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Abstract. Motivated by Haviar and Ploščica’s 2021 characterisation of
Boolean products of simple De Morgan algebras, we investigate Boolean
products of simple algebras in filtral varieties. We provide two main the-
orems. The first yields Werner’s Boolean-product representation of alge-
bras in a discriminator variety as an immediate application. The second,
which applies to algebras in which the top congruence is compact, yields
a generalisation of the Haviar–Ploščica result to semisimple varieties of
Ockham algebras. The property of having factor principal congruences is
fundamental to both theorems. While major parts of our general theorems
can be derived from results in the literature, we offer new, self-contained
and essentially elementary proofs.
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1. Introduction

In this section we give an overview of the genesis and the results of the paper.
Our results have their roots in a theorem by Haviar and Ploščica [16]

on Boolean-product representations of De Morgan algebras. Let A be a De
Morgan algebra and let B(A) be its Boolean skeleton. Haviar and Ploščica
proved that the natural restriction map is an isomorphism between ConA and
ConB(A) if and only if A is a Boolean product of the three simple De Morgan
algebras—the two- and three-element chains and the four-element non-Boolean
De Morgan algebra. (They also gave a characterisation of such algebras in
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terms of their natural-duality dual space.) The Boolean skeleton B(A) of A
is isomorphic to the Boolean algebra Conf A of factor congruences on A and
consequently ConB(A) is isomorphic to the lattice Id(Conf A) of ideals of
Conf A. Thus the Haviar–Ploščica result could be thought of as saying: a De
Morgan algebra A satisfies ConA ∼= Id(Conf A) if and only if A is isomorphic
to a Boolean product of simple De Morgan algebras.

Recall that a variety V is semisimple if every subdirectly irreducible al-
gebra in V is simple, and is sub-semisimple if every non-trivial subalgebra
of every subdirectly irreducible algebra in V is simple. Since the variety M

of De Morgan algebras is finitely generated, sub-semisimple and congruence
distributive, it is a filtral variety (meaning that every congruence on every
subdirect product of subdirectly irreducible algebras from M arises in a nat-
ural way from a filter on the index set of the product)—see Section 4, and
Proposition 4.1(3) in particular. Note that 1A is compact in ConA, for every
De Morgan algebra A; indeed, 1A = CgA(0, 1).

A setting in which every algebra is isomorphic to a Boolean product of
simple algebras (with possibly one trivial stalk) is that of discriminator va-
rieties: this is Werner’s fundamental Boolean-product representation theorem
for algebras in a discriminator variety (Werner [24, Thm 4.9]; see also Bur-
ris and Sankappanavar [5, Chapter IV, Thm 9.4]). Discriminator varieties are
congruence distributive and sub-semisimple and their simple members form
an elementary class (and are therefore closed under ultraproducts); see Sub-
section 2.2 below. Hence discriminator varieties are filtral; see the equivalence
of (i) and (vi) in Proposition 4.1(2).

So a natural setting for a generalisation of both the Haviar–Ploščica the-
orem for De Morgan algebras and Werner’s representation of algebras in a
discriminator variety is to algebras in a filtral variety.

We present two theorems, one for algebras in which 1A is not assumed to
be compact in ConA, and a stronger one for algebras in which 1A is compact.
The first theorem yields Werner’s Boolean-product representation theorem for
discriminator varieties as an immediate application. The second theorem can
be applied to extend the Haviar–Ploščica result from De Morgan algebras to
every finitely generated semisimple variety of Ockham algebras.

We have attempted to make the paper as self-contained as possible. We
give proofs, where they are short and illuminating, of some results that can be
found elsewhere. The required universal-algebraic background is quite minimal
and can be found, for example, in the texts by Bergman [1] and Burris and
Sankappanavar [5].

The main theorems and the applications to discriminator varieties and
to Ockham algebras are discussed in the next section. In Section 3 we investi-
gate the relationship between compact, complemented and factor congruences,
particularly in congruence-distributive algebras. Section 4 gives a brief sum-
mary of the results we need concerning filtral varieties. The natural duality
for generalised Boolean algebras is essential to our results and is presented
in Section 5. Boolean products are introduced in Section 6, where we also see
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how Boolean base spaces arise in filtral varieties. Section 7 presents four differ-
ent representations for the congruence lattice of an algebra in a filtral variety
and applies the representations to study complemented congruences. Finally,
in Section 8 we present the proofs of our two main theorems.

It is our hope that this paper will serve as an introduction—indeed an
invitation—to filtral varieties, to Boolean products and to Ockham algebras.

2. The theorems and their applications

Let A be an algebra. The congruence lattice of A is denoted by ConA, with
top element 1A and bottom 0A. A congruence α ∈ ConA is a factor congruence
if there exists β ∈ ConA with α ∩ β = 0A and α · β = 1A, and we then refer
to (α, β) as a pair of factor congruences. This implies that α ∨ β = 1A in
ConA, whence β is a complement of α in ConA. For a refresher on factor
congruences, we refer forward to Section 3. We say that an algebra A has
factor principal congruences if every principal congruence on A is a factor
congruence. We denote the set of factor congruences on A by Conf A. For a
congruence-distributive algebra A, the set Conf A is a sublattice of ConA and
forms a Boolean algebra (see Lemma 3.1). For a discussion of filtral varieties
and Boolean products, we refer to Sections 4 and 6 respectively.

2.1. The main theorems

We now state abridged versions of our principal results. The difference between
the versions stated here and the full versions in Section 8 is that the full versions
include an item that gives a specific choice for the base space of the Boolean
product.

Theorem 2.1 (See Theorem 8.1). Let V be a filtral variety and let A be a
non-trivial algebra in V. The following are equivalent:
(1) A has factor principal congruences;
(2) A has permuting congruences;
(3) A is isomorphic to a Boolean product in which each non-trivial stalk is a

simple algebra from V and moreover at most one stalk is trivial.

Theorem 2.2 (See Theorem 8.2). Let V be a filtral variety and let A be a
non-trivial algebra in V such that 1A is compact in ConA. The following are
equivalent:
(1) A has factor principal congruences;
(2) A has permuting congruences;
(3) ConA is isomorphic to the lattice Id(Conf A) of ideals of the Boolean

algebra Conf A of factor congruences on A via ψ : α �→ ↓α ∩ Conf A, for
all α ∈ ConA;

(4) A is isomorphic to a Boolean product of simple algebras from V.

Remark 2.3. The equivalence of the conditions in Theorem 2.1 (and of those in
Theorem 8.1) follows from Theorem 4.3 of Campercholi and Vaggione [8]. The
same is true of the equivalence of (1), (2) and (4) in Theorem 2.2 (and of (1),
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(2), (4) and (5) in Theorem 8.2). Campercholi and Vaggione’s theorem applies
to quasivarieties, but when applied to a variety V their overriding assumptions
become
(a) V is semisimple,
(b) V has restricted equationally definable principal congruences, and
(c) V has equationally definable principal meets.

By Proposition 4.1(2) below, (a) and (b) hold if and only if V is filtral.
We will not define equationally definable principal meets but note that, by
Blok and Pigozzi [3, Thm 1.5], V has equationally definable principal meets if
and only if V is congruence distributive and the intersection of every pair of
compact congruences on each algebra in V is compact. It follows that every
filtral variety has equationally definable principal meets; use (2) and (5)(i) of
Proposition 4.1 below. Thus (c) follows from (a) and (b), and consequently
their assumptions say exactly that V is filtral.

Our Theorem 8.1 and the equivalence of (1), (2), (4) and (5) in Theo-
rem 8.2 also follow from Vaggione [22, Thm 8.4], but it takes a little more work
to see this. Our contribution is to provide new, elementary and self-contained
proofs along with a new application to Ockham algebras.

2.2. An application to discriminator varieties

A variety V is a discriminator variety if it has a discriminator term, that is,
a ternary term t such that

tA(x, y, z) =

{
x, if x 	= y,

z, if x = y,

for every subdirectly irreducible algebra A in V. We use Werner [24] as our
standard reference on discriminator varieties; see also Burris and Sankap-
panavar [5, Chapter IV, §9]. (Unfortunately, Werner’s excellent monograph
[24] might be difficult for some readers to access.)

Let V be a discriminator variety with discriminator term t. The following
observations are very easily verified:

• The term t is a two-thirds minority term on every subdirectly irreducible
algebra in V and therefore V satisfies

t(y, y, x) ≈ t(x, y, x) ≈ t(x, y, y) ≈ x.

Hence, by a classic result of Pixley [20], V is both congruence distributive
and congruence permutable.

• V is sub-semisimple and the simple algebras in V form an elementary
class and so are closed under ultraproducts.
Hence discriminator varieties are filtral. In addition, they are congru-

ence permutable—indeed, by Fried and Kiss [15, Thm 4.16(a)], a variety is a
discriminator variety if and only if it is filtral and congruence permutable.

An immediate application of Theorems 2.1 and 2.2 yields the representa-
tion theorem for discriminator varieties due to Werner [24, Thm 4.9] (see also
Burris and Sankappanavar [5, Chapter IV, Thm 9.4]).
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Theorem 2.4. Let A be a non-trivial algebra in a discriminator variety V.
Then A is isomorphic to a Boolean product in which each non-trivial stalk
is a simple algebra from V and moreover at most one stalk is trivial. If 1A

is compact in ConA, then A is isomorphic to a Boolean product of simple
algebras from V.

2.3. An application to Ockham algebras

Ockham algebras in general. An algebra A = 〈A;∨,∧, f, 0, 1〉 is an Ockham
algebra if A� := 〈A;∨,∧, 0, 1〉 is a bounded distributive lattice and f : A → A
is a dual endomorphism of A�. We use the text by Blyth and Varlet [4] as
our standard reference on Ockham algebras. It is straightforward to see that,
given an Ockham algebra A = 〈A;∨,∧, f, 0, 1〉, the Boolean skeleton

B(A) := { a ∈ A | a ∧ f(a) = 0 & a ∨ f(a) = 1 }
forms a Boolean subalgebra of A.

Lemma 2.5. Let A be a non-trivial Ockham algebra. For all a ∈ A, define an
equivalence relation θa on A by

(∀x, y ∈ A) (x, y) ∈ θa ⇐⇒ x ∨ a = y ∨ a.

(1) (a) θa is a lattice congruence.
(b) θa is an Ockham-algebra congruence if and only if a ∨ f(a) = 1.
(c) For all a ∈ B(A) and all α ∈ ConA, we have θa ⊆ α if and only if

(a, 0) ∈ α.
(d) A congruence on A is a factor congruence if and only if it is of the

form θa, for some a ∈ B(A).
(2) The map μ : a �→ θa is an isomorphism between the Boolean algebras

B(A) and Conf A.

Proof. (1) Parts (a)–(c) are left for the reader. We remark only that one can
in fact show that a lattice L is distributive if and only if θa is a congruence on
L, for all a ∈ L.

(d) Let a ∈ B(A); thus a ∧ f(a) = 0 and a ∨ f(a) = 1. We claim that
(θa, θf(a)) is a pair of factor congruences on A, that is, θa ∩ θf(a) = 0A and
θa · θf(a) = 1A. Let x, y ∈ A. Then

(x, y) ∈ θa ∩ θf(a) =⇒ x ∨ a = y ∨ a & x ∨ f(a) = y ∨ f(a)

=⇒ x ∨ (a ∧ f(a)) = y ∨ (a ∧ f(a))

=⇒ x = y since a ∧ f(a) = 0.

We now wish to prove that (x, y) ∈ θa · θf(a). Define z := (x ∨ a) ∧ (y ∨ f(a)).
Then

z ∨ a = ((x ∨ a) ∧ (y ∨ f(a))) ∨ a = (x ∨ a) ∧ (y ∨ f(a) ∨ a) = x ∨ a,

as f(a) ∨ a = 1. Thus (x, z) ∈ θa. Similarly,

z ∨ f(a) = ((x ∨ a) ∧ (y ∨ f(a))) ∨ f(a) = (x ∨ a ∨ f(a)) ∧ (y ∨ f(a)) = y ∨ f(a),

as a ∨ f(a) = 1. Thus (z, y) ∈ θf(a). Hence θa · θf(a) = 1A and consequently θa

is a factor congruence.
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Now assume that α is a factor congruence. Then there is a congruence
β such that α ∩ β = 0A and α · β = 1A and the map λ : x �→ (x/α, x/β) is
an isomorphism from A to A/α × A/β. Let a ∈ A satisfy λ(a) = (0/α, 1/β),
that is, a is the unique element of A satisfying (0, a) ∈ α and (a, 1) ∈ β. Note
that λ(a) satisfies λ(a) ∧ f(λ(a)) = 0 and λ(a) ∨ f(λ(a)) = 1 in A/α × A/β.
As λ is an isomorphism, we conclude that a ∧ f(a) = 0 and a ∨ f(a) = 1 in A,
that is, a ∈ B(A). We claim that α = θa. Let x, y ∈ A. Since (0, a) ∈ α,
we have θa ⊆ α, by (c). To prove the reverse inclusion, let (x, y) ∈ α. Then
x ∨ a ≡α y ∨ a, and, since (a, 1) ∈ β, we have

x ∨ a ≡β x ∨ 1 = 1 = y ∨ 1 ≡β y ∨ a,

giving x ∨ a ≡β y ∨ a. Since α ∩ β = 0A, we have x ∨ a = y ∨ a, that is,
(x, y) ∈ θa. Hence α ⊆ θa. Thus α = θa, as claimed.

(2) By (1)(d), the map μ : B(A) → Conf A is well defined and surjective,
and it remains to prove that μ is an order-embedding. Let a, b ∈ B(A). Then,
using (1)(c),

θa ⊆ θb ⇐⇒ (a, 0) ∈ θb ⇐⇒ a ∨ b = 0 ∨ b = b ⇐⇒ a � b,

as required. �

Since Ockham algebras have the congruence extension property, every
non-trivial subalgebra of a simple Ockham algebra is simple. Hence every
semisimple variety of Ockham algebras is sub-semisimple. Consequently, every
finitely generated semisimple variety of Ockham algebras is filtral, by Propo-
sition 4.1(3).

An algebra A is called a perfect extension of a subalgebra B if every
congruence on B has a unique extension to A, or equivalently, if the natural
restriction map from ConA to ConB is an isomorphism.

Let S be a finite set of finite simple Ockham algebras and let S(S) denote
the set of subalgebras of algebras in S. It follows immediately from Jónsson’s
Lemma that every simple algebra in Var(S) is isomorphic to an algebra in S(S).
Theorem 2.2 yields the following result.

Theorem 2.6. Let S be a finite set of finite simple Ockham algebras and let A
be a non-trivial algebra in V = Var(S). Then the following are equivalent:

(1) A has factor principal congruences;
(2) A has permuting congruences;
(3) A is a perfect extension of its Boolean skeleton B(A);
(4) A is isomorphic to a Boolean product of algebras from S(S).

Proof. Given Theorem 2.2, it remains to show that ψ : ConA → Id(Conf A),
defined by ψ(α) = ↓α ∩ Conf A, for all α ∈ ConA, is an isomorphism if and
only if A is a perfect extension of B(A).

Assume that ψ is an isomorphism. Since Ockham algebras have the con-
gruence extension property, to prove that A is a perfect extension of B(A) we
must show that α�B(A) = β�B(A) implies α = β, for all α, β ∈ ConA.



Boolean products in filtral varieties Page 7 of 23    19 

Let α, β ∈ ConA with α�B(A) = β�B(A). To prove that α = β, it suffices
to show that ψ(α) = ψ(β). But

ψ(α) = { γ ∈ Conf A | γ ⊆ α } definition of ψ

= { θa | a ∈ B(A) & θa ⊆ α } by Lemma 2.5(1)(d)

= { θa | a ∈ B(A) & (a, 0) ∈ α } by Lemma 2.5(1)(c)

= { θa | a ∈ B(A) & (a, 0) ∈ β } as α�B(A) = β�B(A)

= { θa | a ∈ B(A) & θa ⊆ β } by Lemma 2.5(1)(c)

= { γ ∈ Conf A | γ ⊆ β } by Lemma 2.5(1)(d)

= ψ(β),

as required.
Conversely, assume that A is a perfect extension of B(A), that is, ρ :

ConA → ConB(A), given by ρ(α) = α�B(A), for all α ∈ ConA, is an
isomorphism. Let σ : ConB(A) → Id(B(A)) be the isomorphism given by
σ(γ) = 0/γ, for all γ ∈ ConB(A), and let μ : Id(B(A)) → Id(Conf A) be
the natural isomorphism induced by the isomorphism μ : B(A) → Conf A of
Lemma 2.5(2). We claim that ψ = μ◦σ◦ρ. Since ρ, σ and μ are isomorphisms,
it will then follow that ψ is an isomorphism, as required.

Let α ∈ ConA. Then

μ(σ(ρ(α))) = μ(σ(α�B(A)))

= μ(0/α�B(A))

= { θa | a ∈ 0/α�B(A) } definition of μ

= { θa | a ∈ B(A) & (a, 0) ∈ α }
= { γ ∈ Conf A | γ ⊆ α } by Lemma 2.5(1)(c)(d)

= ψ(α),

as claimed. �

De Morgan algebras in particular. A De Morgan algebra is an Ockham algebra
that satisfies the double negation law: f(f(x)) ≈ x. The result of Haviar
and Ploščica [16] that motivated this work states that a De Morgan algebra
A is a perfect extension of its Boolean skeleton B(A) if and only if A is
a Boolean product of simple De Morgan algebras. This follows immediately
from Theorem 2.6 by choosing S to contain just the four-element non-Boolean
De Morgan algebra.

3. Compact, complemented and factor congruences

We begin by recording, without proof, some well-known and straightforward
facts about factor congruences on an algebra A; see the start of Section 2 for
the definition.

Pairs of factor congruences correspond to factorisations of A: if (α, β) is
a pair of factor congruences, then A ∼= A/α × A/β, and if A = A1 × A2,
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then (ker π1, ker π2) is a pair of factor congruences, where πi : A1 × A2 → Ai

is the projection for i ∈ {1, 2}. Recall that Conf A denotes the set of factor
congruences on A. We denote the set of complemented congruences on A by
Con′A. Thus Conf A ⊆ Con′A always holds.

The following is a straightforward and well-known exercise.

Lemma 3.1. Let A be a congruence-distributive algebra.

(1) α ∈ ConA is a factor congruence if and only if α has a complement in
ConA and α · θ = θ · α, for all θ ∈ ConA.

(2) The set Conf A is a sublattice of ConA and forms a Boolean algebra.

As an almost immediate consequence we have the following.

Lemma 3.2. Let A be a congruence-distributive algebra with factor principal
congruences. Then A has permuting congruences.

Proof. By Lemma 3.1, every principal congruence on A permutes with every
congruence on A. In particular, every pair of principal congruences permute.
Since every congruence on A is a join of principal congruences, it follows easily
from the description via relational products of joins in ConA that each pair
of congruences on A permute. �

To generalise the Haviar–Ploščica result, we will work with algebras A
that have the property that 1A is compact in ConA. At the variety level, the
following result is a useful characterisation.

Lemma 3.3. Let V be a variety. The following are equivalent:

(1) 1A is compact in ConA, for every algebra A in V;
(2) no non-trivial algebra in V has a trivial subalgebra;
(3) no subdirectly irreducible algebra in V has a trivial subalgebra.

Proof. The equivalence of (1) and (2) is the main result of Kollár [18], and
(2) is equivalent to (3) since every algebra in V is a subdirect product of its
subdirectly irreducible homomorphic images. See also Csákány [9]. �

The following remark recalls some well-known facts about congruence
lattices and establishes some notation.

Remark 3.4. Let A be an algebra. The set Conc A of compact congruences on
A forms a join-subsemilattice of ConA and contains 0A. For all α ∈ ConA,
the set I := ↓α ∩ Conc A is an ideal of Conc A with α =

∨
ConA I =

⋃
I. The

map

ϕ : α �→ ↓α ∩ Conc A

is an isomorphism between ConA and the lattice Id(Conc A) of ideals of
Conc A, with inverse given by ϕ−1 : I �→ ∨

ConA I =
⋃

I. Where needed,
we shall use ϕ rather than ϕ�X to denote the restriction of ϕ to a subset X
of ConA.
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Figure 1. The pentagon sublattice of ConA

An algebra A has complemented principal congruences if, for all a, b ∈ A,
the principal congruence CgA(a, b) has a complement in ConA, and a variety
V has complemented principal congruences if every algebra in V does. This
is a weakening of factor principal congruences. It is very easy to see that if a
variety V has complemented principal congruences, then it is semisimple—just
use the fact that the monolith of a subdirectly irreducible algebra is principal.

Lemma 3.5. Let A be a congruence-modular algebra.
(1) Assume that κ is compact in ConA and let α ∈ ConA with α � κ. If

α has a complement β in the interval ↓ConAκ, then both α and β are
compact in ConA.

(2) Assume that 1A is compact in ConA. Then every complemented congru-
ence is compact, i.e., Con′A ⊆ Conc A.

