already was considered above), consequently
dV = (1, 1, 2, . . . , 2) ∈ ΓMf

. As above (changing the role of rows and columns),
the same argument applies for the cases where vi,∗ = f for some i ≥ 3.

Thus it remains to consider the case that all v∗,i and vi,∗ (i ≥ 3) are
neither f nor some cj . However then all these columns and rows were equal
to idA, but this cannot appear because, e.g., v3,∗ = idA and v∗,4 = idA would
give v34 = 4 and v34 = 3, respectively, a contradiction. Note that here is used
the fact k ≥ 4.

Now let v22 = 2 . Then v2,∗ ∈ {idA, c2}.

If v2,∗ = idA, then we must have v∗,j = cj for j ≥ 3, thus dV =
(1, 2, 3, . . . , k) ∈ ΓMf

. If v2,∗ = c2, then we must have v∗,1 = idA (re-
call v11 = 1). Consequently, vj,∗ = cj for j ≥ 3 and we also get dV =
(1, 2, 3 . . . , k) ∈ ΓMf

.
Case 2: f is of type III′ but not of type III, i.e., fp = idA for some prime

p and the permutation f has only one cycle of length p but m fixed points
z1, . . . , zm where m ≥ 2.

For simplicity let A = {0, 1, . . . , p − 1, z1, . . . , zm} where 0, 1, . . . , p − 1
denote the elements of the cycle, i.e., f = (0 1 . . . p− 1)(z1) . . . (zm), moreover
let k := p + m = |A|, cf. Figure 3(b). Thus ΓMf

consists of the n-tuples
f i = (i, i + 1, . . . , i + p − 1, z1, . . . , zm) (i ∈ Zp = {0, 1, . . . , p − 1}, all counting
in Zp is done modulo p) and all constants ca = (a, a, . . . , a), a ∈ A.

We have to show that ΓMf
is transitive. Thus let ΓMf

|= V where V is
an (k ×k)-matrix V = (vij)i,j∈A (here we enumerate the rows and columns by
the elements of A).
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Figure 4. The remaining functions of type (ii) and (iii) in
the proof of Theorem 5.3

If v00 = z is a fixed point z ∈ {z1, . . . , zm} then all columns and rows of
V (as elements of ΓMf

) must be equal to cz, thus dV = (z, . . . , z) ∈ ΓMf
.

Let v00 = i for some i ∈ Zp. Then v∗,0 ∈ {ci, f
i}.

Assume v∗,0 = ci. If there exists some row vj,∗ = f i (for some j ∈ Zp),
then vj,z = z and therefore v∗,z = z for each z ∈ {z1, . . . , zm}. Thus the last
m columns are all different, what implies va,∗ = f i for all a ∈ A (here we need
m ≥ 2). Consequently, dV = (i, i + 1, . . . , i + p − 1, z1, . . . , zm) ∈ ΓMf

.

Otherwise (if such a row vj,∗ = f i does not exist), all rows vj,∗ (j ∈ Zp)
must be equal to ci, what implies v∗,z = ci for z ∈ {z1, . . . , zm}, consequently
dV = (i, . . . , i, . . . , i) ∈ ΓMf

. The same arguments apply to the case v0,∗ = ci

resulting in dV ∈ ΓMf
.

Thus it remains to consider the case v∗,0 = f i and v0,∗ = f i. However,
this case cannot occur since then vz1,∗ = cz1 and v∗,z2 = cz2 leads to the
contradiction vz1,z2 = z1 and vz1,z2 = z2 (note m ≥ 2).

Part 2: Now we show that there are no more minimal u-closed monoids
than those of type I, II′ and III′. There are only the following two cases (A)
and (B) for functions f to be considered for which Mf is C-minimal (i.e.,
satisfies (i)–(iii)) but which are not of type I, II′ or III′. We are going to show
that for these f the u-closure Mf is not minimal what will finish the proof of
the Theorem.

Case (A): f2 is constant and |A| = 3.
There is only one (up to isomorphism) such function f on a 3-element set and
we use the notation from Figure 4(A). Then Mf = {idA, f, c0, c1, c2}. Consider
the binary mapping h defined by the following table:

h 0 1 2 ∈ ΓMf

0 0 0 0 c0
1 0 0 1 f
2 0 1 2 idA

Clearly h ∈ M∗
f (as indicated in the last column). Therefore (cf. Corollary 3.11)

g := Δh ∈ Mf where g is a function of type I. Thus, by Proposition 5.2, we
get Mg = Mg ⊂ Mf , i.e., Mf is not minimal u-closed.

Case (B): fp = idA, f consists of a single p-cycle and has at most one
fixed point.
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For f we use the notation as in Figure 4(B), A = {0, 1, . . . , p − 1, z}. All
computation in Zp = {0, 1, . . . , p − 1} is done modulo p. If f has no fixed
point, z can be ignored in all what follows. We have

Mf = {id, f, f2, . . . , fp−1, c0, c1, . . . , cp−1, cz}.
Consider the binary mapping h defined by the following table:

h 0 1 . . . p − 1 z ∈ ΓMf

0 0 1 . . . p − 1 z idA

1 1 2 . . . 0 z f
2 2 3 . . . 1 z f2

...
...

