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1. Introduction

In this paper we are going to describe some elementary properties of pseudo-
complemented meet-semilattices (shortly PCS’s). The concept of a PCS was
first introduced and studied by Orrin Frink in 1962 (see [5]) by a natural gen-
eralization of pseudocomplemented lattices, without making any use of the
join operation. There already exist well-developed theory of PCS’s and par-
ticularly of free PCS’s. Balbes and Jones have independently obtained similar
results concerning the finitely generated free PCS’s: see [1,9,10]. Schmid [18]
succeeded in presenting a characterization of all free PCS’s. Recently, the au-
thors of this paper, obtained promising results concerning free PCS’s as well
as a new description of any free PCS’s (see [15]). For the other early papers
see Grätzer [7].

The main purpose of the present paper is to provide a new answer
to the following short remark of Frink [5], p. 506: There exist also pseudo-
complemented semi-lattices which are not lattices, examples being the free pseudo-
complemented semi-lattice with two or more generators. Theorem 3.3 of Schmid
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[18] shows that every free PCS is a complemented lattice, we shall give an al-
ternative proof of this result in Theorem 4.4 and Corollary 5.5.

In the first two sections we outline the basic theory of PCS. Section 3
deals exclusively with PCS’s that are lattices. In Section 4 we show that any
free PCS is a lattice. In the last section we present some new results about
complemented PCS’s.

2. Preliminaries

A PCS is an algebra (S;∧,∗ , 0, 1) of type (2,1,0,0), where (S;∧, 0, 1) is a
bounded meet-semilattice and, for every a ∈ S, the element a∗ is a pseu-
docomplement of a, i.e. x ≤ a∗ if and only if x ∧ a = 0. A PCS S is said to be
nontrivial, whenever |S| ≥ 2. An element a ∈ S is called closed, if a = a∗∗. Let
B(S) denote the set of all closed elements of S. It is known that

(B(S);�,∧,∗ , 0, 1)

forms a Boolean algebra with join operation

a � b = (a∗ ∧ b∗)∗,

(see [5]–[7] or [2]). Moreover, we may form the Glivenko–Frink congruence
relation Γ(S) (or shortly Γ) on S as follows:

x ≡ y(Γ) iff x∗ = y∗ iff x∗∗ = y∗∗.

Each Glivenko–Frink congruence class [c]Γ contains exactly one closed
element a = c∗∗, which is the largest one of [c]Γ. We shall mostly write Sc

instead of [c]Γ(S). Significant is the class [1]Γ(S) = D(S) = { d ∈ S : d∗ = 0 }
which is a dual ideal (filter) of S and elements d ∈ D(S) are called dense.
Moreover, the map γ : a �→ a∗∗ from a PCS S to the Boolean algebra B(S)
is a homomorphism of S onto B(S), preserving meets, pseudocomplements,
the elements 0 and 1, and joins when they exist (see [5] and [6]), i.e. γ is a
PCS-epimorphism. Clearly, a PCS S is a Boolean algebra iff S satisfies the
identity x = x∗∗.

An element p of a meet-semilattice S is said to be irreducible, if x∧y = p
in S implies x = p or y = p. Moreover, p ∈ S is called (weakly) prime, if
x ∧ y ≤ p (respectively, 0 < x ∧ y ≤ p) in S implies x ≤ p or y ≤ p.

A PCS S is called sectionally pseudocomplemented, if for each a ∈ S, the
section [a) ⊆ S is pseudocomplemented. However, a sectionally pseudocomple-
mented semilattice need not to be distributive. This is shown by the example
of the pentagon, which is a free PCS with one generator. (For more details see
[15, Theorem 4.7].) We only need to define a binary operation ‘◦’ on S such
that

a ∧ x = a ∧ b ⇔ x ≤ a ◦ b

for any a, b, x ∈ S, and satisfying a∗ = (a ◦ 0) for any a ∈ S. Generally, a ◦ b
denotes the pseudocomplement of a in [a ∧ b, 1]. If p ∈ S is irreducible in S,
then the section [p, 1] has only two pseudocomplements {p, 1}. It is easy to
verify that