Proof. Clearly (2) follows from (1). To prove (1), let α ∈ ↓ConAκ and assume
that β is a complement of α in ↓ConAκ. Define I := ϕ(α), J := ϕ(β) and
K := ϕ(κ). Then I ∩ J = {0A} and I ∨ J = K in the lattice of ideals of
Conc A. Since, by assumption, κ ∈ Conc A, we have κ ∈ K, and hence there
exist γ ∈ I and δ ∈ J with γ∨δ = κ. Since I∩J = {0A}, we also have γ∧δ = 0A.
As γ ∈ I = ϕ(α) = ↓α∩Conc A, we have γ � α, and similarly, δ � β. If γ < α,
then {0A, γ, α, β, κ} forms a pentagon sublattice of ConA, contradicting the
fact that ConA is modular; see Figure 1. Hence α = γ ∈ Conc A, and by
symmetry, β ∈ Conc A. �

Recall that a generalised Boolean algebra is a distributive lattice L with
zero in which ↓a is a complemented lattice, for all a ∈ L. We will see in
Proposition 4.1(2) that, at the variety level, condition (1) of the next lemma
is equivalent to filtrality.

Lemma 3.6. The following are related by (1) ⇔ (2) ⇒ (3) for every algebra A:
(1) A is congruence distributive and has complemented principal congruences;
(2) A is congruence distributive and Conc A ⊆ Con′A;
(3) (a) Conc A is a sublattice of ConA, and

(b) Conc A is a generalised Boolean algebra.
Moreover, (3)(b) implies that A is congruence distributive.

If 1A is compact in ConA, then the three conditions are mutually equival-
ent, and we can replace ‘generalised Boolean algebra’ by ‘Boolean algebra’ in
(3)(b) and we can write Conc A = Con′A in (2).



   19 Page 10 of 23 B. A. Davey and M. Haviar Algebra Univers.

Proof. (1) ⇔ (2): Assume (1). It is easy to see that every finite join of comple-
mented elements in a bounded distributive lattice is complemented. Since every
compact congruence is a join of principal congruences, we conclude that every
compact congruence on A has a complement. Since principal congruences are
compact, (2) ⇒ (1) is trivial.

(2) ⇒ (3): Assume (2). Let α, β ∈ Conc A. By (2), α and β have comple-
ments, say α′ and β′, in ConA. The distributivity of ConA guarantees that
α′ ∧ β is a complement of α ∧ β in the interval ↓ConAβ. By Lemma 3.5(1),
both α ∧ β and α′ ∧ β are compact in ConA. Hence (a) holds. When α � β,
we have shown that α′ ∧β is a complement of α in the interval ↓Conc Aβ. Since
ConA is distributive, it now follows that ↓Conc Aβ is a Boolean lattice, for all
β ∈ Conc A, whence Conc A is a generalised Boolean algebra, proving (b).

Now assume (3)(b). Since, by Remark 3.4, ConA is isomorphic to
Id(Conc A) and since the lattice of ideals of a distributive lattice is itself dis-
tributive, we conclude that ConA is distributive.

Finally, assume (3) and assume that 1A ∈ Conc A. It follows that the
generalised Boolean algebra Conc A is in fact a Boolean algebra and the com-
plement in Conc A of a principal congruence is also a complement in ConA.
Hence (3) implies (1); moreover, since ConA is distributive and therefore mod-
ular, Con′A ⊆ Conc A by Lemma 3.5(2). �

Since Conf A ⊆ Con′A, the previous lemma applies whenever A is con-
gruence distributive and has factor principal congruences. When 1A is compact
in ConA, we can say a little more.

Lemma 3.7. Let A be a congruence-distributive algebra. The following condi-
tions are related by (1) ⇔ (2) and (3) ⇒ (4) ⇒ (1), and are equivalent if 1A

is compact in ConA:

(1) A has factor principal congruences;
(2) every compact congruence on A is a factor congruence;
(3) Conc A = Conf A = Con′A;
(4) ConA is isomorphic to the lattice of ideals of the Boolean algebra Conf A

of factor congruences on A via ψ : α �→ ↓α ∩ Conf A, for all α ∈ ConA.

Proof. Since the compact congruences are the finite joins of principal congru-
ences, (1) ⇒ (2) follows from Lemma 3.1(2), and (2) ⇒ (1) is trivial.

(3) ⇒ (4): Assume (3); then Conf A = Conc A, and (4) follows at once
from Remark 3.4 since ψ = ϕ.

(4) ⇒ (1): Assume (4) and let α be a principal congruence on A. Then
α is compact in ConA and hence, by (4), ψ(α) is compact in Id(Conf A).
Since an ideal of Conf A is compact if and only if it is principal, there exists
γ ∈ Conf A with ψ(α) = ↓Conf A

γ. Hence

ψ(α) = ↓Conf A
γ

= ↓γ ∩ Conf A

= ψ(γ),
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whence α = γ ∈ Conf A since ψ is one-to-one. Thus α is a factor congruence,
as required.

Finally assume 1A ∈ Conc A and assume (2); so Conc A ⊆ Conf A. Since
Conf A ⊆ Con′A always holds and Con′A ⊆ Conc A by Lemma 3.5(2), (3)
follows. �

We note that the converse property, namely ‘every factor congruence is
compact’, has been studied by Vaggione and Sánchez Terraf [23].

4. Filtral varieties

Let A be a subalgebra of a product
∏

x∈X Ax, with X 	= ∅. For all a, b ∈ A,
define

[[a = b]] := {x ∈ X | a(x) = b(x) }.

Let F be a filter on X. The congruence θF on A induced by F is defined by:
for all a, b ∈ A,

(a, b) ∈ θF ⇐⇒ [[a = b]] ∈ F .

For all N ⊆ X, the set ↑N := {U ⊆ X | N ⊆ U } is the principal filter
generated by N and we abbreviate θ↑N to θN ; thus,

(a, b) ∈ θN ⇐⇒ N ⊆ [[a = b]].

When necessary for clarity, we shall use θF to denote the congruence induced
by F on

∏
x∈X Ax and use θF�A to denote its restriction to A.

Congruences of the form θF , for some filter F on X, are called filtral.
A variety V is filtral if every congruence on every subdirect product of subdi-
rectly irreducible algebras from V is filtral. Filtral varieties were introduced by
Magari [19] in the late 1960s and were intensively studied, particularly during
the 1970s and 1980s.

We now collect together from the literature some important characteri-
sations and properties of filtral varieties.

A class K of algebras has restricted equationally definable principal con-
gruences if there exist 4-ary terms pi, qi, i = 1, . . . , n, such that, for every
algebra A ∈ K and all a, b, c, d ∈ A,

(c, d) ∈ CgA(a, b) ⇐⇒
n

&
i=1

pi(a, b, c, d) = qi(a, b, c, d).

While it is obvious that filtral varieties are semisimple, it is far from clear that
they are sub-semisimple. We include a short proof based on an argument given
by Franci [12, Thm 1.1].

Proposition 4.1. Let V be a variety.
(1) Every filtral variety is sub-semisimple.
(2) The following are equivalent:

(i) V is a filtral variety;
(ii) V is semisimple and every congruence on every subalgebra of a prod-

uct of simple algebras from V is filtral;
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(iii) V is semisimple and for every subalgebra A of a product
∏

x∈X Ax

of simple algebras from V, we have CgA(a, b) = θN , where N =
[[a = b]], for all a, b ∈ A;

(iv) V is congruence distributive and has complemented principal congr-
uences;

(v) V is semisimple and has restricted equationally definable principal
congruences;

(vi) V is sub-semisimple and congruence distributive, and the class con-
sisting of the simple algebras from V is closed under ultraproducts.

(3) A finitely generated variety is filtral if and only if it is sub-semisimple
and congruence distributive.

(4) If V is filtral, then the class consisting of the simple algebras from V along
with the one-element algebras is a universal class.

(5) Assume that V is filtral and let A be a non-trivial algebra in V.
(i) Conc A is a sublattice of ConA, and
(ii) Conc A is a generalised Boolean algebra.
If 1A is compact in ConA, then

(i) Conc A is a {0, 1}-sublattice of ConA, and
(ii) Conc A is a Boolean algebra.

(6) An algebra in a filtral variety has factor principal congruences if and only
if it has permuting congruences.

Proof. (1) Assume that V is a non-trivial filtral variety. Let A ∈ V be subdi-
rectly irreducible, let B be a non-trivial subalgebra of A and let β ∈ ConB.
We shall prove that β ∈ {0B , 1B}. Define

C := { c ∈ AN | (∃b ∈ B) {n ∈ N | c(n) 	= b } is finite }.

Then C is a subuniverse of AN and C is a subdirect subalgebra of AN. Define
μ : C → B by μ(c) := limn→∞ c(n) and define β̂ ∈ ConC by

(∀c1, c2 ∈ C) (c1, c2) ∈ β̂ ⇐⇒ (μ(c1), μ(c2)) ∈ β. (∗)

Since A is subdirectly irreducible and V is filtral, there exists a filter F on N

with θF�C = β̂. For all b ∈ B, let b ∈ C be the constant map onto {b}.

Case (a): ∅ ∈ F or equivalently F = ℘(N). In this case θF�C = 1C . Hence,
for all b1, b2 ∈ B, we have (b1, b2) ∈ θF�C = β̂ and therefore (b1, b2) =
(μ(b1), μ(b2)) ∈ β by (∗). Thus, in this case, we have β = 1B .

Case (b): ∅ /∈ F . Let b1, b2 ∈ B. Then, using (∗) and the fact that θF�C = β̂,

(b1, b2) ∈ β ⇐⇒ (μ(b1), μ(b2)) ∈ β ⇐⇒ (b1, b2) ∈ β̂ ⇐⇒ [[b1 = b2]] ∈ F .

Since [[b1 = b2]] ∈ {∅, N}, for all b1, b2 ∈ B, and ∅ /∈ F , we conclude that

(b1, b2) ∈ β ⇐⇒ [[b1 = b2]] = N ⇐⇒ b1 = b2.

Thus, in this case, we have β = 0B .
We have proved β ∈ {0B , 1B}, as required.
(2) That (i) implies (ii) is an easy consequence of (1): use the fact that

a subalgebra of a product is a subdirect product of subalgebras of the factors.
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Of course, it is trivial that (ii) implies (i). (The equivalence of (i) and (ii) is
due to Magari [19]; see also Franci [12, Thm 1.1].)

That a filtral variety is congruence distributive was proved by Köhler and
Pigozzi [17, Cor. 6], and is also proved in Fried and Kiss [15, Thm 4.9].

The equivalence of (i), (iii) and (iv) is due to Fried and Kiss [15, Thms 4.11
and 4.13]. The equivalence of (i) and (v) is due to Fried, Grätzer and Quack-
enbush [14, Thms 4.5, 5.4 and Cor. 5.6].

We now prove that a filtral variety V satisfies the conditions given in (vi).
By (1), V is sub-semisimple, and V is congruence distributive by (iv). Finally,
we show that the class of simple algebras in V is closed under ultraproducts. It
is very easy to see that if

∏
x∈X Ax is a product of simple algebras from V with

X 	= ∅, then the map F �→ θF is an isomorphism between the lattice of filters
on X and the congruence lattice of

∏
x∈X Ax. Hence, if F is an ultrafilter

on X, then θF is a maximal congruence on the product and consequently the
ultraproduct

( ∏
x∈X Ax

)
/θF is simple.

For the converse, assume that V satisfies the conditions in (vi). Let A be
a subalgebra of a product

∏
x∈X Ax, where X 	= ∅, with each Ax a subdirectly

irreducible algebra in V. As V is semisimple, each Ax is simple. Again since
V is semisimple, every congruence on A is an intersection of maximal congru-
ences. Therefore to prove that the congruences on A are filtral, it suffices to
prove that every maximal congruence on A is filtral. Let β be a maximal con-
gruence on A. By Jónsson’s Lemma, there is an ultrafilter F on X such that
θF�A � β. By assumption, the ultraproduct

( ∏
x∈X Ax

)
/θF is simple. Since

V is sub-semisimple, it follows that the subalgebra A/θF�A of
( ∏

x∈X Ax

)
/θF

is simple, whence θF�A is maximal in ConA. Consequently θF�A � β implies
that θF�A = β; whence β is filtral.

(3) This is an immediate consequence of the equivalence of (i) and (vi)
in (2), as a finitely generated congruence-distributive variety has only finitely
many subdirectly irreducible algebras each of which is finite—another conse-
quence of Jónsson’s Lemma.

(4) Assume that V is a filtral variety. By (2)(vi), the class S consisting of
the simple algebras from V along with the one-element algebras is closed under
ultraproducts. By sub-semisimplicity, S is closed under forming subalgebras.
Hence S is a universal class by the �Los–Tarski Theorem. (That S is a universal
class was first observed by Bergman [2].)

(5) This follows at once from Lemma 3.6 since a filtral variety is congru-
ence distributive and has complemented principal congruences by (2). (This
result was first proved by Fried and Grätzer [13]; see their Claims 1 and 2.)

(6) Since a filtral variety is congruence distributive, the forward direc-
tion follows from Lemma 3.2. The reverse direction follows at once from the
equivalence of (i) and (iv) in (2). �

A wealth of information about filtral varieties may be found in Fried and
Kiss [15, Thm 4.9].
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5. Duality for generalised Boolean algebras

Denote the class of Boolean algebras by B. A topological space 〈X;T〉 is a
Boolean space if it is compact and each pair of distinct points in X can be sep-
arated by a clopen set. Denote the category of Boolean spaces and continuous
maps between them by X. For a discussion of Boolean spaces and their role
in Stone’s duality between B and X that is sufficient for our needs we refer to
Davey and Priestley [11, pp. 247–250].

To encompass algebras A in which 1A is not compact, we shall require
the duality for the class B0 of generalised Boolean algebras. There are various
ways to describe B0 algebraically. Perhaps the simplest, due to M.H. Stone
[21], is to identify B0 with the class of R0 of Boolean rings, that is, rings
satisfying x2 ≈ x. We now sketch the details.

• Every Boolean ring satisfies x + x ≈ 0 and xy ≈ yx.
• Let R = 〈R; +, ·, 0〉 be a Boolean ring and define a∨ b := a+ b+a · b and

a ∧ b := a · b. Then F (R) := 〈R;∨,∧, 0〉 is a generalised Boolean algebra;
if b � a, then the complement of b in ↓a is a + a · b.

• Conversely, let B = 〈B;∨,∧, 0〉 be a generalised Boolean algebra and
define a · b := a ∧ b and define a + b to be the complement of a ∧ b in
↓(a ∨ b). Then G(B) := 〈B; +, ·, 0〉 is a Boolean ring.

• Moreover, GF (R) = R and FG(B) = B, for all R ∈ R0 and all B ∈ B0.
In fact, B0 (with 0-preserving lattice homomorphisms) and R0 (with ring
homomorphisms) are isomorphic as categories.

• For all R ∈ R0, a subset J of R is an ideal of the ring R if and only if it
is an ideal of the generalised Boolean algebra F (R).

• Every prime ideal of a generalised Boolean algebra is maximal.
• Define R0 = 〈{0, 1}; +, ·, 0〉, where + and · are the usual operations on

{0, 1}. Let R be a Boolean ring and let a 	= b in R. There exists a prime
ideal P of R that contains exactly one of a and b. The characteristic
function of R\P is a ring homomorphism from R to R0 that separates
a and b. It follows that R embeds into a power of R0 and hence R0 =
ISP(R0).

We leave the missing details to the reader.
By an easy application of the theory of natural dualities, a strong duality

for R0 is obtained by using the alter ego R0 := 〈{0, 1}; 0,T〉, where T is the
discrete topology; use [10, Cor. 3.3.9]. The dual category X0 := IScP(R0)
consists of isomorphic copies of closed substructures of powers of R0. The next
result contains the salient points, which we present without proof.

Proposition 5.1. The duality between R0 and X0 has the following properties.
(1) The dual category X0 := IScP(R0) is the category of pointed Boolean

spaces.
(2) The dual of R ∈ R0 is the pointed Boolean space

D(R) := 〈hom(R,R0); 0,T〉,
which inherits its structure from R

R
0 ; the distinguished point is the con-

stant homomorphism 0: R → R0 onto {0}.
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(3) Equivalently, we can take D(R) to be the set

YR := { I ∈ Id(R) | I is maximal in Id(R) } ∪ {R}
of maximal or improper ideals of R appropriately topologised, with R as
the distinguished point. A subbasis for the topology on YR consists of all
sets of the form

Ua := { y ∈ YR | a ∈ y } and Va := { y ∈ YR | a /∈ y },

for some a ∈ R. A homeomorphism between hom(R,R0) and YR is given
by mapping a homomorphism u : R → R0 to the set u−1(0).

(4) The dual of a pointed Boolean space X = 〈X; 0,T〉 is the subalgebra

E(X) := 〈hom(X, R0);+, ·, 0〉
of RX

0 .
(5) Equivalently, we can take E(X) to be the (ring corresponding to the)

generalised Boolean algebra consisting of all clopen subsets of X not con-
taining 0.

(6) For all R ∈ R0, a subset U of YR is clopen and contains R if and only if
it is of the form Ua, for some a ∈ R.

(7) For all R ∈ R0, the map a �→ Va is an isomorphism from R to the
generalised Boolean algebra of clopen subsets of YR that do not contain R.

Let B be a generalised Boolean algebra. The duality gives us a convenient
route to the ideal lattice Id(B) of B or equivalently to the lattice of congruences
on the Boolean ring G(B). Since B and G(B) have the same ideals, to lighten
the notation, we shall denote the set of maximal or improper ideals of G(B)
by YB (rather than YG(B)).

Given a pointed Boolean space 〈X; 0,T〉, we shall denote the lattice of
closed subsets of X that contain 0 by Cl0(X). We denote the order-theoretic
dual of a lattice L by L∂ .

Lemma 5.2. Let B be a generalised Boolean algebra. Then

Id(B) ∼= Con G(B) ∼= Cl0(YB)∂ .

A lattice isomorphism ν : Cl0(YB)∂ → Con G(B) is given by defining

(a, b) ∈ ν(Z) ⇐⇒ [
(∀z ∈ Z) a ∈ z ⇐⇒ b ∈ z

]
,

for all a, b ∈ B and all Z ∈ Cl0(YB).

Proof. The lattice Id(B) of ideals of B equals the lattice of ideals of the ring
G(B). As the lattice of ideals of every ring is isomorphic to its lattice of con-
gruences, we have Id(B) ∼= Con G(B). We have a strong duality between R0

and X0, and ISP(R0) is the variety of Boolean rings and is therefore closed
under homomorphic images. Hence we may apply Theorem 3.2.1 of Clark and
Davey [10] to conclude that the lattice of congruences on G(B) is isomorphic
to the order-theoretic dual of the lattice Cl0(D(G(B))) of closed substructures
of D(G(B)). Of course, here closed substructure means simply a closed sub-
set containing the distinguished point. Finally, Cl0(D(G(B))) ∼= Cl0(YB) by
Proposition 5.1(3).
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The description of the isomorphism ν : Cl0(YB)∂ → Con G(B) is obtained
by interpreting the proof of Clark and Davey [10, Thm 3.2.1] in the context of
generalised Boolean algebras/Boolean rings. �

6. Boolean products

Boolean products, as an alternative to sheaves over Boolean spaces, were in-
troduced by Burris and Werner in [6,7] and were popularised in the text by
Burris and Sankappanavar [5].

Let A �
∏

x∈X Ax be a subdirect product with X 	= ∅. Then A (or more
correctly 〈A,TA〉) is a Boolean product of {Ax | x ∈ X } (relative to TA) if
TA is a Boolean topology on X such that
(BP1) [[a = b]] is clopen, for all a, b ∈ A,
(BP2) if a, b ∈ A and N is a clopen subset of X, then a�N ∪ b�X\N ∈ A.

For (BP1) we say that A has clopen equalisers, and for (BP2) we say that A
satisfies the patchwork property. Because of the connection between Boolean
products and representations as algebras of global sections over Boolean spaces,
the algebra Ax is referred to as the stalk at x. (Much has been written about
Boolean products, but our presentation will be self-contained and will require
little more than the definition.)

The patchwork property is intimately connected to factor congruences,
as the following observation shows.

Lemma 6.1. Let A �
∏

x∈X Ax be a subdirect product, with X 	= ∅, and let
N ⊆ X. Then (θN , θX\N ) is a pair of factor congruences on A if and only if,
for all a, b ∈ A, we have a�N ∪ b�X\N ∈ A.

Proof. Assume that (θN , θX\N ) is a pair of factor congruences on A and let
a, b ∈ A. Then there exists c ∈ A with (a, c) ∈ θN and (c, b) ∈ θX\N . Thus,
N ⊆ [[a = c]] and X\N ⊆ [[c = b]]. Hence c�N = a�N and c�X\N = b�X\N , that
is, a�N ∪ b�X\N = c. Thus a�N ∪ b�X\N ∈ A.

Conversely, assume that a�N ∪ b�X\N ∈ A, for all a, b ∈ A. Let a, b ∈ A
and define c := a�N ∪ b�X\N . Reversing the argument just given, we see that
(a, c) ∈ θN and (c, b) ∈ θX\N . It follows that θN · θX\N = 1A. Since it is
trivial that θN ∩ θX\N = 0A, we conclude that (θN , θX\N ) is a pair of factor
congruences on A. �

Let A be a non-trivial algebra in a filtral variety. By Proposition 4.1(5),
Conc A is a generalised Boolean algebra. We will abbreviate YConc A to YA.
Hence

YA := { I ∈ Id(Conc A) | I is maximal in Id(Conc A) } ∪ {Conc A}
is the set of maximal or improper ideals of Conc A; see Proposition 5.1(3). Let

XA := {α ∈ ConA | α is maximal in ConA } ∪ {1A}
be the set of maximal or improper congruences on A. By Remark 3.4, the
map ϕ : α �→ ↓α ∩ Conc A is a bijection between XA and YA that maps the
distinguished point 1A of XA to the distinguished point Conc A of YA.
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Lemma 6.2. Let A be a non-trivial algebra in a filtral variety V and define
η : A → ∏

α∈XA
A/α to be the natural map.

(1) A subbasis for the topology on the set YA of maximal or improper ideals
of the generalised Boolean algebra Conc A consists of all sets of the form

Uκ := { y ∈ YA | κ ∈ y } and Vκ := { y ∈ YA | κ /∈ y },

for some κ ∈ Conc A.
(2) The map η is a subdirect embedding.
(3) The bijection ϕ : XA → YA satisfies ϕ

(
[[η(a) = η(b)]]

)
= UCgA(a,b), for all

a, b ∈ A.

Proof. (1) follows directly from Proposition 5.1(3).
(2) Since V is semisimple, we have

⋂
XA = 0A as XA includes all of the

maximal congruences on A. Hence η is a subdirect embedding.
(3) Let a, b ∈ A. We have

ϕ
(
[[η(a) = η(b)]]

)
= {ϕ(γ) | γ ∈ XA & a/γ = b/γ }
= { ↓γ ∩ Conc A | γ ∈ XA & a/γ = b/γ }
= { ↓γ ∩ Conc A | γ ∈ XA & CgA(a, b) ⊆ γ }
= { y ∈ YA | CgA(a, b) ∈ y }
= UCgA(a,b). �

Lemma 6.3. Let A be a non-trivial algebra in a filtral variety and define η : A →∏
α∈XA

A/α to be the natural embedding. Define TA to be the topology on XA

with subbasis

SA :=
{

[[η(a) = η(b)]]
∣∣ a, b ∈ A

} ∪ {
XA\[[η(a) = η(b)]]

∣∣ a, b ∈ A
}
.

(1) The map ϕ : XA → YA : α �→ ↓α∩Conc A is a homeomorphism of pointed
spaces.

(2) 〈XA; 1A,TA〉 is a pointed Boolean space.

Proof. (1) We will instead prove that ϕ−1 : YA → XA is a homeomorphism. By
Proposition 5.1, YA is a Boolean space and therefore is compact. Let α, β ∈ XA

with α 	= β. Without loss of generality, we may assume that β 	= 1A. Thus
there exist a, b ∈ A with a 	= b and (a, b) ∈ α\β, whence

[[η(a) = η(b)]] := { γ ∈ XA | a/γ = b/γ }
is a clopen set containing α but not β. Hence the topology on XA is Hausdorff.
Thus, to prove that ϕ−1 : YA → XA is a homeomorphism, it suffices to prove
that ϕ−1 is continuous, for which it suffices to prove that ϕ maps subbasic open
sets in SA to open subsets of YA. (We are using the fact that a continuous
bijection from a compact space to a Hausdorff space is a homeomorphism.)

Let a, b ∈ A and consider the subbasic open set [[η(a) = η(b)]] in SA. By
Lemma 6.2(3), we have ϕ

(
[[η(a) = η(b)]]

)
= UCgA(a,b), which is open in YA by

Lemma 6.2(1). Now consider the subbasic open set XA\[[η(a) = η(b)]] in SA.
By Lemma 6.2(3), we have

ϕ
(
XA\[[η(a) = η(b)]]

)
= YA\ϕ

(
[[η(a) = η(b)]]

)
= YA\UCgA(a,b),
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which is open in YA by Lemma 6.2(1). Hence ϕ−1 : YA → XA is continuous,
as required.

(2) follows immediately from (1) since YA is a Boolean space. �

7. The many lives of ConA

Let V be a filtral variety and let A be a non-trivial algebra in V. Since Conc A
is a generalised Boolean algebra, we can apply Lemma 5.2 to yield information
about ConA.

Lemma 7.1. Let A be a non-trivial algebra in a filtral variety and define η : A →∏
α∈XA

A/α to be the natural embedding.

(1) ConA ∼= Id(Conc A) ∼= Con G(Conc A) ∼= Cl0(YA)∂ ∼= Cl0(XA)∂ .
(2) An isomorphism ρ : Cl0(XA)∂ → ConA is given by

ρ(N) :=
⋂

N, for all N ∈ Cl0(XA).

(3) An isomorphism μ : Cl0(XA)∂ → Con η(A) is given by

μ(N) := θN , for all N ∈ Cl0(XA).

(4) Let N be clopen in XA with 1A ∈ N. Then the unique complement of θN

in Con η(A) is θXA\N = θ(XA\N)∪{1A}.

Proof. The lattice ConA is isomorphic to Id(Conc A), by Remark 3.4, and
the pointed space YA is isomorphic in X0 to XA, by Lemma 6.3. Hence (1)
follows at once from Lemma 5.2 applied to the generalised Boolean algebra
B = Conc A.

(2) To prove that ρ is an isomorphism, we work backwards along the chain
of isomorphisms in (1). Let N be a closed subset of XA containing 1A. The
corresponding subset of YA is ϕ(N) = { ↓α∩Conc A | α ∈ N }. By Lemma 5.2,
the corresponding congruence ν(ϕ(N)) on G(Conc A) is given by

(θ1, θ2) ∈ ν(ϕ(N)) ⇐⇒ [(∀z ∈ ϕ(N)
)

θ1 ∈ z ⇐⇒ θ2 ∈ z
]

⇐⇒ [(∀α ∈ N
)

θ1 ∈ ↓α ⇐⇒ θ2 ∈ ↓α
]
,

for all θ1, θ2 ∈ Conc A. The corresponding ideal of Conc A is

0A/ν(ϕ(N)) = { θ ∈ Conc A | (θ, 0A) ∈ ν(ϕ(N)) }
= { θ ∈ Conc A | (∀α ∈ N

)
θ ∈ ↓α ⇐⇒ 0A ∈ ↓α }

= { θ ∈ Conc A | (∀α ∈ N
)

θ ∈ ↓α }
=

⋂
{ ↓α ∩ Conc A | α ∈ N }

=
⋂

α∈N

ϕ(α).

Finally, the congruence on A corresponding to the ideal
⋂

α∈N ϕ(α) of Conc A
is

ϕ−1

( ⋂
α∈N

ϕ(α)

)
= ϕ−1

( ∧
α∈N

ϕ(α)

)
=

∧
α∈N

ϕ−1(ϕ(α)) =
∧

α∈N

α =
⋂

N,
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as required.
(3) will follow from (2) once we show that θN is the congruence on η(A)

corresponding to the congruence
⋂

N on A, for every subset N of XA. Let
N ⊆ XA. Then, for all a, b ∈ A,

(a, b) ∈
⋂

N ⇐⇒ (a, b) ∈ α, for all α ∈ N

⇐⇒ a/α = b/α, for all α ∈ N

⇐⇒ η(a)(α) = η(b)(α), for all α ∈ N

⇐⇒ N ⊆ [[η(a) = η(b)]]

⇐⇒ (η(a), η(b)) ∈ θN ,

as required.
(4) Let N be clopen in XA with 1A ∈ N. Then (XA\N) ∪ {1A} is a

complement of N in Cl0(XA), and consequently θ(XA\N)∪{1A} is a complement
of θN in Con η(A), by (3). Since η(a)(1A) = a/1A = b/1A = η(b)(1A), for all
a, b ∈ A, we have θXA\N = θ(XA\N)∪{1A}. The uniqueness of the complement
follows from the fact that Con η(A) is distributive. �

8. Proofs of the main theorems

Let A be a non-trivial algebra in a filtral variety. Following Werner [24], we
refer to the topological space XA of Lemma 6.3 as the spectrum of A and the
subspace X�

A := XA\{1A}, consisting of the maximal congruences on A, as
the proper spectrum of A. We refer to the embedding η : A → ∏

α∈XA
A/α as

the spectral representation of A and the embedding η : A → ∏
α∈X�

A
A/α as

the proper spectral representation of A.
We now prove our main result.

Theorem 8.1. Let V be a filtral variety and let A be a non-trivial algebra in V.
The following are equivalent:

(1) A has factor principal congruences;
(2) A has permuting congruences;
(3) the spectral representation η of A is an isomorphism onto a Boolean

product of {A/α | α ∈ XA };
(4) A is isomorphic to a Boolean product in which each non-trivial stalk is a

simple algebra from V and moreover at most one stalk is trivial.

Proof. (1) is equivalent to (2) by Proposition 4.1(6). Since (3) implies (4) is
trivial, it remains to prove that (1) implies (3) and that (4) implies (1).

(1) ⇒ (3): Assume A has factor principal congruences. Since η(A) sat-
isfies (BP1) by construction (see Lemma 6.3), it remains to prove that η(A)
satisfies (BP2). Let N be a clopen subset of XA. By Lemma 6.1, it suffices to
prove that (θN , θXA\N ) is a pair of factor congruences on η(A). By symmetry
we may assume that 1A ∈ N. By Lemma 6.3(1), ϕ(N) is a clopen subset of YA
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containing Conc A and, by Proposition 5.1(6), there exists κ ∈ Conc A with
ϕ(N) = Uκ. For all a, b ∈ A,

(η(a), η(b)) ∈ θN ⇐⇒ N ⊆ [[η(a) = η(b)]]

⇐⇒ ϕ(N) ⊆ ϕ([[η(a) = η(b)]])

⇐⇒ Uκ ⊆ ϕ([[η(a) = η(b)]])

⇐⇒ Uκ ⊆ UCgA(a,b) by Lemma 6.2(3)

⇐⇒ (∀y ∈ YA)
[
κ ∈ y =⇒ CgA(a, b) ∈ y

]
⇐⇒ CgA(a, b) ⊆ κ

⇐⇒ (a, b) ∈ κ.

The second-last equivalence follows from the fact that if u � v in a generalised
Boolean algebra B, then there exists a prime and therefore maximal ideal y of
B with v ∈ y but u /∈ y. We have proved that θN = η(κ). Since κ ∈ Conc A and
A has factor principal congruences, κ is a factor congruence, by Lemma 3.7,
and hence θN is a factor congruence on η(A). Thus there is a congruence β on
η(A) such that (θN , β) is a pair of factor congruences on η(A). Since Con η(A)
is distributive, β is the unique complement of θN in Con η(A). Hence, by
Lemma 7.1(4), β = θXA\N . Thus (θN , θXA\N ) is a pair of factor congruences
on η(A) and, by Lemma 6.1, η(A) satisfies (BP2).

(4) ⇒ (1): Without loss of generality, we may assume that, for some non-
empty set X, the algebra A is a Boolean product of a family {Ax | x ∈ X }
of algebras from V each of which is either simple or trivial with at most one
trivial. Let a, b ∈ A. We must prove that CgA(a, b) is a factor congruence. We
claim that CgA(a, b) = θN , where N = [[a = b]]. In the case where each Ax is
simple, this follows at once from Proposition 4.1(2)(iii). Now assume that Ax0

is the unique trivial factor. Let π :
∏

x∈X Ax → ∏
x∈X\{x0} Ax be the natural

projection and note that π is an isomorphism. Again by Proposition 4.1(2)(iii),
we have

Cgπ(A)(π(a), π(b)) = θN ′ , where N ′ = {x ∈ X\{x0} | π(a)(x) = π(b)(x) }.

Hence CgA(a, b) = θN , where N = N ′ ∪ {x0} = [[a = b]], as claimed. Since,
by (BP1), N is clopen, (BP2) along with Lemma 6.1 guarantees that θN , and
therefore CgA(a, b), is a factor congruence. �

When 1A is compact, we can move the focus from Conc A to Conf A and
obtain a stronger result.

Theorem 8.2. Let V be a filtral variety and let A be a non-trivial algebra in V

such that 1A is compact in ConA. The following are equivalent:

(1) A has factor principal congruences;
(2) A has permuting congruences;
(3) ConA is isomorphic to the lattice Id(Conf A) of ideals of the Boolean

algebra Conf A of factor congruences on A via ψ : α �→ ↓α ∩ Conf A, for
all α ∈ ConA;



Boolean products in filtral varieties Page 21 of 23    19 

(4) the proper spectral representation of A is an isomorphism onto a Boolean
product of {A/α | α ∈ X�

A };
(5) A is isomorphic to a Boolean product of simple algebras from V.

Proof. Again, (1) is equivalent to (2) by Proposition 4.1(6), and (1) is equiv-
alent to (3) by Lemma 3.7. Now assume (1). The previous theorem implies
that the spectral representation η of A is an isomorphism onto a Boolean
product of {A/α | α ∈ XA }. Since 1A is compact in ConA, it is easy to
see that Conc A is an isolated point of YA. Hence, by Lemma 6.3(1), 1A is
an isolated point of XA and consequently X�

A is a closed subspace of XA.
Using the fact that (BP1) and (BP2) hold with respect to XA, it follows easily
that (BP1) and (BP2) hold with respect to X�

A, and consequently the proper
spectral representation of A is an isomorphism onto a Boolean product of
{A/α | α ∈ X�

A }. Hence (4) holds. Finally, (4) implies (5) is trivial, and, by
the previous theorem, (5) implies (1). �
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