... . . .
...

...
...

p − 1 p − 1 0 . . . p − 2 z fp−1

z z z . . . z z cz

Clearly h ∈ M∗ (indicated in the last column). Therefore (cf. Corollary 3.11)

g := Δh ∈ Mf and g is the permutation g : x �→ 2x for x ∈ Zp and gz = z.
Note that 0 is an additional fixed point. First we consider the case that p ≥ 5.
In the group generated by g there must exist an element g′ of prime order q
with q < p. Since p ≥ 5, g has either more than one q-cycle or at least two fixed
points, i.e., g′ is of type III′. Since g′ ∈ 〈g〉 ⊆ Mf we get (with Proposition 5.2)
Mg′ = Mg′ ⊂ Mf , i.e., Mf is not minimal u-closed.

It remains to consider the cases p = 2 and p = 3. For p = 3, we get
g = (0)(12)(z) (in cycle notation) if there exists a fixed point z what is a
function of type III′, and we can continue as above with g′. Otherwise we have
g = (0)(12). For p = 2 there must exist the fixed point z (since |A| ≥ 3), i.e.,
we have f = (01)(z), what is a function of the same form as g in case p = 3
(up to isomorphism). Thus we can continue with g. Take the function h′ given
by the table

h′ 0 1 2 ∈ ΓMg

0 0 0 0 c0
1 0 1 2 idA

2 0 2 1 g

Then h′ ∈ M∗
g (as indicated in the last column) and therefore g′′ := Δh′

belongs to Mg ⊆ Mf . But g′′ is a function of type I (g′0 = 0, g′2 = g′1 = 1).
Thus, as above, Mg′′ = Mg′′ ⊂ Mf , i.e., Mf is not minimal u-closed. �

Remark 5.4. Comparing Theorem 5.3 with the above mentioned results from
[10], we can conclude that there are monoids M ≤ AA which are charac-
terizable by generalized quasiorders but not by quasiorders, i.e., we have
M = End gQuordM but M � End QuordM (namely those Mf with f of
type II′ or III′ but not of type II or III). With other words, generalized qua-
siorders are really more powerful than quasiorders (or congruences).

For |A| = 3, M. Behrisch (personal communication) computed all
monoids of the form EndQ for Q ⊆ gQuord(A) and of the form EndQ for
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Q ⊆ Quord(A), their number is 89 and 71, respectively, among all 699 monoids
M ≤ AA.

Remark 5.5. Let A = Zk = {0, 1, . . . , k−1}, k ≥ 2, and let γk ∈ AA be the full
cycle γk = (01 . . . k−1), i.e., γk(x) = x + 1 (all computation is done modulo
k). Consider the monoid Mγk

= 〈γk〉Sym(A) ∪ C where 〈γk〉Sym(A) denotes
the subgroup (of the full symmetric group Sym(A) of all permutations on A)
generated by γk. It can be shown (unpublished result) that for the u-closure
Mγk

= 〈γk〉Sym(A) we need only congruence relations instead of all generalized
quasiorders (cf. Theorem 4.2), i.e., we have Mγk

= End ConMγk
. This closure

contains much more elements than Mγk
(namely, if k = pm1

1 · . . . · pmn
n is the

decomposition of k into powers of different primes, then we have |Mγk
| =

∑n
i=1 p

pi+p2
i+...+p

mi
i

i ). In particular, Mγk
is not u-closed (what was proved,

at least for prime k = p, already with Part II, Case (B), in the proof of
Theorem 5.3).

The lattices K(m)
A 5.6. For fixed base set A and fixed arity m ∈ N+, the set

gQuord(m)(A,F ) of all m-ary generalized quasiorders of an algebra (A,F )
forms a lattice with respect to inclusion (where one can restrict F to unary
mappings because of Theorem 3.8). All these lattices together also form a
lattice, namely

K(m)
A := {gQuord(m)(A,F ) | F ⊆ AA}.

For m = 2 this lattice was investigated in [10] (note that Quord(A,F ) =
gQuord(2)(A,F )). Due to the Galois connection End–gQuord the lattice K(m)

A

is dually isomorphic to the lattice of all those u-closed monoids M ≤ AA which
are endomorphism monoids of m-ary generalized quasiorders.

The “largest” lattice K(k)
A with k := |A| is isomorphic to the lattice of all

u-closed monoids. With Theorem 5.3 we also determined the maximal elements
of this lattice K(k)

A , which are of the form gQuordMf with f satisfying one of
the conditions I, II′ or III′.