a ◦ b = a ◦ (a ∧ b).
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To avoid a confusion, we also recall a similar structure, namely the relative
pseudocomplemented semilattice or Brouwerian semilattice, which is defined
by

a ∧ x ≤ b ⇔ x ≤ a ∗ b,

and a ∗ b is called a relative pseudocomplement of a in b. A Brouwerian semi-
lattice with 0 is called a Heyting semilattice. The Heyting semilattices are a
special subclass of the sectionally pseudocomplemented PCS’s.

We now recall in a brief summary, the most important properties of free
PCS’s. We start with some results of Jones [10]:

Lemma 2.1. Let F = F [X] be a PCS freely generated by X. Then
(i) B(F ) is a Boolean algebra freely generated by X∗∗ = {x∗∗ ∈ F : x ∈ X },

i.e. B(F ) = FB[X∗∗] = [X∗∗]Bool, where for a set Y ⊆ B(F ), [Y ]Bool

here denotes the subuniverse of (B(F );�,∧,∗ , 0, 1) generated by Y ;
(ii) F [X] = F [Y ] implies X = Y ;
(iii) x �= x∗∗ for each x ∈ X;
(iv) x ≤ y for x, y ∈ X implies x = y;
(v) If x1, x2 ∈ X and x1 �= x2, then x1

∗ �= x2
∗ and x∗∗

1 �= x∗∗
2 ;

(vi) The elements of X are weakly prime in F ;
(vii) The Glivenko–Frink congruence classes on F are finite.

As one can easily see, X ⊆ F is an antichain of F (see (iii)-(vi) of
Lemma 2.1). More precisely, the elements of X are weakly prime elements
in F such that B(F ) ∩ X = ∅. Moreover, each element x ∈ X is a member of
the Glivenko–Frink congruence class [x∗∗]Γ(F ).

The first of next two lemmas is in [13,15], second one is in [18] and [15].

Lemma 2.2. Let S be a PCS and let X ⊆ S be arbitrary. Then S is generated
by X, i.e. S = [X], iff [X∗∗]Bool = B(S) and S = [X ∪ B(S)]sem, where for
a set Y ⊆ S, [Y ]sem is the subuniverse of (S;∧) generated by Y , i.e. as a
meet-semilattice. Moreover, S consists of all elements

u = a ∧
∧

(x : x ∈ U )

with a ∈ B(S) and U ranging over all finite subsets of X.

It is possible to obtain the canonical ordering of elements from S. We
shall use it here for free PCS’s. Elements 0 �= u ∈ F = F [X] have a unique
canonical form

u = u∗∗ ∧
∧

(x : x ∈ U )

where u∗∗ ∈ B(F ) and U ⊆ X is finite — for uniqueness see Lemma 2.3(v).
Observe that 1 = 1 ∧ ∧

(x : x ∈ ∅ ) and 0 = 0 ∧ ∧
(x : x ∈ U ) for all nonempty

finite subsets U of X.

Lemma 2.3. Let F = F [X] be a free PCS. Then for elements u, v ∈ F in
canonical form we have

(i) 0 < u = u∗∗ iff U = ∅;
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(ii) u = 0 in F iff u∗∗ = 0 in B(F ) and U is arbitrary;
(iii) 0 < u ≤ v < 1 in F iff 0 < u∗∗ ≤ v∗∗ in B(F ) and V ⊆ U ;
(iv) if x1, x2 ∈ X, then x1 �= x2 iff x∗

1 �= x∗
2 and x∗∗

1 �= x∗∗
2 ;

(v) u = v iff u∗∗ = v∗∗ and U = V , for u �= 0 �= v;
(vi) 0 < u∗∗ ≤ v implies v = v∗∗ and
(vii) The Glivenko–Frink congruence classes on F are finite Boolean lattices.

Remark 2.4. Part (vi) of Lemma 2.3 will be of considerable use in Sections 3
and 4. This result is essentially due to Jones [10]. We show in the next lemma
that (vi) follows from Lemma 2.3, parts (i) and (iii).

Lemma 2.5. Let F = F [X] be a free PCS. Then 0 < u∗∗ ≤ v implies v = v∗∗.

Proof. By (i) we get U = ∅ and by (iii) V ⊆ U = ∅. Hence, v = v∗∗. �

The notation FS1[X] means the free meet-semilattice over X with unit 1.
Similarly, [X]sem1 denotes the meet-semilattice generated by X with unit 1.

The consequence of the next lemma is important. See [8] and [2, Ch.II.7].

Lemma 2.6. Let S be a meet-semilattice with unit 1 generated by the nonempty
subset Y of all dual atoms of S. Then S is a free meet-semilattice over Y , and
every member of Y is prime in S. In addition,

(i) If k = |Y |, then S is a finite Boolean lattice with |S| = 2k and
(ii) S is a relatively complemented distributive lattice with unit 1 for infi-

nite Y .

The following result from [15] will be useful:

Proposition 2.7. Let F = F [X] be a freely generated PCS over X. Then
(i) B(F ) is a free Booelan algebra over X∗∗;
(ii) the map γX : X → X∗∗ given by the rule x �→ x∗∗ is a bijection;
(iii) both X and X∗∗ are antichains;
(iv) the map γ : [X]sem1 → [X∗∗]sem1 defined by γ : u → u∗∗ is a {∧, 1}-

isomorphism between meet-semilattices;
(v) 0 /∈ [X]sem1 and
(vi) FS1[X] = [X]sem1

∼= [X∗∗]sem1 = FS1[X∗∗].

Corollary 2.8. Let F = F [X] be a free PCS over X. Then FS1[X]sem is a free
meet-semilattice with 1, such that

B(F ) ∩ [X]sem1 = {1}.

Proof. Take an arbitrary element

1 �= u =
∧

(x : x ∈ U )

from [X]sem1. Clearly, U �= ∅. Suppose to the contrary that there exists 0 < a
in B(F ) such that a ≤ u in F . Therefore, by Lemmas 2.3 and 2.5 we see
that 0 < a ≤ u for any u ∈ U ⊆ X, which implies U ⊆ B(F ). But this is a
contradiction, as U ⊆ X. Thus X ∩ B(F ) = ∅. We conclude B(F ) ∩ [X]sem1 =
{1}. �
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Using ideas and auxiliary results of Jones [10] we present the following
remarkable result.

Lemma 2.9. Let F = F [X] be a PCS freely generated by X. Assume that
F1 = [1]Γ(F ). Then F1 = {1}.
Proof. The statement is trivially true for X = ∅ and |X| = 1, as F [∅] = 2,
where 2 is a two-element Boolean algebra and F [{x}] = N5. Assume that
|X| ≥ 2. Suppose to the contrary that there exists an element u ∈ F1 with
u < 1 in F . There is a canonical form of

u = u∗∗ ∧
∧

(x : x ∈ U )

for some finite ∅ �= U ⊆ X (see [15]). Since u∗∗ = 1, we get u =
∧

(x : x ∈ U ).
It follows that 1 = u∗∗ =

∧
(x∗∗ : x ∈ U ) which implies that x∗∗ = 1 for any

x ∈ U . This is impossible, as X∗∗ is an antichain in B(F ) (Proposition 2.7).
Thus F1 = {1}. �

3. Pseudocomplemented meet-semilattices which happen to be
lattices

It is well known that any complete meet-semilattice is a lattice, hence this is
also true for any finite bounded meet-semilattice and any finite PCS. For a
more general result we need some definitions and preliminaries concerning the
Axiom of Choice or Zorn’s lemma.

We start with a definition: A meet-semilattice (S;∧, 1) (considered as a
poset) is said to satisfy the Descending Chain Condition (DCC) iff all decreas-
ing chains terminate; that is, if in S x0 > x1 > · · · > xi > · · · , then for some
m, we have xm = xm+1 = · · · . Dually, we get the Ascending Chain Condition
(ACC). (See [7]).

The Axiom of Choice states that if {Ai : i ∈ I } is a nonempty family of
non-empty sets, then the Cartesian product

∏
(Ai : i ∈ I ) �= ∅. It is known

that the Axiom of Choice and Zorn’s lemma are equivalent. We shall prefer
here the dual version of Zorn’s lemma (see [2] or [7]):

Lemma 3.1. If every chain in a nonempty poset (P,≤) has a lower bound, then
there exists a minimal element z ∈ P . �

Lemma 3.2. Let S = (S;∧, 1) be a meet-semilattice satisfying (DCC). Then S
is a lattice.

Proof. It is well known (see [7]) that a meet-semilattice (S;∧, 1) is a lattice
iff sup{x, y} exists for all incomparable elements x, y ∈ S, or in other words,
the lattice join x ∨ y exists in S for any x, y ∈ S, and finally, sup{x, y} =
x ∨ y. Let (S;≤) denote the poset of the semilattice (S;∧, 1). Take arbitrary
incomporable elements x, y ∈ S. Suppose that P is the set of all of upper
bounds of {x, y} in S. Since 1 ∈ P , we see that P �= ∅, and P = [x) ∩ [y) is
a filter in S. If P is finite then P is a principal filter with generator x ∨ y. In
the infinite case we apply Lemma 3.1. We have to verify that P satifies the
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d

a b

Figure 1. An example of a PCS in which the Boolean join
is not the restriction of the lattice join

a b

Figure 2. An example of a PCS which is not PCL

hypothesis of Zorn’s lemma. The condition (DCC) guaranties that a nonempty
chain in P has a least element, which is its lower bound. Indeed, let C ⊆ P
be a nonempty chain in P . If there is no least element in C, for xi ∈ C
there is xi+1 ∈ C with xi > xi+1, and using this we can construct an infinite
decreasing chain x1 > x2 > x3 > · · · of elements of C which contradicts
(DCC) for P . Therefore, by Zorn’s lemma, P has a minimal element, which is
the least element of P , because if z ∈ P is minimal, for any u ∈ P which is
incomparable with z we have z > u ∧ z ∈ P , which contradicts the mininality
of z in P . The least element of P is the generator x ∨ y of P . Thus, (S;∧, 1),
is in fact a lattice. �

It is important to note that a PCS S (or a PCL) has two sorts of joins: the
lattice join sup{x, y} = x∨y for x, y ∈ S and the Boolean join supB(S){a, b} =
a� b for a, b ∈ B(S). (Even if S is a PCL, the lattice join in S need not be the
same as the Boolean join; see Figure 1.) Moreover, let H denote the filter of
all upper bounds of {a, b} in S, and a, b ∈ B(S). Consider the order relation
≤ on S. Take a restriction of this relation ≤ to B(S). It is easy to see that it
is the natural semilattice ordering on B(S). More precisely, we get

HB = H ∩ B(S) ⊆ H

Then HB is again a filter in B(S) of all upper bounds of {a, b} with a, b ∈ B(S).
Hence, HB ⊆ H is the filter of all closed upper bounds of {a, b} in B(S).

But, HB is a principal filter with generator a � b in B(S) (see [5] or [7]).
This is the Boolean join

supB(S){a, b} = a � b = (a∗ ∧ b∗)∗.

Consider the PCS (PCL) represented by Figure 1. The elements a and b
are closed and a ∨ b = d < 1, but a � b = 1. Notice that PCS in Figure 1 does
not satisfy the condition (vi) of Lemmas 2.3 or 2.5.
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Figure 3. An example of free PCS, which is not free in the
class of PCL’s

Our aim in this paper is to show, in which PCS S the lattice join
sup{x, y} = x∨y exists for any elements x and y of S. In other words, whether
S is a lattice, or more precisely, if S is actually a PCL.

Proposition 3.3. Let S be a PCS such that each Glivenko–Frink congruence
class of S satisfies (DCC). Then S is a pseudocomplemented lattice.

Proof. We have only to prove that there exists sup{x, y} = x ∨ y in S for
arbitrary x, y ∈ S, which are incomparable elements. Using Lemma 3.2, we see
that the Glivenko–Frink congruence classes Sa, a ∈ B(S), are lattices.

Now, we start with closed elements a, b ∈ B(S). The Boolean join exists
and a � b ∈ B(S). Suppose that the filter H ⊆ S is the subset of all upper
bounds of {a, b} in S. Since a � b is the smallest closed element in H, we get
a�b ∈ H ∩Sa�b = Ha�b. Clearly, a�b is the largest element of Sa�b. We claim
that Ha�b is the filter of upper bounds of {a, b} in Sa�b. Take an arbitrary
element q ∈ H. We wish to show that t = (a � b) ∧ q ∈ Sa�b. Since a ≤ q, we
get a = a∗∗ ≤ q∗∗. Similarly, b ≤ q∗∗. Hence, a � b ≤ q∗∗ which implies that
t∗∗ = a � b. Therefore,

t = (a � b) ∧ q ∈ Ha�b ⊆ Sa�b.

By our (DCC) hypothesis Ha�b is a principal filter of Sa�b. Thus, a∨ b ≤ a� b
(see Lemma 3.2 and Figure 1). Moreover, we have proved that a ∨ b exists in
S, and

a ∨ b ≤ (a ∨ b)∗∗ = a � b.

Similarly we can proceed in a more general situation: x, y ∈ S with

x ≤ x∗∗ = a �= b = y∗∗ ≥ y.

It follows that x, x∗∗ ∈ Sa and y, y∗∗ ∈ Sb, as the elements are congruent by
the Glivenko–Frink congruence. Again suppose that H ⊆ S is the subset of all
upper bounds of {x, y} in S. Now, a � b ∈ H is the smallest closed element in
H, and a � b ∈ Sa�b. Take p ∈ H arbitrary. We have to show that

s = (a � b) ∧ p ∈ Ha�b ⊆ Sa�b.

Clearly, s ∈ H. Similarly, as above, we have

s∗∗ = (a � b) ∧ p∗∗ = a � b

which means that s ∈ Sa�b. Thus, Ha�b is the filter of upper bounds of {x, y}
in Sa�b. Again, by our (DCC) hypothesis Ha�b is a principal filter in Sa�b (see
Lemma 3.2). Hence x ∨ y exists in Sa�b, and x ∨ y ≤ a � b. �
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The next corollary is an immediate consequence of Lemma 2.2 and Propo-
sition 3.3.

Corollary 3.4. Every finitely generated PCS is a finite PCL.

Remark 3.5. Balbes [1] and Jones [9], [10] have independently shown that
finitely generated free PCS’s are finite. It is well known that F [∅] is a 2-
element chain and F [1] is a 5-element non-modular lattice N5 (pentagon).
The last example of F [2] is known as a Hasse diagram of a free PCS with two
free generators (see Balbes [1]). F [2] is a lattice (Corollary 3.4). See also [15].

Remark 3.6. We can present here a PCS S which is not a lattice (cf. [11]).
Clearly, S will be infinite (Corollary 3.4). Let

S = { 0, a, b, 1, x1, x2, . . . , xn, . . . }
Now, a ∧ b = 0 and 1 is a unit of S. H is a chain

1 > x1 > x2 > · · · > xn > · · ·
of all upper bounds of {a, b} in S. H is a filter of S, but not principal. Thus S
is a PCS and sup{a, b} does not exists in S (see Figure 2).

Remark 3.7. Nontrivial example of a semilattice with top element which sat-
isfies (DCC) is

PZ = {x ⊆ Z : x is finite } ∪ {Z}
for an infinite set Z, ordering is a set inclusion.

Let B be a Boolean algebra, for 0 �= a ∈ B let Za be an infinite set
such that for a �= b ∈ B \ {0}, Za and Zb be disjoint (Za, Zb can have the
same cardinality). The construction described in [16, Theorem 5.1, Corollary
5.3] allows us to construct a PCS S in which B(S) ∼= B and Glivenko–Frink
congruence classes of S are PZa

for 0 �= a ∈ B and Glivenko–Frink congruence
class of 0 is {0}. Hence S is a nontrivial example of a semilattice which satisfies
assumption of Proposition 3.3—Glivenko–Frink congruence classes [a]Γ ∼= PZa

satisfy (DCC) but are infinite for 0 �= a ∈ B, [0]Γ = {0} also satisfies (DCC).

4. Free PCS’s and the lattice join

We shall see that the class of free PCS’s (= the most general PCS’s) undergoes
a good deal of simplification concerning the partial order. We recall that the
order relation ≤ on a PCS S is given by the condition a ≤ b iff a = a∧ b for all
a, b ∈ S. The subset B(S) of closed elements, the heart of S, contains the meet
of any two of its elements and possess the pseudocomplement of each of its
elements. The order on S partially orders B(S) and makes B(S) into a Boolean
lattice. The Boolean join operation is given by the formula a � b = (a∗ ∧ b∗)∗

(see [5] or [7]).
In [15] we introduced a definition of a plain PCS.
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Definition 4.1. Let S be a PCS. Denote wPi(S) the set of weekly prime el-
ements p of S such that p �= 1, put P (S) = wPi(S) ∪ B(S) and Y (S) =
wPi(S)\B(S). The PCS S is called plain if

(i) S = [Y (S)] = [P (S)]sem and
(ii) 0 < a ≤ u in S implies u ∈ B(S), whenever a ∈ B(S).

It follows that every free PCS F is plain (see [15]), and satisfies the
condition:

0 < u∗∗ ≤ v ⇒ v = v∗∗.

We now immediately deduce

Lemma 4.2. Every free PCS F is sectionally pseudocomplemented.

Proof. Apply [15, Theorem 4.7]. See also Corollary 3.4. �

Lemma 4.3. Let F = F [X] be a free PCS. Suppose that a, b ∈ B(F ) with a �= b.
Let 0 < y < y∗∗ = b in F . Then sup{a, y} in F exists and

a ∨ y = sup{a, y∗∗} = supB(S){a, b} = a � b.

In other words, the Boolean join a � y∗∗ is identical with the lattice join a ∨ y.

Proof. Take a ∈ B(F ) such that a > 0 and 0 < y ≤ y∗∗ = b. Let H be the
filter of all upper bounds of {a, y} in F . By Lemma 2.3(vi) (or Lemma 2.5),
we get that H ⊆ B(F ) because element a is closed. Hence, H = HB . Since
HB is a principal filter with generator a � b in B(F ), we see that H is also
principal filter in F . Hence, the lattice join of {a, y} in F exists. Thus, a∨ y =
a � y∗∗ = a � b. �

Theorem 4.4. Every free PCS is a sectionally pseudocomplemented lattice.

Proof. The idea of our proof is similar to that of Proposition 3.3. Let F = F [X]
be a free PCS. We have to show that there exists the lattice join x ∨ y for any
incomparable x, y ∈ F . Combining Lemma 2.3(vii) with Proposition 3.3 we
know that this is true, the aim of this proof is to give more explicit description
of x ∨ y in some cases.

If elements x and y are closed, then by Lemma 4.3 is x ∨ y = x � y in F .
Consider first the Glivenko–Frink congruence relation Γ(F ) on F . The

congruence classes [c]Γ(F ) = Fc for c ∈ B(F ) form a partition of F . Let
x, y ∈ Fc for some c ∈ B(F ). The lattice join x∨y exists, because Fc is a finite
Boolean lattice (Lemma 2.3(vii)). Thus x ∨ y ∈ Fc.

Now, suppose that x, y ∈ F with

x ≤ x∗∗ = a �= b = y∗∗ ≥ y.

Since generally the Boolean join a � b exists in any nontrivial PCS (see [7]),
then by Lemma 4.3 the lattice join a ∨ b really exists in F , and

a � b = c = a ∨ b.

Hence c is the largest element of Fc, and is also an upper bound of {x, y} in
F . Now, suppose that z ∈ F is an upper bound of {x, y} in Fc. We know
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that the Glivenko–Frink congruence classes in F are finite Boolean lattices
(Lemma 2.3). Hence, x ∨ y exists in Fc.

In the case x < x∗∗ = a �= b = y∗∗ > y, we can use the same argument
as in the proof of Proposition 3.3.

It remains the last part: Take a ∈ Fa and y ∈ Fb for a �= b, and y < b.
Since y∗∗ = b, the Boolean join a � b exists in F . Again, by Lemma 4.3 we
have

a ∨ y = a ∨ y∗∗ = a � b

in F . Concluding we use Lemma 4.2. �

As we have already mentioned, the fact that a free PCS is a lattice was
proved in [18, Theorem 3.3], value added by this proof is mainly in more specific
information about joins in some cases.

Remark 4.5. Theorem 4.4 raises the question of whether the pseudocomple-
mented lattices, which are free PCS’s, possess the property, that they are free
in the class of PCL’s? The answer is NO. This is shown by a simple counterex-
ample (see Figure 3).

5. Complemented PCS’s

We start this section with some definitions: A complemented lattice is a bounded
lattice in which every element has a complement (see [7]). In the case of a PCL,
we require that the pseudocomplement x∗ is the complement of x for every
element x (see [12].) More precisely, PCS S consists of two kinds of elements:
closed elements from B(S), such as x∗ or x∗∗, and elements x ∈ S\B(S). There
are lot of examples for complemented PCL’s: Boolean algebras or free PCS’s.

L. A. Lambrou in [17] shows that a pseudocomplemented lattice L is
complemented if L is nontrivially pseudocomplemented. The nontriviallity as-
sumption is defined by condition

x �= 1 ⇒ x∗ �= 0.

We show here that Lambrou’s result can be extended to PCS’s using elemen-
tary methods.

To prepare for this we prove:

Lemma 5.1. Let S be a PCS and x ∈ S. Then x∗ = 0 iff x ∈ [1]Γ(S) = D(S).

Proof. We shall apply the Glivenko–Frink Theorem (cf. [7]). We recall that
Γ(S) is the Glivenko–Frink congruence relation. Every congruence class of
Γ(S) contains exactly one closed element c∗∗ of S, which is the largest one of
[c∗∗]Γ(S). The factor algebra S/Γ(S) is a Boolean algebra, which is isomorphic
to the Boolean algebra B(S) of all closed elements. Now, it is clear that x∗ = 0
iff x ≡ 1(Γ). �

Lemma 5.2. Let S be a PCS. Then the following conditions are equivalent:
(i) D(S) = {1} and
(ii) x �= 1 ⇒ x∗ �= 0.
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Proof. The proof of (i) ⇒ (ii) is routine (Lemma 5.1). For the converse, as-
sume for the contrary that there exists y ∈ D(S) such that 1 �= y. Again by
Lemma 5.1, we get y∗ = 0, which is a contradiction to (ii). Thus, D(S) = {1}.

�
Theorem 5.3. Let S be a PCS. Then the following conditions are equivalent:

(i) D(S) = {x ∈ S : x∗ = 0 } = {1} and
(ii) S is complemented.

Proof. Let D(S) = {1}, and take x ∈ S arbitrary. Assume that z ≥ x and
z ≥ x∗ in S, i.e. z is an upper bound of {x, x∗}. Therefore, x∗ ≥ z∗ and
x∗∗ ≥ z∗, and this implies that z∗ ≤ x∗ ∧ x∗∗ = 0. It follows that z ∈ D(S).
By (i), we have z = 1. Thus x ∨ x∗ = 1, and x∗ is a complement of x in S, as
x ