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Semilinear De Morgan monoids and
epimorphisms
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Abstract. A representation theorem is proved for De Morgan monoids
that are (i) semilinear, i.e., subdirect products of totally ordered algebras,
and (ii) negatively generated, i.e., generated by lower bounds of the neu-
tral element. Using this theorem, we prove that the De Morgan monoids
satisfying (i) and (ii) form a variety—in fact, a locally finite variety. We
then prove that epimorphisms are surjective in every variety of negatively
generated semilinear De Morgan monoids. In the process, epimorphism-
surjectivity is established for several other classes as well, including the
variety of all semilinear idempotent commutative residuated lattices and
all varieties of negatively generated semilinear Dunn monoids. The re-
sults settle natural questions about Beth-style definability for a range of
substructural logics.
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1. Introduction

The aims of this paper are two-fold. On one hand, we continue a line of investi-
gation in [4,32,33], which seeks to identify varieties of residuated structures in
which epimorphisms are surjective (a property that need not persist in subva-
rieties). To do this, we need to prove some structural representation theorems
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for the algebras concerned. These representation theorems are of independent
interest, and their exposure is our second aim.

The first aim is motivated by the connection between Beth-style defin-
ability properties in substructural logics and the behaviour of epimorphisms
in the varieties of residuated structures that model them. We are concerned
here with the surjectivity of all epimorphisms in these varieties. This charac-
terizes the so-called infinite Beth property for the corresponding logics [5]; see
[4, pp. 186–7] for a concise account of the details, as well as references.

We are also concerned here with residuated structures that need not be
integral, i.e., the neutral element e for fusion (·) need not be the greatest ele-
ment of the algebra. Earlier investigations focussed mainly on strong or weak
variants of epimorphism-surjectivity, and on integral structures, such as Heyt-
ing or Brouwerian algebras, which model intuitionistic propositional logic and
its positive fragment [11,24,25]. The present study, like [4,32], accommodates
various extensions of relevance logic as well, so the structures under considera-
tion will be De Morgan and Dunn monoids. (A De Morgan monoid is essentially
a Dunn monoid equipped with an involution ¬ that simulates negation.)

It was proved in [32, Theorem 8.1] that epimorphisms will be surjective in
a variety of De Morgan or Dunn monoids, provided that the finitely subdirectly
irreducible members of the variety are negatively generated (i.e., generated by
lower bounds of e) and that their posets of prime filters have finite depth. We
show here that the demand for finite depth can be dropped when the algebras
are semilinear (i.e., subdirect products of chains).

Whereas De Morgan and Dunn monoids satisfy the square-increasing law
x � x2 := x · x, the negatively generated semilinear Dunn monoids turn out
to be idempotent (Theorem 6.17), i.e., they satisfy x = x2. They therefore
coincide with the generalized Sugihara monoids of [16,4], which form a locally
finite variety GSM. We show that all subvarieties of GSM have surjective epi-
morphisms (Theorem 6.11). We also show in Theorem 6.6 that epimorphisms
are surjective in the variety of all semilinear idempotent Dunn monoids (re-
gardless of negative generation). As that variety is known to have the amalga-
mation property [17], it follows that it has the strong amalgamation property
(Corollary 6.7).

Using some of these results and a characterization of irreducible De Mor-
gan monoids from [28], we show in Section 7 that the negatively generated
semilinear De Morgan monoids also form a variety—in fact a locally finite one
(Corollary 7.23). We conclude with a proof that epimorphisms are surjective
in each of its subvarieties (Theorem 7.24).

The key to this proof is a structural result, Theorem 7.22. It says that ev-
ery negatively generated and totally ordered De Morgan monoid A arises from
a totally ordered generalized Sugihara monoid G by the use of two construc-
tions. First, we construct a ‘reflection’ R(G) of G which places an inverted
copy of G above all the elements of G, adding bounds and an involution,
and extending the original operations systematically. Secondly, we ‘substitute’
R(G) (in a suitable sense) for the neutral element of a totally ordered ‘odd
Sugihara monoid’ S (i.e., an idempotent De Morgan monoid in which e = ¬e).
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We call this second construction a ‘rigorous extension’. Because totally ordered
odd Sugihara monoids are transparently structured, the resulting algebra A
is easily analysed. Relative to A, the algebras R(G) and S are the interval
[¬((¬e)2), (¬e)2] and the factor algebra got by collapsing R(G) to a point and
isolating all other elements.

2. Conventions

As usual, ω denotes the set of non-negative integers. The universe of an algebra
A is denoted by A. Thus, the congruence lattice ConA of A has universe
Con A. For ∅ �= X ⊆ A, the subalgebra of A generated by X is denoted by
SgAX (and its universe by SgA X). An algebra A is said to be n-generated,
where n ∈ ω, if it has the form SgAX for some X such that |X| � n.

The class operator symbols I, H, S, P, PS and PU stand, respectively, for
closure under isomorphic and homomorphic images, subalgebras, direct and
subdirect products, and ultraproducts, while V denotes varietal generation,
i.e., V = HSP. We abbreviate V({A}) as V(A).

Recall that an algebra A is subdirectly irreducible (SI) iff its identity
relation idA = {〈a, a〉 : a ∈ A} is completely meet-irreducible in its congruence
lattice. Also, A is finitely subdirectly irreducible (FSI) iff idA is meet-irreducible
in ConA, whereas A is simple iff |Con A| = 2. Consequently, trivial algebras
are FSI, but are neither SI nor simple.

Let K be a variety. We denote by KSI [resp. KFSI] the class of subdi-
rectly irreducible [resp. finitely subdirectly irreducible] members of K. Thus,
K = V(KSI). Jónsson’s Theorem [21,22] states that, for any subclass L of a
congruence distributive variety, V(L)FSI ⊆ HSPU(L). In this connection, recall
that PU(L) ⊆ I(L) whenever L is a finite set of finite similar algebras.

3. Epimorphisms

Given a class K of similar algebras, a K-morphism is any homomorphism
f : A → B, where A,B ∈ K. It is called a K-epimorphism provided that,
whenever g, h : B → C are K-morphisms with g ◦ f = h ◦ f , then g = h.
Clearly, surjective K-morphisms are K-epimorphisms. We say that K has the
epimorphism-surjectivity (ES ) property if all K-epimorphisms are surjective.

A subalgebra D of an algebra E ∈ K is said to be K-epic (in E) if every
K-morphism with domain E is determined by its restriction to D. (This means
that the inclusion map D → E is a K-epimorphism, assuming that D ∈ K.)
Thus, a K-morphism is a K-epimorphism iff its image is a K-epic subalgebra of
its co-domain. And, when K is closed under subalgebras (in particular, when
K is a variety), then

K has the ES property iff its members all lack K-epic proper subalgebras.

A variety K is said to have EDPM if it is congruence distributive and
KFSI is a universal class (i.e., subalgebras and ultraproducts of FSI members
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of K are FSI). The acronym stands for ‘equationally definable principal meets’
and is motivated by other characterizations of the notion in [7,9].

Theorem 3.1 (Campercholi [8, Theorem 6.8]). If a congruence permutable va-
riety K with EDPM lacks the ES property, then some FSI member of K has a
K-epic proper subalgebra.

When testing whether a subalgebra is epic, we may also use the following
consequence of the Subdirect Decomposition Theorem.

Lemma 3.2. Let K be a variety of algebras and let B be a subalgebra of A ∈
K. Then B is K-epic in A iff, whenever C ∈ KSI and g, h : A → C are
homomorphisms that agree on B, then g = h.

Definition 3.3. Let K be a class of similar algebras.
1. We say that K has the weak ES property if no finitely generated member

of K has a K-epic proper subalgebra. An equivalent demand is that no
B ∈ K has a K-epic proper subalgebra A such that B = SgB (A ∪ C) for
some finite C ⊆ B [31, Theorem 5.4].

2. The strong ES property for K asks that, whenever A is a subalgebra
of B ∈ K and b ∈ B\A, then there exist C ∈ K and homomorphisms
g, h : B → C such that g|A = h|A and g(b) �= h(b).

3. The amalgamation property for a variety K is the demand that, for any
two embeddings gB : A → B and gC : A → C between algebras in K,
there exist embeddings hB : B → D and hC : C → D, with D ∈ K, such
that hB ◦ gB = hC ◦ gC .

4. The strong amalgamation property for K asks, in addition to the demands
of (3), that D, hB and hC can be chosen so that

(hB ◦ gB)[A] = hB [B] ∩ hC [C].

These conditions are linked as follows (see [20,38,23] and [19, Section 2.5.3]).

Theorem 3.4. A variety has the strong amalgamation property iff it has the
amalgamation property and the weak ES property. In that case, it also has the
strong ES property (and therefore the ES property).

4. Residuated structures

Definition 4.1. An involutive (commutative) residuated lattice, or briefly, an
IRL, is an algebra A = 〈A; ·,∧,∨,¬, e〉 comprising a commutative monoid
〈A; ·, e〉, a lattice 〈A;∧,∨〉 and a function ¬ : A → A, called an involution,
such that A satisfies the (first order) formulas ¬¬x = x and

x · y � z ⇐⇒ ¬z · y � ¬x, (4.1)

cf. [13]. Here, � denotes the lattice order (i.e., x � y abbreviates x∧y = x) and
¬ binds more strongly than any other operation; we refer to · as fusion. (The
signature in [13] is slightly different, but the definable terms are not affected.)
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Setting y = e in (4.1), we see that ¬ is antitone. In fact, De Morgan’s
laws for ¬,∧,∨ hold, so ¬ is an anti-automorphism of 〈A;∧,∨〉. If we define

x → y := ¬(x · ¬y) and f := ¬e,

then, as is well known, every IRL satisfies

x · y � z ⇐⇒ y � x → z (the law of residuation), (4.2)

¬x = x → f, hence x · ¬x � f, (4.3)

x → y = ¬y → ¬x and x · y = ¬(x → ¬y). (4.4)

Definition 4.2. A (commutative) residuated lattice—or an RL—is an algebra
A = 〈A; ·,→,∧,∨, e〉 comprising a commutative monoid 〈A; ·, e〉, a lattice
〈A;∧,∨〉 and a binary operation →, called the residual of A, where A satisfies
(4.2).

Thus, up to term equivalence, every IRL has a reduct that is an RL. Con-
versely, every RL can be embedded into (the RL-reduct of) an IRL; see [15] and
the antecedents cited there. Whereas · and → are inter-definable in IRLs, → is
determined in RLs by ·,�, because x → y coincides with max {z : x · z � y}.
Every RL satisfies the following well known formulas. Here and subsequently,
x ↔ y abbreviates (x → y) ∧ (y → x).

x · (x → y) � y and x � (x → y) → y (4.5)

((x → y) → y) → y = x → y (4.6)

(x · y) → z = y → (x → z) = x → (y → z) (4.7)

x � y =⇒
{

x · z � y · z and
z → x � z → y and y → z � x → z

(4.8)

x � y ⇐⇒ e � x → y (4.9)

x = y ⇐⇒ e � x ↔ y (4.10)

e � x → x and e → x = x. (4.11)

The respective classes of all RLs and of all IRLs are finitely axiomatizable
varieties [13, Theorem 2.7].

In an RL, we define x0 := e and xn+1 := xn · x for n ∈ ω.

Definition 4.3. An [I]RL is said to be square-increasing if it satisfies

x � x2 (the square-increasing law) (4.12)

Every square-increasing RL can be embedded into a square-increasing
IRL; see [26] and the ‘reflection’ construction in Section 7 below. The following
formulas are valid in all square-increasing RLs (and not in all RLs):

x ∧ y � x · y (4.13)

(x � e & y � e) =⇒ x · y = x ∧ y. (4.14)

The next result is well known; see [14, Corollary 14] and [36, Theorem 2.4],
for instance.
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Lemma 4.4.

(i) An [I]RL A is FSI iff e is join-irreducible in 〈A;∧,∨〉.
(ii) A square-increasing [I]RL A is SI iff, in 〈A;∧,∨〉, there is a largest ele-

ment strictly below e.
(iii) A square-increasing [I]RL A is simple iff e has just one strict lower

bound in 〈A;∧,∨〉.
As RLs have lattice reducts, any variety of [I]RLs is congruence dis-

tributive. It is also congruence permutable and has the congruence extension
property (CEP); see, for instance, [13, Sections 2.2 and 3.6]. Moreover, since
the join-irreducibility of e in condition (i) is expressible as a universal first
order sentence, every variety of [I]RLs has EDPM, so both Jónsson’s Theorem
and Theorem 3.1 apply to such varieties.

An element a of an [I]RL A is said to be idempotent if a2 = a. We say
that A is idempotent if all of its elements are.

Recall that for IRLs we defined the nullary term f as ¬e. In [28, Lemma 3.1]
it is shown that f3 = f2 in any square-increasing IRL. The following is stated
in [27, p. 309]; for a proof see [28, Lemma 3.3].

Theorem 4.5. In a square-increasing IRL A, the following are equivalent.
(i) f2 = f .
(ii) f � e.
(iii) A is idempotent.
Consequently, a square-increasing non-idempotent IRL has no idempotent sub-
algebra (and in particular, no trivial subalgebra).

An [I]RL A is said to be distributive if its reduct 〈A;∧,∨〉 is a distributive
lattice. It is said to be semilinear if it is isomorphic to a subdirect product of
totally ordered algebras (in which case it is obviously distributive). Because
the totality of a partial order is expressible by a universal positive sentence,
Jónsson’s Theorem has the following consequence:

Lemma 4.6. A semilinear [I]RL A is FSI iff it is totally ordered.

It is shown in [18] that an [I]RL A is semilinear iff it is distributive and
satisfies e � (x → y) ∨ (y → x), whence the semilinear [I]RLs form a variety.

Let A be an [I]RL. By a filter of A, we mean a filter of the lattice 〈A;∧,∨〉,
i.e., a non-empty subset G of A that is upward closed and closed under the
binary operation ∧. A deductive filter of A is a filter G of 〈A;∧,∨〉 that is also
a submonoid of 〈A; ·, e〉, i.e., e ∈ G and a · b ∈ G whenever a, b ∈ G. Thus,
[e) := {x ∈ A : x � e} is the smallest deductive filter of A, and whenever
b ∈ A and a, a → b ∈ G, then b ∈ G (as a · (a → b) � b, by (4.2)). The lattice
FilA of deductive filters of A and the congruence lattice ConA of A are
isomorphic. The isomorphism and its inverse are given by

G �→ ΩAG := {〈a, b〉 ∈ A2 : a → b, b → a ∈ G};

θ �→ {a ∈ A : 〈a ∧ e, e〉 ∈ θ}.
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For a deductive filter G of A and a, b ∈ A, we often abbreviate A/ΩAG as
A/G, and a/ΩAG as a/G, noting that

a → b ∈ G iff a/G � b/G in A/G.

When A is square-increasing, the deductive filters of A are just the lattice
filters of 〈A;∧,∨〉 that contain e, by (4.13).

5. De Morgan monoids, Dunn monoids and Sugihara monoids

Definition 5.1. A De Morgan monoid is a distributive square-increasing IRL.
A Dunn monoid is a distributive square-increasing RL.

A Sugihara monoid is an idempotent De Morgan monoid, i.e., an idem-
potent distributive IRL. The structure of such an algebra is better understood
than that of an arbitrary De Morgan monoid, largely because of J.M. Dunn’s
contributions to [2]; see [10] also. The variety SM of all Sugihara monoids is
locally finite (i.e., its finitely generated members are finite), but not finitely
generated (i.e., generated by a finite algebra). In fact, SM is the smallest variety
containing the Sugihara monoid

Z∗ = 〈{a : 0 �= a ∈ Z}; ·,∧,∨,−, 1〉
on the set of all nonzero integers such that the lattice order is the usual to-
tal order, the involution − is the usual additive inversion, and the monoid
operation is defined by

a · b =

{
the element of {a, b} with the greater absolute value, if |a| �= |b| ;
a ∧ b if |a| = |b|

(where | - | is the natural absolute value function). In this algebra, the residual
operation → is given by

a → b =

{
(−a) ∨ b if a � b;
(−a) ∧ b if a �� b.

Note that e = 1 and f = −1 in Z∗.
Because Z∗ is totally ordered and generates SM, every FSI Sugihara

monoid is totally ordered, i.e., Sugihara monoids are semilinear.
An IRL A is said to be odd if f = e in A. Theorem 4.5 has the following

consequence.

Theorem 5.2. Every odd De Morgan monoid is a Sugihara monoid.

In the Sugihara monoid Z = 〈Z; ·,∧,∨,−, 0〉 on the set of all integers,
the operations are defined like those of Z∗, except that 0 takes over from 1
as the neutral element for ·. Both e and f are 0 in Z, so Z is odd. It follows
from Theorem 5.2 and Dunn’s results in [2,10] that the variety OSM of all odd
Sugihara monoids is the smallest quasivariety containing Z, and that SM is
the smallest quasivariety containing both Z∗ and Z.
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For each positive integer n, let S2n denote the subalgebra of Z∗ with
universe {−n, . . . ,−1, 1, . . . , n} and, for n ∈ ω, let S2n+1 be the subalgebra of
Z with universe {−n, . . . ,−1, 0, 1, . . . , n}. The results cited above yield:

Theorem 5.3. Up to isomorphism, the algebras Sn (1 < n ∈ ω) are pre-
cisely the finitely generated SI Sugihara monoids, whence the algebras S2n+1

(0 < n ∈ ω) are just the finitely generated SI odd Sugihara monoids.
Consequently, for each m ∈ ω, a totally ordered m-generated Sugihara

monoid has at most 2m + 2 elements. The bound reduces to 2m + 1 in the odd
case.

An element a of an [I]RL A will be called negative if a � e. We define

A− := {a ∈ A : a � e}.

We say that an [I]RL A is negatively generated when it is generated by neg-
ative elements, i.e., A = SgA A−. As surjective homomorphisms always map
generating sets onto generating sets, the following lemma applies.

Lemma 5.4. If h : A → B is a surjective homomorphism of [I]RLs and A is
negatively generated then so is B.

The Sugihara monoid Z∗ satisfies the equation

x = (x ∧ e) · ¬(¬x ∧ f), (5.1)

because De Morgan’s laws reduce ¬(¬x ∧ f) to x ∨ e, and every element of Z∗

is comparable with e. Since SM = V(Z∗), every Sugihara monoid A satisfies
(5.1) and is therefore negatively generated, as a ∧ e � e and ¬a ∧ f � f � e
for all a ∈ A (by Theorem 4.5).

Theorem 5.5 ([4, Theorem 8.5]). Every variety of Sugihara monoids has sur-
jective epimorphisms.

The same is true of all varieties of positive Sugihara monoids (i.e., RL-
subreducts of Sugihara monoids) [4, Theorem 8.6].

An [I]RL is said to be integral if e is its greatest element. Integral De
Morgan monoids are just Boolean algebras in which · duplicates ∧. In the
non-involutive case, integrality is less restrictive. An integral Dunn monoid
A is called a Brouwerian algebra; it is normally identified with its reduct
〈A;∧,∨,→, e〉, because it satisfies x · y = x ∧ y, by (4.14).

The variety of all Brouwerian algebras has the strong ES property (see
Definition 3.3(2)). The same applies to the variety of semilinear Brouwerian
algebras—a.k.a. relative Stone algebras. For the origins of these results, see
[24,11] and, for more comprehensive findings, Maksimova [25]. More recently,
it was shown in [4, Corollary 5.7] that every variety of relative Stone algebras
has the (unqualified) ES property.

All varieties mentioned in and after Theorem 5.5 consist of negatively
generated Dunn/De Morgan monoids and, apart from the variety of Brouw-
erian algebras, their members are semilinear. We shall show in the next two
sections that negative generation and semilinearity are enough to guarantee
that a variety of Dunn/De Morgan monoids has the ES property.
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6. Semilinear Dunn monoids

In this section we eschew involution and consider varieties of Dunn monoids.
We start by recalling a representation theorem for totally ordered idempotent
RLs from [17], and we characterize the homomorphisms between such algebras.
Our focus on the idempotent case turns out not to be restrictive, because
Theorem 6.17 will show that negatively generated semilinear Dunn monoids
are in fact idempotent (although the same is not true for De Morgan monoids).

The following abbreviations are useful when working with idempotent
RLs:

x∗ := x → e and |x| := x → x.

In the Sugihara monoid Z∗, the term operation |x| coincides with the natural
absolute value operation. By (4.5), (4.6) and (4.11), every [I]RL satisfies

x � x∗∗ and x∗∗∗ = x∗ and e � |x|. (6.1)

If an RL is idempotent, then it also satisfies

x � |x|,
x = |x| ⇐⇒ e � x,

x∗ = |x| ⇐⇒ x � e,

x = x∗ ⇐⇒ x = e.

The following theorem shows that the fusion of a totally ordered idem-
potent RL A resembles that of a Sugihara monoid, and that A is determined
by its reduct 〈A;∧,∨, ∗〉, and also by its reduct 〈A;∧,∨, | - |〉.
Theorem 6.1. ([37, Theorems 12, 14]) Let A be a totally ordered idempotent
RL. Then A satisfies

x · y =

⎧⎪⎨
⎪⎩

x if |y| < |x|;
y if |x| < |y|;
x ∧ y if |x| = |y|,

and x → y =

{
x∗ ∨ y if x � y;
x∗ ∧ y if x > y.

(6.2)

Let A be a totally ordered idempotent RL. Then

A∗∗ := {a∗∗ : a ∈ A}
is the universe of a subalgebra A∗∗ of A which, moreover, is termwise equiv-
alent to a (totally ordered) odd Sugihara monoid, where ¬x := x∗ [17,
Lemma 3.3, Proposition 3.4]. For every c ∈ A∗∗, the set

Ac := {a ∈ A : a∗∗ = c}
is an interval of A with greatest element c [17, Proposition 3.4]. For any A as
above, we define

A := {〈Ac; �|Ac
〉 : c ∈ A∗∗}.

On the other hand, suppose S is a totally ordered odd Sugihara monoid
and let

X = {〈Xc; �c〉 : c ∈ S}
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be an S-indexed family of disjoint chains such that each c ∈ S is the greatest
element of Xc. For all a, b ∈ S with x ∈ Xa and y ∈ Xb, we define

x � y iff a < b or (a = b and x �a y).

Thus, � is the lexicographic total order on S ⊗ X :=
⋃{Xc : c ∈ S}. We let

∧ and ∨ denote the meet and join operations for � and define

S ⊗ X := 〈S ⊗ X ; ·,→,∧,∨, e〉,
where for a, b ∈ S and x ∈ Xa, y ∈ Xb,

x · y =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
x ∧ y if a = b � e;

x ∨ y if e < a = b;

x if a �= b and a ·S b = a;

y if a �= b and a ·S b = b,

and x → y =

{
a∗ ∨ y if x � y;

a∗ ∧ y if y < x.

Recall that a · b ∈ {a, b} for all elements a, b of the Sugihara monoid
Z∗. This property is expressible as a positive universal sentence, so it holds
for every totally ordered Sugihara monoid, by Jónsson’s Theorem. The above
definition of · is therefore exhaustive. The following representation theorem
for totally ordered idempotent RLs from [17] has an antecedent in [37].

Theorem 6.2 ([17, Theorem 3.5]). For S and X as above, the algebra S ⊗X is
a totally ordered idempotent RL satisfying S = (S ⊗ X )∗∗ and (S ⊗ X )c = Xc

for every c ∈ S. Moreover, every totally ordered idempotent RL A has this
form, because A = A∗∗ ⊗ A.

The next two lemmas will assist in proving a characterization of homo-
morphisms between totally ordered idempotent RLs (Theorem 6.5).

Lemma 6.3 ([35, Proposition 2.5]). Let A be a totally ordered idempotent RL
and let F ∈ Fil A. If a and b are distinct elements of A such that a/F = b/F ,
then b/F = e/F .

Proof. By definition, a/F = b/F means that a → b, b → a ∈ F . By symmetry,
we may assume that a < b. Then e �� b → a, by (4.9), so b → a < e, because
A is totally ordered. It follows from (4.8) that b → (b → a) � b → e. Now,
b → (b → a) = (b · b) → a = b → a, by (4.7) and the idempotence of b.
Therefore b → a � b → e, whence b → e ∈ F , because b → a ∈ F . On the
other hand, b �� b → a, because otherwise b = b · b � a. So, b → a < b. As
b → a ∈ F , we have e → b = b ∈ F , so b/F = e/F . �

Recall that, in an algebra with a lattice reduct, any congruence class is
an interval. Specifically, if F is a deductive filter of an [I]RL A, then the set
e/F = {a ∈ A : e → a, a → e ∈ F} = {a ∈ A : a, a∗ ∈ F} is an interval
subuniverse of A (see [18] or [13, Theorem 4.47]). When A is totally ordered,
then e/F is the convex closure of {a : e � a ∈ F} ∪ {a∗ : e � a ∈ F}, because
if e < a ∈ A, then a → e < e and a � (a → e)∗.
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Lemma 6.4. Let A be a totally ordered idempotent RL and let I be an interval
of A, containing e, that is closed under ∗. Define

I∗ := {a ∈ A : a /∈ I and a∗ ∈ I}.

Then
(i) I is a subuniverse of A;
(ii) I∗ ∩ A∗∗ = ∅;
(iii) every element of I∗ is strictly below every element of I;
(iv) if b ∈ I∗ then b∗ is the greatest element of I;
(v) I ∪ I∗ is an interval of A that is closed under ∗.

Proof. Item (i) holds because {a · b, a → b} ⊆ {a, b, a∗, b∗} for any a, b ∈ I,
by Theorem 6.1 (and since e ∈ I, by assumption). Item (ii) holds because,
otherwise, a∗∗ ∈ I∗ for some a ∈ A, but then a∗∗ = a∗∗∗∗ ∈ I, a contradiction.

Let b ∈ I∗. Then b∗ ∈ I and so b∗∗ ∈ I. Suppose, with a view to contra-
diction, that a � b for some a ∈ I. Then a � b � b∗∗, by (6.1), so because I is
an interval, b ∈ I, a contradiction. Therefore, (iii) holds.

For (iv), suppose a > b∗ for some a ∈ I. If b � a∗, then a � a∗∗ � b∗,
contrary to the supposition, so a∗ < b � b∗∗. Then b ∈ I, a contradiction.

To show (v), notice that I ∪ I∗ is clearly closed under ∗, so it remains to
show that I ∪ I∗ is an interval. If I∗ = ∅ we are done, so let b be an arbitrary
element of I∗. For any a ∈ I∗, we have a∗ = b∗, by (iv), so a ∈ Ab∗∗ . It follows
that I ∪ I∗ is the union of the overlapping intervals I and Ab∗∗ . �

�e

I∗ = ∅

}I b∗∗
�

Ab∗∗ {
�e

}I∗ �= ∅

}I
�b∗

����
b

Theorem 6.5. Let A and B be totally ordered idempotent RLs. A function
h : A → B is a homomorphism from A to B iff the following hold:

(i) The set I = h−1[{e}] is an interval of A, which contains e and is closed
under ∗.

(ii) h is an order embedding of I∗ into Be \ {e}.
(iii) h is an order embedding of A∗∗ \ I into B∗∗ \ {e}, preserving ∗.
(iv) For every a ∈ A∗∗ \ I, h is an order embedding of Aa into Bh(a).

I { ���
���

������

I∗
↪→{ .......

.....

�a ............

Aa { ↪→
............

�e

}Be

�
h(a)

}Bh(a)
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Proof. Suppose h : A → B is a homomorphism. The kernel θ of h is ΩAF
for some deductive filter F of A, so A/θ = A/F . Let I = h−1[{e}]. Then
I = e/F , which we have already noted is an interval and a subuniverse of A.
In particular, I is closed under ∗ and contains e.

Let a, b ∈ A\I such that a �= b. Then h(a) �= h(b), because otherwise
a/F = b/F , which would imply that b/F = e/F , by Lemma 6.3, i.e., that
h(b) = h(e) = e, contradicting b /∈ I. Therefore, h is injective outside of I.

By [17, Lemma 3.3], h restricts to a homomorphism h|A∗∗ : A∗∗ → B∗∗,
which in particular preserves ∗. Then (iii) holds, because h(a) �= e for any
a ∈ A∗∗\I.

For any a ∈ I∗, we have a∗ ∈ I, so e = e∗ = h(a∗)∗ = h(a)∗∗ and
h(a) �= e. Therefore, h[I∗] ⊆ Be\{e}, so (ii) holds. For any a ∈ A∗∗\I and
x ∈ Aa, we have x∗∗ = a = a∗∗, so h(x)∗∗ = h(a)∗∗. Therefore, h[Aa] ⊆ Bh(a),
so (iv) holds.

Conversely, let h be as in the theorem and let I = h−1[{e}]. By Theo-
rem 6.2, A = A∗∗ ⊗ A and B = B∗∗ ⊗ B, so the families {Aa : a ∈ A∗∗} and
{Bb : b ∈ B∗∗} are partitions of A and B, respectively. Note that I ∪ I∗ =⋃{Aa : a ∈ I ∩ A∗∗}, because for each c ∈ A, we have c ∈ I ∪ I∗ iff c∗∗ ∈ I
(using (6.1)). So, the sets I, I∗, and Aa (a ∈ A∗∗ \ I) form a partition of A.
It follows from properties (i)–(iv) that h is injective outside of I, and that h
preserves order (and hence the lattice operations), in view of the definitions of
A∗∗ ⊗ A and B∗∗ ⊗ B.

Let a ∈ A. If a ∈ I∪I∗ then a∗ ∈ I, so h(a∗) = e = h(a)∗, by (i) and (ii). If
a ∈ A\(I ∪I∗), then a∗∗ ∈ A∗∗\I. From (iii) and (iv), it follows that h(a∗∗∗) =
h((a∗∗)∗) = h(a∗∗)∗ and h(a) ∈ h[Aa∗∗ ] ⊆ Bh(a∗∗), i.e., h(a)∗∗ = h(a∗∗). So,
h(a∗) = h(a∗∗∗) = h(a∗∗)∗ = h(a)∗∗∗ = h(a)∗. Therefore, h preserves ∗.

For a, b ∈ A, the characterization of a → b in Theorem 6.1 shows that
preservation of → follows from that of ∧, ∨ and ∗, except when a > b but
h(a) = h(b). In this situation a, b ∈ I, because h is injective outside of I, so
a → b ∈ I, by Lemma 6.4(i), whence

h(a) → h(b) = e → e = e = h(a → b).

Therefore, h also preserves | - |.
Again, by Theorem 6.1, since h preserves ∨, ∧ and | - |, to show preserva-

tion of ·, we need only consider cases where |a| > |b| but |h(a)| = |h(b)| (i.e.,
h(|a|) = h(|b|)) for some a, b ∈ A. Then |a|, |b| ∈ I, so a, b ∈ I ∪ I∗, because
|c| ∈ {c, c∗} for all c ∈ A, by Theorem 6.1. We have h(a · b) = h(a), since
a · b = a, and h(a) ·h(b) = h(a) ∧ h(b), so it remains to show that h(a) � h(b).

If b ∈ I∗ then b � e, by Lemma 6.4(iii), and hence |b| = b∗ � |a|, by
Lemma 6.4(iv), since |a| ∈ I. But this contradicts |a| > |b|, so b /∈ I∗. If
a, b ∈ I, then h(a) = e = h(b). Lastly, if a ∈ I∗ and b ∈ I, then a � e, so
h(a) � h(e) = e = h(b). �

The following theorem exhibits a variety of semilinear Dunn monoids with
the ES property which has members that are not negatively generated. (One
can easily construct totally ordered idempotent RLs that are not negatively
generated, using Theorem 6.2; also see the examples before Lemma 6.13.)
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Theorem 6.6. Epimorphisms are surjective in the variety of all idempotent
semilinear RLs.

Proof. Let B be a proper subalgebra of a totally ordered idempotent RL A.
Let a ∈ A\B. We shall show that B is not epic in A by constructing a totally
ordered idempotent RL C and two homomorphisms from A into C which
agree on B but differ at a. It then follows from Theorem 3.1 that the variety
of all idempotent semilinear RLs has the ES property. We split into two cases:
a ∈ A∗∗ and a /∈ A∗∗.

First suppose that a ∈ A∗∗. Without loss of generality, a < e. Indeed,
if e � a, then e � a∗ = a∗∗∗ ∈ A∗∗; moreover, a∗ /∈ B, because otherwise,
a = a∗∗ ∈ B.

Now F := {b ∈ A : b > a} is a deductive filter of A. Let q be the
canonical surjection from A to the totally ordered algebra C := A/F . We
use the notation [x, y] to denote the interval {z : x � z � y} from x to y.
Consider the set

I := [a, a∗] ∪ [a, a∗]∗ = [a, a∗] ∪ {x ∈ A : x /∈ [a, a∗] and x∗ ∈ [a, a∗]}.

Define a map h : A → A/F by

h(x) =

{
eC if x ∈ I;
q(x) otherwise.

Note that h(a) = eC , since a ∈ I, so h(a) �= q(a) (because, if a ∈ e/F
then a = e → a ∈ F , which is not the case). We now show that h is a
homomorphism. As [a, a∗] is an interval containing e that is closed under ∗

(because a ∈ A∗∗), the same of true of I, by Lemma 6.4(v). Furthermore,
h−1[{eC }] = I, because q−1[{eC }] = e/F ⊆ {b ∈ A : a < b � a∗} ⊆ I. So,
condition (i) of Theorem 6.5 holds. Note that a∗ = max I, by Lemma 6.4(iii).

If b ∈ I∗ then b /∈ I and b∗ is the greatest element of I, by Lemma 6.4(iv),
so b∗ = a∗. But, since b /∈ [a, a∗] and b∗ ∈ [a, a∗], we have b ∈ [a, a∗]∗,
a contradiction. So, I∗ = ∅, and condition (ii) of Theorem 6.5 is vacuously
satisfied.

As q is a homomorphism between totally ordered idempotent RLs, The-
orem 6.5 applies to q. In particular, the following conditions hold:
(iii) q is a ∗-preserving order embedding of A∗∗ \ (e/F ) into C∗∗ \ {e};
(iv) for every a ∈ A∗∗\(e/F ), q is an order embedding of Aa into Cq(a).
As e/F ⊆ I, conditions (iii) and (iv) also hold for h. So, h is a homomorphism,
by Theorem 6.5.

To show that h|B = q|B , we let b ∈ B ∩ I and prove that q(b) = eC , i.e.,
that b, b∗ ∈ F . Note that b∗ ∈ [a, a∗]. If b∗ /∈ F then b∗ � a by the definition of
F , so a = b∗ ∈ B, a contradiction. Therefore b∗ ∈ F , as claimed. Suppose that
b ∈ [a, a∗]∗. By Lemma 6.4(iv), b∗ = a∗, so a = a∗∗ = b∗∗ ∈ B, a contradiction.
So, b ∈ [a, a∗]. Since a �= b, we get a < b, i.e., b ∈ F , completing the proof that
h|B = q|B .

Now suppose that a /∈ A∗∗. Let A′
s = 〈As; �|As

〉 whenever a∗∗ �= s ∈ A∗∗.
Define A′

a∗∗ = 〈A′
a∗∗ ; �′〉, where A′

a∗∗ = Aa∗∗ ∪ {c} for some fresh element
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c /∈ A and �′ is the total order on A′
a∗∗ that extends �|Aa∗∗ with c <′ a and

b <′ c whenever a > b ∈ Aa∗∗ . Let A′ = {A′
s : s ∈ A∗∗} and C = A∗∗ ⊗ A′.

By Theorem 6.2, C is a totally ordered idempotent RL. By Theorem 6.5, the
inclusion map i : A → C is a homomorphism, and so is the map

h : x �→
{

c if x = a;
x otherwise.

.

Note that h and i differ only at a, so h|B = i|B . �

It was recently shown in [17, Theorem 6.6] that the variety of semilinear
idempotent RLs has the amalgamation property. Combining this observation
with Theorems 6.6 and 3.4, we obtain:

Corollary 6.7. The variety of semilinear idempotent RLs has the strong amal-
gamation property, and hence the strong ES property.

The logical counterpart of Theorem 6.6 asserts the infinite Beth prop-
erty for the extension of positive relevance logic (Rt

+) by the mingle axiom
p → (p → p) and Dummett’s axiom (p → q) ∨ (q → p). The analogue of the
strong ES property is the so-called projective Beth property ; see [16, Defini-
tion 11.7(iii)].

The proof of Theorem 6.6 essentially showed that the class of totally
ordered idempotent RLs has the strong ES property. Nevertheless, we could not
have deduced from this alone that the whole variety of semilinear idempotent
RLs has the strong ES property, because Theorem 3.1 has no analogue for the
strong ES property.

To see this, let L4 denote the variety generated by the four-element totally
ordered Brouwerian algebra. The strong ES property holds for L4FSI, but fails
for L4. Indeed, Maksimova showed in [25, Theorem 4.3] that just six nontrivial
varieties of Brouwerian algebras have the strong ES property, and only three
of these consist of semilinear algebras, namely the class of all relative Stone
algebras and the varieties generated, respectively, by the two-element and the
three-element relative Stone algebras. That L4FSI has the strong ES property
can be deduced from the proof of Theorem 6.11 below.

Not all varieties of semilinear idempotent RLs have the ES property,
as we shall see in Example 6.15. But we shall prove in Theorem 6.11 that
epimorphisms are surjective in all varieties of negatively generated semilinear
idempotent RLs.

Definition 6.8. The variety GSM of generalized Sugihara monoids consists of
the semilinear idempotent RLs that satisfy

(x ∨ e)∗∗ = x ∨ e,

or equivalently, e � x =⇒ x∗∗ = x.

The main significance of GSM lies in the next theorem.

Theorem 6.9 ([16, Corollary 3.5]). A semilinear idempotent RL is a generalized
Sugihara monoid iff it is negatively generated.
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In the proof of this theorem, one uses the fact that all generalized Sugihara
monoids satisfy

x = (x ∧ e) · (x∗ ∧ e)∗. (6.3)

Corollary 6.10 ([16]). A totally ordered idempotent RL A is a generalized Sug-
ihara monoid iff Ac = {c} for every c > e.

Proof. (⇒): Let e < c ∈ A. As A ∈ GSM, we have c∗∗ = c, so c ∈ Ac. Now let
d ∈ Ac, i.e., d∗∗ = c, so d∗ = d∗∗∗ = c∗ � e. We must show that d = c. If d � e,
then e � d∗, so d∗ = e, whence c = d∗∗ = e, a contradiction. Consequently,
e < d. Then, since A ∈ GSM, we have d = d∗∗ = c.

(⇐): Suppose Ac = {c} whenever e < c ∈ A. To see that A ∈ GSM, let
e � a ∈ A. If a = e, then a∗∗ = a, so suppose e < a. Then e < a∗∗ (as a � a∗∗),
so Aa∗∗ = {a∗∗}, by assumption. But a ∈ Aa∗∗ , so a = a∗∗, as required. �

The next theorem strengthens [16, Theorem 13.1], which stated that every
variety of generalized Sugihara monoids has the weak ES property. It also
unifies two findings from [4]: all varieties of positive Sugihara monoids and all
varieties of relative Stone algebras have the ES property.

Theorem 6.11. All varieties of generalized Sugihara monoids have surjective
epimorphisms.

Proof. Assume, with a view to contradiction, that K is a subvariety of GSM
without the ES property. Then, by Theorem 3.1, there exists A ∈ KFSI (i.e.,
a totally ordered A ∈ K) with a K-epic proper subalgebra B.

Since A is negatively generated, there exists a ∈ A−\B, so a < e. Then
F := {b ∈ A : a < b} is a deductive filter of A. Let C := A/F , and let
q : A → C be the canonical surjection. Note that C is totally ordered and
C ∈ K, because K is a variety.

Recall that a � a∗∗. If a = a∗∗, then a ∈ A∗∗ and we can use the first
homomorphism in the proof of Theorem 6.6 to show that B is not K-epic in A,
a contradiction.

So, we may suppose that a < a∗∗. In this case, define h : A → C by

h(x) =

{
eC if x = a;
q(x) otherwise.

Then h−1[{eC }] = (e/F ) ∪ {a}. We claim that (e/F ) ∪ {a} = [a, a∗], which is
clearly an interval of A containing e that is closed under ∗. If b ∈ [a, a∗] and
b �= a, we must show that b/F = e/F , i.e., that a < b, b∗. Clearly a < b and
a � b∗. If a = b∗, then a∗∗ = b∗∗∗ = b∗ = a, contradicting the assumption that
a < a∗∗. So, a < b∗, as required.

Because q satisfies conditions (ii)–(iv) of Theorem 6.5, and q−1[{eC }] =
e/F ⊆ h−1[{eC }], it is easy to see that h satisfies the conditions of Theo-
rem 6.5. So, h is a homomorphism from A to C. Clearly, h|B = q|B , but
h(a) �= q(a). Therefore, B is not K-epic in A, a contradiction. �
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Recall that a filter F of a lattice 〈L;∧,∨〉 is said to be prime if its
complement L \ F is closed under the binary operation ∨. We say that a
square-increasing [I]RL A has infinite depth if its poset of prime deductive
filters contains an infinite descending chain; otherwise it has finite depth. This
definition is equivalent to the one employed in [32], where a slightly stronger
version of the following result is proved.

Theorem 6.12 ([32, Theorem 8.1]). Let K be a variety of square-increasing
[I]RLs, such that each FSI member of K is negatively generated and has finite
depth. Then every K-epimorphism is surjective.

Every variety K of RLs with the ES property exhibited thus far in this
paper has at least one of the following two properties: (i) K is generated by
algebras that are negatively generated (as in Theorems 6.12 and 6.11), or (ii) K
has infinite depth (as in Theorems 6.6 and 6.11). In Theorem 6.14 below, we
identify a variety of semilinear Dunn monoids with surjective epimorphisms
which satisfies neither (i) nor (ii).

Let 2+ denote the two-element Brouwerian algebra. Recall that the three-
element Sugihara monoid S3 has universe {−1, 0, 1}. For any chain P with
greatest element 1, we abbreviate S3 ⊗ {{−1}, {0},P } as S3 ⊕ P .

�1

P :
�

�

�

1

0
−1

S 3:

�

�

�

1

0
−1

S 3 ⊕ P :

Lemma 6.13 ([34, Theorem 3.7]). A semilinear idempotent RL is simple iff it
is isomorphic to 2+ or S3 ⊕ P for some chain P with top element 1.

Let S be the class of all simple totally ordered idempotent RLs.

Theorem 6.14. Epimorphisms are surjective in V(S).

Proof. Let A ∈ V(S)FSI and let B be a proper subalgebra of A, so A is
nontrivial. Just as in Theorems 6.6 and 6.11, we must show that B is not
V(S)-epic in A.

By Jónsson’s Theorem, the FSI members of V(S) belong to HSPU(S),
but the criterion for simplicity in Lemma 4.4(iii) is first order-definable and
therefore persists in ultraproducts (by �Los’ Theorem [3, Theorem 5.21]), while
the CEP ensures that nontrivial subalgebras of simple algebras are simple.
Therefore, A is simple, since A ∈ V(S)FSI.

Thus, A is isomorphic to 2+ or S3 ⊕ P for some chain P with greatest
element 1, by Lemma 6.13.

In the first case, B = {e}. The identity map from A to itself, and the
map sending A onto the trivial subalgebra of A, are different homomorphisms
that agree on B. So, B is not V(S)-epic in A.

We may therefore suppose that A = S3 ⊕P . If B is trivial, we are done,
as in the previous paragraph. So, we may assume that B is nontrivial, in which
case S3 ⊆ B. Let c ∈ A\B. Then c ∈ P\{1}.
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As in Theorem 6.6, let P ′ = P ∪ {d} for some fresh element d /∈ A and
extend the total order of P to P ′ by defining d to be the immediate predecessor
of c. By Theorem 6.5, the inclusion map i from S3 ⊕ P to S3 ⊕ P ′ ∈ S is a
homomorphism, and the map

h : x �→
{

d if x = c;
x otherwise

is also a homomorphism, differing from i only at c, so that h|B = i|B . Thus,
B is not V(S)-epic in A. �

We now exhibit a subvariety of V(S) which does not have the ES property.
Let 2 be the two-element chain with elements c < 1.

�

�

�

�

1
c

0
−1

S 3 ⊕ 2 :

Example 6.15. V(S3 ⊕ 2 ) does not have the ES property.

Proof. Let K = V(S3 ⊕ 2 ). We show that S3 is a K-epic subalgebra of S3 ⊕ 2 .
Let g, h : S3 ⊕ 2 → C be two homomorphisms into C ∈ KSI such that

g|S3 = h|S3 . By Lemma 3.2, it suffices to show that g = h.
Since S3 ⊕ 2 is simple, and g and h agree on a non-neutral element, g

and h are both embeddings or they both have range {e}. In the second case,
clearly g = h. So, we assume that g and h are embeddings.

By Jónsson’s theorem, C ∈ HSPU(S3 ⊕ 2 ). Since S3 ⊕ 2 is finite and
simple, C is isomorphic to S3 or to S3 ⊕2 . Since g and h are embeddings, the
first case is ruled out on cardinality grounds, so C ∼= S3 ⊕ 2 . But then g = h
because S3 ⊕ 2 has no nontrivial automorphism. �

Note that S3⊕2 is not negatively generated (as the subuniverse generated
by {−1, 0} excludes c). Also, as S3⊕2 is finite and has a V(S3⊕2 )-epic proper
subalgebra, V(S3⊕2 ) fails to have even the weak ES property. (It follows from
[8, Corollary 6.5] that, in finitely generated varieties of lattice-based algebras,
the weak ES property entails the ES property, but this becomes false if we
replace ‘finitely generated’ by ‘locally finite’ [4, Section 6].)

We now relax the condition of idempotence and consider varieties of semi-
linear RLs that are merely square-increasing.

Theorem 6.16. Let A be a totally ordered Dunn monoid that is generated by a
set X of idempotent elements. Then A is idempotent.

Proof. Let a ∈ A. Then a = tA (a1, . . . , an) for some RL-term t(x1, . . . , xn)
and some a1, . . . , an ∈ X. Let �a abbreviate a1, . . . , an. We show that a = a2

by induction on the complexity #t of t. For brevity, we assume below that all
terms are evaluated in A.

When #t = 0, clearly t(�a)2 = t(�a), because t ∈ {e, x1, . . . , xn}.
Assume that s and r are RL-terms with #s,#r < #t, where s(�a)2 = s(�a)

and r(�a)2 = r(�a).
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If t is s∧r or s∨r, then t(�a) ∈ {s(�a), r(�a)}, since A is totally ordered, and
we are done. If t = s · r, then t(�a)2 = s(�a)2 · r(�a)2 = s(�a) · r(�a) = t(�a), by the
induction hypothesis. Lastly, suppose that t = s → r. Note that t(�a) � t(�a)2,
since A is square-increasing. On the other hand, by (4.5),

s(�a) · (s(�a) → r(�a))2 = s(�a)2 · (s(�a) → r(�a))2 � r(�a)2 = r(�a),

so t(�a)2 = (s(�a) → r(�a))2 � s(�a) → r(�a) = t(�a), by the law of residuation
(4.2). �
Theorem 6.17. Let A be an semilinear Dunn monoid. Then the following are
equivalent:

(i) A is negatively generated;
(ii) A is a generalized Sugihara monoid;
(iii) A satisfies Equation (6.3).

Proof. (i) ⇒ (ii): By the Subdirect Decomposition Theorem, A embeds into∏
i∈I Ai for some set {Ai : i ∈ I} of totally ordered Dunn monoids, where each

Ai is a homomorphic image of A. For each i ∈ I, we have Ai = SgAiA−
i , by

Lemma 5.4. By (4.14), every element of A−
i is idempotent, so Ai is idempotent,

by Theorem 6.16. Therefore, each Ai ∈ GSM, by Theorem 6.9, so A is a
generalized Sugihara monoid.

For (ii) ⇒ (iii), see the proof of [16, Corollary 3.5]. And (iii) ⇒ (i) follows
from the form of (6.3), as a ∧ e and a∗ ∧ e belong to A−, for all a ∈ A. �
Corollary 6.18. The negatively generated semilinear Dunn monoids form a lo-
cally finite variety, namely the variety of generalized Sugihara monoids.

Indeed, it is shown in [37, Theorem 18] that the variety of semilinear
idempotent RLs is locally finite, therefore GSM is as well.

The following characterization of locally finite varieties is often useful. (A
proof can be found in [37, Theorem 1], for instance.)

Lemma 6.19. A variety K of finite type is locally finite iff there is a function
p : ω → ω such that, for each n ∈ ω, every n-generated member of KSI has at
most p(n) elements.

For each n ∈ ω, an n-generated totally ordered idempotent RL has at
most 3n + 1 elements [37, Theorem 17]. The bound reduces to n + 1 in the
integral case, i.e., in the subvariety of relative Stone algebras.

The following is therefore a paraphrase of Theorem 6.11.

Corollary 6.20. Let D be a variety of negatively generated semilinear Dunn
monoids. Then D has surjective epimorphisms.

The variety of all semilinear Dunn monoids does not have the ES prop-
erty, however. This is illustrated by the next theorem and the examples dis-
cussed after it.

Theorem 6.21. Let K be a variety of semilinear Dunn or De Morgan monoids
containing a totally ordered algebra A which is generated by some a ∈ A that
satisfies a = an → an+1 for some positive integer n, where an+1 generates a
proper subalgebra of A. Then K lacks the weak ES property.
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Proof. It suffices to show that B = SgA{an+1} is a K-epic subalgebra of
A (see Definition 3.3(1)). Suppose, on the contrary, that h, g : A → C are
different homomorphisms that agree at an+1, where C ∈ K. By Lemma 3.2,
we may assume that C ∈ KSI, so C is totally ordered. Now h(a) �= g(a),
because A is generated by a. By symmetry, we may assume that h(a) < g(a),
so h(an) = h(a)n � g(a)n = g(an). Then

g(a) · h(an) � g(a) · g(an) = g(an+1) = h(an+1),

whence g(a) � h(an) → h(an+1) = h(an → an+1) = h(a), by the law of
residuation (4.2), a contradiction. �

For each positive integer p, consider the totally ordered De Morgan
monoid Ap on the chain 0 < 1 < 2 < · · · < 2p+1, where fusion is multi-
plication, truncated at 2p+1. For each p > 2, the algebra Ap is generated by 2,
and 2 = 2p−1 → 2p. Also, f = 2p, and the subalgebra SgAp{f} has universe
{0, 1, 2p, 2p+1}, so Ap satisfies the conditions of Theorem 6.21 with n = p − 1.
When p is prime, then Ap has no proper subalgebra other than SgAp{f} [30,
Example 9.1].

An analogous situation holds for the involution-less reducts of these al-
gebras. For each positive integer p, let A+

p denote the Dunn monoid reduct of
Ap. Then 2 still generates A+

p , and 2 = 2p → 2p+1. As 2p+1 is idempotent in
A+

p , it generates an idempotent subalgebra of A+
p , by Theorem 6.16, which

must therefore be a proper subalgebra. In fact, SgA+
p {2p+1} = {0, 1, 2p+1}.

Thus, A+
p satisfies the conditions of Theorem 6.21, with a = 2 and n = p.

When p is prime, the only nontrivial proper subalgebra of A+
p−1 has universe

{0, 1, 2p}; it is isomorphic to the Dunn monoid reduct of S3.
By Lemma 4.4(iii), Ap and A+

p are simple. For distinct primes p, q,
Jónsson’s Theorem shows that V(Ap) �= V(Aq) and V(A+

p−1) �= V(A+
q−1).

Somewhat more can be said, because for any subset X of {Ap : p prime}
or of {A+

p−1 : p prime}, the variety V(X) still satisfies the conditions of The-
orem 6.21 and therefore lacks the weak ES property. Moreover, De Mor-
gan/Dunn monoids have equationally definable principal congruences [13, The-
orem 3.55]. In any variety K of finite type with equationally definable principal
congruences, and for every finite algebra A ∈ KSI, the class KA := {B ∈ K :
A /∈ SH(B)} is a subvariety of K, and for every subvariety W of K, we have
A ∈ W or W ⊆ KA , and not both [6], [22, Theorem 6.6]. In particular, if
Ap /∈ X, then Ap /∈ V(X), and if A+

p−1 /∈ X, then A+
p−1 /∈ V(X). We have

therefore established the following:

Corollary 6.22. There are 2ℵ0 distinct varieties of semilinear Dunn (and like-
wise De Morgan) monoids without the weak ES property.

7. Semilinear De Morgan monoids

Except for the consequences of Theorem 6.21, we were concerned in Section 6
with involution-less algebras. We now focus on algebras with involution, and
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on varieties of De Morgan monoids. Negatively generated totally ordered De
Morgan monoids need not be idempotent (unlike their non-involutive counter-
parts). We shall prove a representation theorem for these algebras, which will
allow us to show that the negatively generated semilinear De Morgan monoids
form a locally finite variety, all of whose subvarieties have the ES property.
The following lemma is well known.

Lemma 7.1. ([28, Lemma 2.3]) If a (possibly involutive) RL A has a least
element ⊥, then � := ⊥ → ⊥ is its greatest element and, for all a ∈ A,

a · ⊥ = ⊥ = � → ⊥ and ⊥ → a = � = a → � = �2.

In particular, {⊥,�} is a subalgebra of the ·,→,∧,∨ (,¬) reduct of A.

If we say that ⊥,� are extrema of an [I]RL A, we mean that ⊥ � a � �
for all a ∈ A. An [I]RL with extrema is said to be bounded. In that case, its
extrema need not be distinguished elements, and they are not always retained
in subalgebras (consider the Sugihara monoids Sn, for instance). The next
lemma is a straightforward consequence of (4.2).

Lemma 7.2. The following conditions on a bounded IRL A, with extrema ⊥,�,
are equivalent.

(i) � · a = � whenever ⊥ �= a ∈ A.
(ii) a → ⊥ = ⊥ whenever ⊥ �= a ∈ A.
(iii) � → b = ⊥ whenever � �= b ∈ A.

Following Meyer [27], we say that an IRL is rigorously compact if it is
bounded and satisfies the equivalent conditions of Lemma 7.2. The next theo-
rem is proved in [28, Theorem 5.3], but has an antecedent in [27, Theorem 3].

Theorem 7.3. Every bounded FSI De Morgan monoid is rigorously compact.

We depict below the two-element Boolean algebra 2, and two four-element
De Morgan monoids, C4 and D4. In each case, the labeled Hasse diagram
determines the structure.

�

�e

f

2 :

�

�

�

�f2

f

e

¬(f2)

C 4 :

�

��
�

��
���

�

��
f2

e f

¬(f2)

D 4 :

Note that a De Morgan monoid is 0-generated iff it has no proper subalgebra.
The following result is implicit in Slaney [39,40] and explicit in [28, Theo-
rem 5.20].

Theorem 7.4. A De Morgan monoid is simple and 0-generated iff it is isomor-
phic to 2 or to C4 or to D4.

Of these algebras, C4 garners special attention, because of the following.
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Theorem 7.5 (Slaney [40, Theorem 1]). Let h : A → B be a homomorphism,
where A is an FSI De Morgan monoid, and B is nontrivial and 0-generated.
Then h is an isomorphism or B ∼= C4.

A De Morgan monoid A is said to be crystalline if there is a homomor-
phism h : A → C4 (in which case h is surjective). These algebras do not form
a variety, as their homomorphic images need not be crystalline, but there is
a largest variety U of crystalline (or trivial) De Morgan monoids; it is axiom-
atized in [30, Section 4]. Thus, V(C4) is the smallest nontrivial subvariety
of U.

Theorem 7.6 ([30, Lemma 4.8]). Let A be a rigorously compact and crystalline
De Morgan monoid. Then A ∈ U.

We say that a De Morgan monoid is anti-idempotent if it satisfies x � f2

(or equivalently, ¬(f2) � x). This terminology is justified, because a variety
of square-increasing IRLs has no nontrivial idempotent member iff it satisfies
x � f2 [28, Corollary 3.6].

We explained the structure of idempotent De Morgan monoids (i.e., Sug-
ihara monoids) in Section 4, and recalled in Theorem 5.5 that all varieties of
Sugihara monoids have surjective epimorphisms. It is now convenient (in view
of the upcoming Theorem 7.19) to describe the anti-idempotent negatively
generated totally ordered De Morgan monoids.

Theorem 7.7. Let A be an anti-idempotent negatively generated FSI De Mor-
gan monoid. Then A ∼= D4 or A ∈ U.

Proof. We may suppose that A is nontrivial. Being anti-idempotent, A has
no trivial subalgebra, by Theorem 4.5. In a variety whose nontrivial members
lack trivial subalgebras, every nontrivial member has a simple homomorphic
image [29, Corollary 5.4], so A has a simple homomorphic image B. Now
B = SgB B−, by Lemma 5.4, because A = SgAA−. Since B is simple and
anti-idempotent, Lemma 4.4(iii) shows that B− is the chain ¬(f2) < e, so B
is 0-generated. Therefore, B is isomorphic to C4 or D4, by Theorem 7.4, as 2
is not anti-idempotent. If B ∼= D4, then A ∼= D4, by Theorem 7.5. Otherwise
B ∼= C4, in which case A is crystalline (as well as FSI and bounded), so
A ∈ U, by Theorems 7.3 and 7.6. �

The algebras in U are subdirect products of ‘skew reflections’ of Dunn
monoids [30, Corollary 5.6]. The skew reflection construction is a means of
embedding a Dunn monoid into one that has an involution (i.e., into a De
Morgan monoid). In the semilinear context, to which we now confine ourselves,
this construction reduces to an older and simpler one, called ‘reflection’, which
is recalled below. It is essentially due to Meyer [26].

Given a Dunn monoid A, let A′ = {a′ : a ∈ A} be a disjoint copy of A,
and let 0 , 1 be distinct non-elements of A ∪ A′. The reflection R(A) of A is
the De Morgan monoid with universe R(A) = A ∪ A′ ∪ {0 , 1} such that A is
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a subalgebra of the RL-reduct of R(A) and, for all a, b ∈ A and x, y ∈ R(A),

x · 0 = 0 < a < b′ < 1 = a′ · b′, and if x �= 0 , then x · 1 = 1 ;

a · b′ = (a → b)′;

¬a = a′ and ¬(a′) = a and ¬0 = 1 and ¬1 = 0 .

Since f = e′, we have 1 = f2 and 0 = ¬(f2), so reflections are anti-idempotent.
Note that C4

∼= R(A) for any trivial Dunn monoid A.
The reflection of a variety K of Dunn monoids is the variety

R(K) := V({R(A) : A ∈ K}).

We shall use the following facts concerning reflections, whose proofs can be
found in [30, Lemma 6.5] and [32, Corollary 9.2, Theorem 9.3]:

Theorem 7.8. Let K be a variety of Dunn monoids.
(i) If C is a subalgebra of a Dunn monoid D, then

C ∪ {c′ : c ∈ C} ∪ {1 , 0}
is the universe of a subalgebra of R(D) that is isomorphic to R(C), and
every subalgebra A of R(D) arises in this way from a subalgebra C of
D, where C = A ∩ D = {a ∈ A : a �= 0 and a2 �= 1}.

(ii) If θ is a congruence of a Dunn monoid B, then

R(θ) := θ ∪ {〈a′, b′〉 : 〈a, b〉 ∈ θ} ∪ {〈0 , 0 〉, 〈1 , 1 〉}
is a congruence of R(B), and R(B)/R(θ) ∼= R(B/θ). Also, every proper
congruence of R(B) has the form R(θ) for some θ ∈ Con B.

(iii) If {Bi : i ∈ I} is a family of Dunn monoids and U is an ultrafilter over
I, then

∏
i∈I R(Bi)/U ∼= R

(∏
i∈I Bi/U)

.
(iv) A ∈ R(K)FSI iff A is trivial or A ∼= R(D) for some D ∈ KFSI.
(v) A ∈ R(K)SI iff A ∼= R(D), where D is trivial or belongs to KSI.
(vi) K has the ES property iff R(K) has the ES property.
(vii) K is locally finite iff R(K) is locally finite. More specifically, if p : ω → ω

is a function such that, for each n ∈ ω, every n-generated member of KFSI

has at most p(n) elements, then every n-generated member of R(K)FSI
has at most 2 + 2p(n) elements.

In (ii), if θ = B × B, then R(B/θ) ∼= C4, so R(B) ∈ U.
Recall that S is the class of all simple totally ordered idempotent RLs. It

follows from Theorems 6.14 and 7.8(vi) that R(V(S)) has the ES property. It
also has finite depth and its members are not all negatively generated.

Lemma 7.9. Every nontrivial totally ordered negatively generated anti-idem-
potent De Morgan monoid A is a reflection of a totally ordered Dunn monoid.

Proof. As A is negatively generated, FSI and anti-idempotent, Theorem 7.7
shows that A ∈ U ∪ I(D4). But D4 is not totally ordered, so A ∈ U. Since
A is bounded and FSI, it is rigorously compact, by Theorem 7.3. Also, A is
crystalline, like every nontrivial member of U. These two properties (being
rigorously compact and crystalline) are enough to guarantee that A is a ‘skew
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reflection’ of a Dunn monoid B, by [30, Theorem 5.4]. In the present context,
since A is totally ordered, this amounts to saying that A is a reflection of B,
which is also totally ordered. �

The underlying Dunn monoid in the statement of Lemma 7.9 is itself
negatively generated, because of the next lemma. We shall see in the proof
of Theorem 7.11 that the converse of Lemma 7.9 holds for such (negatively
generated) Dunn monoids.

Lemma 7.10. Let A = R(D) for some Dunn monoid D. If A = SgAX for
some X ⊆ D, then D = SgD X.

Proof. Let B be the subalgebra of D generated by X. We argue that B = D.
By Lemma 7.8(i), R(B) can be identified with a subalgebra of A. But then
R(B) = A = R(D), since A = SgAX and X ⊆ B ⊆ R(B). It follows that
B = D, because A is a reflection of a Dunn monoid whose universe must be
{a ∈ A : a �= 0 and a2 �= 1} (again by Lemma 7.8(i)). �

We can now prove a representation theorem for semilinear negatively gen-
erated anti-idempotent De Morgan monoids, which also reveals the unobvious
fact that these algebras form a variety. We define the following unary terms:

d′(x) := (f2 → (x · f)) ∧ (f2 · ¬x);

σ(x) := (x ∧ e) · (x∗ ∧ e)∗;

d(x) := d′(¬x) and σ′(x) := ¬σ(¬x).

Recall that σ(x) = x is Equation (6.3), which is satisfied by every generalized
Sugihara monoid. Consider the equation

x =
(
d(σ(x)) ∧ σ(x)

) ∨ (
d′(σ′(x)) ∧ σ′(x)

) ∨ ((
f2 ∨ ¬(f2)

) → σ′(x)
)
. (7.1)

Of course, f2 ∨ ¬(f2) amounts to f2 in anti-idempotent De Morgan monoids.
We have not exploited this simplification in (7.1), because the next result will
be generalized in Theorem 7.22 to accommodate De Morgan monoids that
need not be anti-idempotent.

Theorem 7.11. Let A be a nontrivial anti-idempotent semilinear De Morgan
monoid. Then the following are equivalent:

(i) A is negatively generated;
(ii) A is a subdirect product of reflections of totally ordered generalized Sug-

ihara monoids;
(iii) A satisfies Equation (7.1).

Proof. (i) ⇒ (ii): As in the proof Theorem 6.17, it suffices, by the Subdirect
Decomposition Theorem, to show that every nontrivial totally ordered anti-
idempotent De Morgan monoid B that is negatively generated is a reflection
of a totally ordered generalized Sugihara monoid. By Lemma 7.9, B ∼= R(D)
for some totally ordered Dunn monoid D. Note that R(D) is generated by D−,
because R(D)− = D−∪{0} and 0 = ¬(f2) ∈ SgB {e}. But then D = SgD D−,
by Lemma 7.10. It follows, by Theorem 6.17, that D ∈ GSM.
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(ii) ⇒ (iii): We claim that every reflection of a totally ordered generalized
Sugihara monoid satisfies (7.1), and so A does as well. Let B = R(D) for
some totally ordered D ∈ GSM. For any a ∈ B, it follows from the definition
of reflection that

d(a) =

{
1 if a ∈ D;
0 otherwise,

d′(a) =

{
1 if a ∈ D′;
0 otherwise,

(f2 ∨ ¬(f2)) → a = f2 → a =

{
1 if a = 1 ;
0 otherwise,

σ(a) =

{
1 if a ∈ D′;
a otherwise,

and σ′(a) =

{
0 if a ∈ D;
a otherwise.

It is then easy to verify that B satisfies (7.1), by checking the cases where
a ∈ D, a ∈ D′, a = 1 and a = 0 .

(iii) ⇒ (i): This follows directly from the shape of Equation (7.1), because
σ is built up from the terms x ∧ e and x∗ ∧ e, and σ′ is built up from ¬x ∧ e
and (¬x)∗ ∧e. For any assignment to x of an element of A, these terms clearly
evaluate into A−. �

Corollary 7.12. Let K be the class of negatively generated semilinear anti-
idempotent De Morgan monoids. Then

(i) K is a variety that is axiomatized relative to semilinear De Morgan monoids
by x � f2 and (7.1);

(ii) K = R(GSM);
(iii) if A ∈ K is totally ordered and n-generated, then |A| ≤ 6n + 4;
(iv) K is locally finite.

Proof. (i) follows immediately from Theorem 7.11.
For (ii), it follows easily from Theorem 7.11 that K ⊆ R(GSM). To es-

tablish the converse, it is enough to show that R(GSM)SI ⊆ K, because K is
closed under IPS (by (i)). By Theorem 7.8(v), this reduces to showing that
R(GSMSI) ⊆ K, which follows from Theorem 7.11.

Recall from the remarks after Lemma 6.19 that if B ∈ GSM is totally
ordered and n-generated then |B| ≤ 3n + 1. Let A be a totally ordered n-
generated member of K. By Theorem 7.8(vii), |A| ≤ 2 + 2(3n + 1) = 6n + 4,
proving (iii).

(iv) follows from (iii) (and Lemma 6.19). �

Corollary 7.13. Let K be any nontrivial variety of negatively generated semi-
linear anti-idempotent De Morgan monoids. Then K = R(L) for some variety
L of generalized Sugihara monoids.

Proof. Let D = {D ∈ GSM : R(D) ∈ KSI} and L = V(D). By the Subdirect
Decomposition Theorem, it suffices to show that KSI = R(L)SI.

Let A ∈ KSI. By (i) ⇒ (ii) of Theorem 7.11, A ∼= R(D) for some D ∈
GSM. But then D ∈ D, so A ∼= R(D) ∈ R(L).
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Conversely, let A ∈ R(L)SI. By Theorem 7.8(v), A ∼= R(D) for some
D ∈ L that is either trivial or SI. In the first case A ∼= C4, and C4 ∈ K,
because K is a nontrivial subvariety of U (Lemma 7.9). In the second case,
D ∈ V(D)SI ⊆ HSPU(D), by Jónsson’s Theorem. So, by Lemma 7.8(i)–(iii),

A ∼= R(D) ∈ HSPU({R(B) : B ∈ D}) ⊆ K. �

Theorem 7.14. Let K be any variety of negatively generated semilinear anti-
idempotent De Morgan monoids. Then K has surjective epimorphisms.

Proof. We may suppose without loss of generality that K is nontrivial, so
K = R(L) for some variety L of generalized Sugihara monoids, by Corollary 7.13.
By Theorem 6.11, L has surjective epimorphisms, so by Theorem 7.8(vi),
R(L) = K has as well. �

We aim now to generalize the above results by dropping anti-idempot-
ency, so our focus will be on negatively generated semilinear De Morgan
monoids in general. We first recall some structural facts about De Morgan
monoids. As usual, in a poset, we denote by (a] the set of all lower bounds of
an element a (including a itself), and by [a) the set of all upper bounds.

Theorem 7.15 ([28, Theorem 5.15–18]). Let A be a non-idempotent FSI De
Morgan monoid.

(i) If f2 � a ∈ A, then ¬a < a and the interval [¬a, a] is a subuniverse of
A.

(ii) A is the union of the interval subuniverse [¬(f2), f2] and two chains of
idempotents, (¬(f2)] and [f2).

(iii) If f2 � a < b, then a → a = a, a → b = b and b → a = ¬b.

It follows from (i) that ¬(f2) � e, so [¬(f2)) is a deductive filter of A.

Theorem 7.16. Let A be a non-idempotent FSI De Morgan monoid. Then
A/[¬(f2)) is a totally ordered odd Sugihara monoid. Furthermore, e/[¬(f2))
is the interval [¬(f2), f2], and a/[¬(f2)) = {a} for any a ∈ A\[¬(f2), f2].

Proof. Let G := [¬(f2)) and a ∈ [¬(f2), f2]. By Theorem 7.15(i), [¬(f2), f2]
is a subuniverse of A, so e → a, a → e ∈ [¬(f2), f2] ⊆ G, whence a/G =
e/G. Therefore, [¬(f2), f2] ⊆ e/G. In particular, since f ∈ [¬(f2), f2], we
have e/G = f/G, so A/G is an odd Sugihara monoid, by Theorem 5.2. By
Theorem 7.15(ii), A\[¬(f2), f2] is totally ordered, so A/G is as well.

Let a ∈ e/G. Then ¬(f2) � a and ¬(f2) � a → e. By the law of
residuation a · ¬(f2) � e, so by (4.1), ¬(f2) · f � ¬a. Since [¬(f2), f2] is a
subuniverse of A with least element ¬(f2), we have ¬(f2) = ¬(f2) · f � ¬a,
by Lemma 7.1. So, a � f2. Therefore e/G = [¬(f2), f2].

Lastly, let a ∈ A \ [¬(f2), f2], and suppose that a/G = b/G for some
b ∈ A. Notice that b /∈ [¬(f2), f2], since a /∈ e/G = [¬(f2), f2].

By involutional symmetry, we may assume that f2 < a (rather than
a < ¬(f2)), because otherwise f2 < ¬a, and from x/G = {x} and the double
negation law, it follows easily that (¬x)/G = {¬x}.
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If b < ¬(f2), then b < e < a, but a/G includes a and b, and is an interval
of A, so it includes e, whence a/G = e/G, a contradiction. Therefore, f2 < b.
By Theorem 7.15(iii),

a → b ∈ {a, b,¬a,¬b} ⊆ A \ [¬(f2), f2].

As a/G = b/G, we have ¬(f2) � a → b, b → a, so e < f2 < a → b. Similarly,
e < b → a, so a = b. Therefore, a/G = {a}. �

The following discussion elaborates and systematizes Remark 5.19 of [28],
by showing how any non-idempotent FSI De Morgan monoid can be viewed
as an extension of its anti-idempotent subalgebra on [¬(f2), f2] by the (idem-
potent) totally ordered odd Sugihara monoid that results from factoring out
[¬(f2)). We call this a ‘rigorous extension’, as it is a union of rigorously com-
pact algebras containing [¬(f2), f2].

Let S be a totally ordered odd Sugihara monoid. For any non-constant
basic operation ϕ of S with arity n > 0, and for any a1, . . . , an ∈ S,

if ϕ(a1, . . . , an) = e then ai = e for some i ≤ n. (7.2)

When ϕ is ¬, (7.2) follows from the fact that S is odd, and when ϕ is ∧ or
∨, (7.2) holds because S is totally ordered. When ϕ is ·, notice that the odd
Sugihara monoid Z satisfies the quasi-equation x · y = e =⇒ x = e, so since
OSM is generated as a quasivariety by Z, S satisfies the same quasi-equation,
whence (7.2) holds.

Except for the treatment of involution, the construction in the next def-
inition coincides with one in Galatos [12, p. 458].

Definition 7.17. The rigorous extension of a De Morgan monoid A by a totally
ordered odd Sugihara monoid S is the algebra

S[A] := 〈(S \ {eS }) ∪ A; ·′,∧′,∨′,¬′, eA 〉
with the following properties. Let � ∈ {∧,∨, ·}. The operations ¬′ and �′

extend those of S and A, i.e., for every s, p ∈ S\{eS } and a, b ∈ A,

¬′s := ¬S s, ¬′a := ¬Aa, s �′ p := s �S p, and a �′ b := a �A b

(whence {¬′s, s �′ p} ⊆ S\{eS }, by (7.2)), while

a �′ s := s �′ a :=

{
a if eS �S s = eS ;
eS �S s otherwise.

Theorem 7.18. For any De Morgan monoid A and any totally ordered odd
Sugihara monoid S, the algebra S[A] is a De Morgan monoid having A as a
subalgebra.

Proof. It is easy to see that 〈(S\{eS }) ∪ A;∧′,∨′〉 is a lattice, that its lattice
order � extends �A and �S |S\{eS }, and that for all s ∈ S\{eS } and a ∈ A
we have

(a � s iff eS �S s) and (s � a iff s �S eS ).

Since S is totally ordered and A distributive, the construction precludes dia-
mond or pentagon sublattices, so � is a distributive lattice order.
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It is straightforward to verify that ·′ is associative and has identity eA ,
and that (4.1) is satisfied. Here, it is helpful to note that there is no element
s ∈ S\{eS } such that eS ·S s = eS . So, s ·′ a = a ·′ s = s for every s ∈ S\{eS }
and a ∈ A. �

Theorem 7.19. If A is an FSI De Morgan monoid, then one of the following
mutually exclusive conditions holds:

(i) A is a Sugihara monoid, or
(ii) A ∼= S[A′], where A′ is the nontrivial anti-idempotent subalgebra of

A with universe [¬(f2), f2], and S is the totally ordered odd Sugihara
monoid A/[¬(f2)).

Proof. Let A be an FSI De Morgan monoid in which (i) fails. Then A is non-
idempotent, with f < f2. Let G = [¬(f2)) and S = A/G. Then S is a totally
ordered odd Sugihara monoid, by Theorem 7.16. Let A′ be the nontrivial
anti-idempotent subalgebra of A with universe [¬(f2), f2], which exists by
Theorem 7.15(i). We show that A ∼= S[A′], the isomorphism being

h : a �→
{

a if a ∈ A′;
a/G otherwise.

It follows from Theorem 7.16 that h is a bijection. It remains to show that h
is a homomorphism. It is clear that h preserves e and ¬. Let � ∈ {∧,∨, ·}. If
a, b ∈ A′ then h(a)�S [A ′]h(b) = a�A ′

b = h(a�A b), since A′ is a subalgebra of A
and of S[A′]. If a, b ∈ A\A′, then a�A b /∈ A′, because otherwise a/G�S b/G =
e/G, whence a/G = e/G or b/G = e/G, by (7.2), contradicting the fact that
a/G = {a} and b/G = {b} (Theorem 7.16). So,

h(a) �S [A ′] h(b) = a/G �S [A ′] b/G = a/G �S b/G = (a �A b)/G = h(a �A b).

Now let a ∈ A′ and b ∈ A\A′. If e/G ∧S b/G = e/G then f2 < b, by Theo-
rems 7.15(ii) and 7.16, so h(a) ∧S [A ′] h(b) = a = h(a ∧A b). If e/G ∧S b/G �=
e/G then e/G ∧S b/G = b/G, as S is totally ordered. Then b < ¬(f2), so
h(a) ∧S [A ′] h(b) = b/G = h(a ∧A b). Similarly, h(a) ∨S [A ′] h(b) = h(a ∨A b).

It remains to show that h(a) ·S [A ′] h(b) = h(a ·A b). Note that

h(a) ·S [A ′] h(b) = e/G ·S b/G = b/G,

so we must show that a ·A b = b. This follows from the fact that a and b belong
to the rigorously compact interval subalgebra of A with idempotent extrema
b and ¬b; see Theorems 7.3 and 7.15(i). �

Theorem 7.19 largely reduces the study of irreducible De Morgan monoids
to the anti-idempotent case, about which we already have much information
in the semilinear subcase. The following properties of rigorous extensions are
useful.
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Theorem 7.20. Let {A,B} ∪ {Ai : i ∈ I} be a family of De Morgan monoids,
and {S} ∪ {Si : i ∈ I} a family of totally ordered odd Sugihara monoids, for
some set I.

(i) If h : A → B is a homomorphism, then the map

h′ : x �→
{

h(x) if x ∈ A;
x otherwise,

is a homomorphism from S[A] to S[B] which extends h.
(ii) If P is a subalgebra of S and B a subalgebra of A, then P [B] is a

subalgebra of S[A].
(iii)

∏
i∈I(Si[Ai])/U ∼= (∏

i∈I Si/U) [∏
i∈I Ai/U]

for every ultrafilter U over
I.

Proof. For (i), we only show preservation of the binary basic operations with
mixed arguments from S \ {eS } and A, since the other cases are trivial. Let
s ∈ S\{eS } and a ∈ A. If s < a then h′(s ∧ a) = h′(s) = s = h′(s) ∧ h′(a) and
h′(s ∨ a) = h′(a) = h(a) = s ∨ h(a) = h′(s) ∨ h′(a). When a < s, the argument
is symmetrical. Also,

h′(s · a) = h′(s) = s = s · h(a) = h′(s) · h′(a).

Item (ii) follows from the fact that if p ∈ P and b ∈ B, then for any
� ∈ {∧,∨, ·} we have {¬p,¬b, p � b, b � p} ⊆ {b,¬b, p,¬p} ⊆ P [B].

In (iii), we use the notation �x = 〈xi : i ∈ I〉 for elements of
∏

i∈I Si[Ai].
For �a ∈ ∏

i∈I Si[Ai], let I�a := {i ∈ I : ai ∈ Ai}. When I�a ∈ U , let h(�a) =
�b/U ∈ ∏

i∈I Ai/U where

bi = ai if ai ∈ Ai, and bi = eAi otherwise.

When I�a /∈ U , then its complement Ic
�a = {i ∈ I : ai ∈ Si\{eS i}} ∈ U , since U

is an ultrafilter. In this case, let h(�a) = �s/U ∈ (
∏

i∈I Si/U)\{e} where

si = ai if ai ∈ Si, and si = eS i otherwise.

It can be verified that h is a surjective homomorphism from
∏

i∈I Si[Ai] to(∏
i∈I Si/U) [∏

i∈I Ai/U]
, whose kernel is the congruence of

∏
i∈I Si[Ai] as-

sociated with U . Then
∏

i∈I(Si[Ai])/U ∼= (∏
i∈I Si/U) [∏

i∈I Ai/U]
, by the

Homomorphism Theorem. �

Corollary 7.21. Let A be a De Morgan monoid and S a totally ordered odd
Sugihara monoid. If C ∈ HSPU(A), then S[C] ∈ HSPU(S[A]).

Proof. Suppose h : B → C is a surjective homomorphism, with B a subalge-
bra of

∏
i∈I A/U for some ultrafilter U over a set I. By Theorem 7.20(i),

h can be extended to a surjective homomorphism h′ : S[B] → S[C]. Re-
call that any algebra embeds into each of its ultrapowers. In particular, we
may identify S with a subalgebra of

∏
i∈I S/U . Then, by Theorem 7.20(ii),

S[B] is a subalgebra of
(∏

i∈I S/U)
[
∏

i∈I A/U ]. Lastly, by Theorem 7.20(iii),(∏
i∈I S/U)

[
∏

i∈I A/U ] ∼= ∏
i∈I(S[A])/U . So, S[C] ∈ HSPU(S[A]). �
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Analogues of Theorem 7.20 and Corollary 7.21 (with similar conclusions
but narrower or incomparable assumptions) can be found in [12, Lemma 5.1],
[1] and elsewhere.

We can now describe all semilinear De Morgan monoids that are neg-
atively generated, using the characterization of FSI De Morgan monoids (in
Theorem 7.19) by means of rigorous extensions.

Theorem 7.22. Let A be a semilinear De Morgan monoid. Then the following
are equivalent:

(i) A is negatively generated;
(ii) A is a subdirect product of totally ordered Sugihara monoids and De Mor-

gan monoids of the form S[R(D)], where S ∈ OSMFSI and D ∈ GSMFSI;
(iii) A satisfies Equation (7.1).

Proof. (i) ⇒ (ii): Let B be a totally ordered negatively generated De Morgan
monoid that is not a Sugihara monoid. Then, by Theorem 7.19, B ∼= S[B′] for
a nontrivial anti-idempotent subalgebra B′ of B and an odd Sugihara monoid
S (both totally ordered). Suppose, with a view to contradiction, that B′ is not
negatively generated, i.e., B′′ := SgB ′

B− is a proper subalgebra of B′. Then,
by Theorem 7.20(ii), S[B′′] is a proper subalgebra of S[B′] containing S[B′]−,
contradicting the fact that S[B′] is negatively generated. So, B′ is negatively
generated, totally ordered, and anti-idempotent, whence B′ ∼= R(D) for some
totally ordered D ∈ GSM, by Theorem 7.11.

(ii) ⇒ (iii): First we show that (7.1) holds for every Sugihara monoid,
using the fact that SM = V(Z∗). For a ∈ Z∗, we have d(a) = a ∧ ¬a = d′(a),
σ(a) = a = σ′(a), and (f2 ∨ ¬(f2)) → a = e → a = a. Therefore, the right-
hand side of (7.1) simplifies to (a ∧ ¬a) ∨ a, which clearly equals a.

Lastly, let B = S[R(D)] for some totally ordered S ∈ OSM and some
totally ordered D ∈ GSM. We have just seen that S satisfies (7.1). And by
Theorem 7.11, the subalgebra R(D) of B also satisfies (7.1).

Let a ∈ B \ R(D), and let b be the right-hand side of (7.1) when x is
assigned the value of a. Recall from Theorems 7.16 and 7.19 that there is a
homomorphism from B onto S, whose kernel identifies two distinct elements
iff they belong to R(D). So, if a �= b, then since a /∈ R(D), it follows that h(a)
is not h(b), contradicting the fact that S satisfies (7.1).

The proof of (iii) ⇒ (i) is similar to its counterpart in Theorem 7.11. �

Corollary 7.23. Let K be the class of all negatively generated semilinear De
Morgan monoids.

(i) K is a variety and it is axiomatized relative to semilinear De Morgan
monoids by (7.1).

(ii) If A ∈ K is totally ordered and n-generated, then |A| ≤ 6n + 4.
(iii) K is locally finite.

Proof. (i) follows directly from Theorem 7.22.
Let A ∈ K be totally ordered an n-generated, where n ∈ ω. If A is a

Sugihara monoid, then |A| ≤ 2n + 2 ≤ 6n + 4 (see Theorem 5.3). If A is not
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a Sugihara monoid, then A ∼= S[A′] for an anti-idempotent subalgebra A′ of
A, and a totally ordered odd Sugihara monoid S, by Theorem 7.19. Let us
divide the generators of S[A′] into X ⊆ A′ and Y ⊆ S\{eS }, so that when
|X| = p and |Y | = q, we have p + q ≤ n. Since A′ is totally ordered, anti-
idempotent and negatively generated, |A′| ≤ 6p + 4, by Corollary 7.12. Now
S is generated by Y , because if some proper subalgebra P of S contained
Y then, by Theorem 7.20(ii), P [A′] would be a proper subalgebra of S[A′]
containing X ∪ Y , a contradiction. So, by Theorem 5.3,

∣∣S\{eS }∣∣ ≤ 2q. But
then |A| ≤ 2q + 6p + 4 ≤ 6(p + q) + 4 ≤ 6n + 4, proving (ii).

Therefore, K is locally finite, by Lemma 6.19 (since the SI algebras in K
are totally ordered). �

Now we can strengthen Theorem 7.14 as follows:

Theorem 7.24. Let K be any variety of negatively generated semilinear De
Morgan monoids. Then K has surjective epimorphisms.

Proof. Suppose not. By Theorem 3.1, there exists A ∈ KFSI with a K-epic
proper subalgebra B. We proceed to derive a contradiction.

Let KSM be the class of all idempotent members of K. Note that KSM

is a variety of Sugihara monoids, so it has surjective epimorphisms, by The-
orem 5.5. Therefore, A is not a Sugihara monoid. Then, by Theorem 7.19,
A = S[A′] for some nontrivial anti-idempotent A′ ∈ K and some odd Sugi-
hara monoid S, both totally ordered.

Let B′ be the subalgebra of A′ with universe A′ ∩B. We show that B′ is
a V(A′)-epic proper subalgebra of A′. This will conclude the proof, as it con-
tradicts the fact that V(A′) has surjective epimorphisms (by Theorem 7.14).

First, we claim that B = S[B′]. Evidently B ⊆ S[B′]. Suppose, with
a view to contradiction, that a ∈ S\B. Note that a ∈ A. Let h : A → S be
the extension, from Theorem 7.20(i), of the homomorphism which maps A′

onto the trivial algebra. Then h(a) /∈ h[B], by definition of h, since a ∈ S.
It therefore follows from the surjectivity of h that h[B] is a KSM -epic proper
subalgebra of S (since B is K-epic in A and compositions of epimorphisms are
epimorphisms). But then KSM does not have the ES property, a contradiction.
This confirms that B = S[B′].

Since B � A = S[A′], it follows from the claim just proved that B′
� A′,

so it remains only to show that B′ is V(A′)-epic in A′. Let h, g : A′ → C be
homomorphisms into some C ∈ V(A′)SI such that h|B′ = g|B′ . By Jónsson’s
Theorem, C ∈ HSPU(A′). By Corollary 7.21, S[C] ∈ HSPU(S[A′]) ⊆ K.
We extend h and g to homomorphisms h′ and g′ from S[A′] to S[C], as in
Theorem 7.20(i). Note that h′|B = g′|B , because B = S[B′], and h′|S = g′|S ,
by construction. But then h′ = g′, since B is K-epic in A. Therefore, h = g,
so B′ is V(A′)-epic in A′, by Lemma 3.2. �

The logical counterpart of Theorem 7.24 asserts the infinite Beth property
for every axiomatic extension of the relevance logic Rt whose theorems include
Dummett’s axiom and x ↔ g(x), where g(x) is the right hand side of (7.1).
To apply this result to a particular extension, one would typically verify the
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model-theoretic characterization of (7.1) in Theorem 7.22, rather than the
theoremhood of x ↔ g(x).

The same applies to the logical counterpart of Corollary 6.20, except that
positive relevance logic (Rt

+) takes over the role of Rt, with (6.3) in the role of
(7.1) and Theorem 6.17 in the role of Theorem 7.22. The main purpose served
by (6.3) and (7.1) is to reveal that the negatively generated algebras within
certain classes form varieties.

Funding Open access funding provided by University of Pretoria.

Data Availability Statement Data sharing not applicable to this article as
datasets were neither generated nor analysed.

Declarations

Conflict of interest The authors declare that there is no conflict of interest. J.
G. Raftery is a member of the editorial board of Algebra Universalis.

Open Access. This article is licensed under a Creative Commons Attribution 4.0
International License, which permits use, sharing, adaptation, distribution and re-
production in any medium or format, as long as you give appropriate credit to the
original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in
this article are included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in the article’s
Creative Commons licence and your intended use is not permitted by statutory regu-
lation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this licence, visit http://creativecommons.
org/licenses/by/4.0/.

Publisher’s Note Springer Nature remains neutral with regard to jurisdic-
tional claims in published maps and institutional affiliations.

References

[1] Agliano, P., Montagna, F.: Varieties of BL-algebras. I. General properties. J.
Pure Appl. Algebra 181, 105–129 (2003)

[2] Anderson, A.R., Belnap, N.D. (Jnr.): Entailment: The Logic of Relevance and
Necessity, vol. 1. Princeton University Press, Princeton (1975)

[3] Bergman, C.: Universal Algebra. Fundamentals and Selected Topics. CRC Press,
Taylor & Francis, Boca Raton (2012)

[4] Bezhanishvili, G., Moraschini, T., Raftery, J.G.: Epimorphisms in varieties of
residuated structures. J. Algebra 492, 185–211 (2017)

[5] Blok, W.J., Hoogland, E.: The Beth property in algebraic logic. Studia Logica
83, 49–90 (2006)

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


10 Page 32 of 34 J. J. Wannenburg and J. G. Raftery Algebra Univers.

[6] Blok, W.J., Pigozzi, D.: On the structure of varieties with equationally definable
principal congruences I. Algebra Universalis 15, 195–227 (1982)

[7] Blok, W.J., Pigozzi, D.: A finite basis theorem for quasivarieties. Algebra Uni-
versalis 22, 1–13 (1986)

[8] Campercholi, M.A.: Dominions and primitive positive functions. J. Symb. Logic
83, 40–54 (2018)

[9] Czelakowski, J., Dziobiak, W.: Congruence distributive quasivarieties whose
finitely subdirectly irreducible members form a universal class. Algebra Uni-
versalis 27, 128–149 (1990)

[10] Dunn, J.M.: Algebraic completeness results for R-mingle and its extensions. J.
Symb. Logic 35, 1–13 (1970)

[11] Esakia, L.L., Grigolia, R.: The variety of Heyting algebras is balanced. XVI
Soviet Algebraic Conference, Part II, Leningrad, pp. 37–38 (1981) (Russian)

[12] Galatos, N.: Generalized ordinal sums and translations. Logic J. IGPL 19, 455–
466 (2011)

[13] Galatos, N., Jipsen, P., Kowalski, T., Ono, H.: Residuated Lattices. An Alge-
braic Glimpse at Substructural Logics. Studies in Logic and the Foundations of
Mathematics, vol. 151. Elsevier, New York (2007)

[14] Galatos, N., Olson, J.S., Raftery, J.G.: Irreducible residuated semilattices and
finitely based varieties. Rep. Math. Logic 43, 85–108 (2008)

[15] Galatos, N., Raftery, J.G.: Adding involution to residuated structures. Studia
Logica 77, 181–207 (2004)

[16] Galatos, N., Raftery, J.G.: Idempotent residuated structures: some category
equivalences and their applications. Trans. Amer. Math. Soc. 367, 3189–3223
(2015)
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