This K(k)
A contains all K(m)

A for m < k via an order embedding. In
fact, for m < n, there is an order embedding ϕm

n : K(m)
A ↪→ K(n)

A given by
ϕm

n (gQuord(m)(A,F )) := gQuord(n)(A, F̂ ) with F̂ := End gQuord(m)(A,F ).
Conversely, there is a surjective order preserving map ψn

m : K(n)
A → K(m)

A

given by ψn
m(gQuord(n)(A,F )) := gQuord(m)(A,F ). This mapping is well-

defined because gQuord(m)(A,F ) is “contained” in gQuord(n)(A,F )) since
gQuord(m)(A,F ) = {� ∈ Rel(m)(A) | An−m × � ∈ gQuord(n)(A,F )} where
An−m × � = {(a1, . . . , an−m, b1, . . . , bm) | a1, . . . , am ∈ A, (b1, . . . , bm) ∈ �}
(it is easy to see that An−m × � is a generalized quasiorder if and only if �

is). Thus � �→ An−m × � is an order embedding from gQuord(m)(A,F ) into
gQuord(n)(A,F ).
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6. Concluding remarks

An algebra (A,F ) is called affine complete if every function compatible with all
congruence relations of (A,F ) is a polynomial function, equivalently (for finite
A), if Pol Con(A,F ) is the clone 〈F ∪ C〉A generated by F and the constants
C. With the notation introduced in Definition 2.1(3) (and due to Remark 2.3)
we have:

(A,F ) affine complete ⇐⇒ 〈F ∪ C〉A = Pol Con(A,F ),

⇐⇒ ∃Q ⊆ Eq(A) :

〈F ∪ C〉A = M∗ for M := EndQ.

Instead of equivalence relations we may now consider other relations
which also satisfy the property Ξ (cf. Definition 2.2). This leads to the no-
tion generalized quasiorder complete, or gQuord-complete for short, which can
be defined and characterized as follows:

(A,F ) gQuord-complete : ⇐⇒ 〈F ∪ C〉A = Pol gQuord(A,F )

⇐⇒ ∃Q ⊆ gQuord(A) :

〈F ∪ C〉A = M∗ for M := EndQ

⇐⇒ ∃ u-closed M ≤ AA : 〈F ∪ C〉A = M∗.

As an intermediate step one might introduce Quord-complete algebras
(replacing gQuord by Quord above).

Clearly, affine completeness implies gQuord-completeness (but not con-
versely). Thus it is natural to ask which algebraic properties of affine complete
algebras remain valid for gQuord-complete algebras. Moreover, what can be
said about varieties generated by gQuord-complete algebras?

We recall that a variety V is called affine complete, if all algebras A ∈ V
are affine complete. Similarly, we can define a gQuord-complete variety by the
property that all its algebras A ∈ V are gQuord-complete. Hence, by our defini-
tion, gQuord-complete varieties can be considered a generalization of the affine
complete varieties. It is known that any affine complete variety is congruence
distributive (see e.g. [14]). There arises the question what are the properties of
gQuord-complete varieties, could they be still congruence distributive? In the
paper [14] also a characterization of affine complete arithmetical varieties is
established (A variety is called arithmetical, if any algebra in it is congruence
distributive and congruence permutable.) Therefore, it is meaningful to ask if
there exists any characterization for gQuord-complete arithmetical algebras.

We mention some further topics for research:

– Characterize the u-closed monoids which are already given by their qua-
siorders or congruences (cf. Remarks 5.4, 5.5), i.e., characterize monoids
M with the property M = End gQuordM = End QuordM or M =
End gQuordM = End ConM, respectively.

– Characterize the Galois closures gQuord EndQ, cf. Remark 4.9.
– Investigate the lattices K(m)

A (Remark 5) and their interrelations.
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Remarks by two of the coauthors

In June 2022, a Honorary colloquium on the occasion of Reinhard Pöschel’s
75th birthday was held in Dresden. There R. Pöschel presented a talk contain-
ing the basics of this article [12]. The colloquium was organized by M. Bodirsky
and M. Schneider, who at the same time informed about a forthcoming topical
collection of Algebra Universalis, which will be dedicated to R. Pöschel. At that
time, the full version of the presented results was not yet written.
We, the coauthors of the results, also wanted to contribute to this honorary
commemoration and therefore here — because with Reinhard as coauthor we
cannot submit it to the topical collection — we use the presentation of our
common results as an opportunity to express our deep respect and gratitude
to Reinhard, for his inventiveness, creativity, energy, and for his kindness.
For more than 16 years we both have been working successfully together with
Reinhard who was the initiator of many of our joint works. Our thanks also
go to Martin Schneider for his helpful hints.

June 2023 Danica Jakub́ıková-Studenovská and Sándor Radeleczki
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[2] Bodnarčuk, V., Kalužnin, L., Kotov, N., Romov, B.: Galois theory for post
algebras I. Kibernetika (Kiev) 3, 1–10 (1969). (Russian)
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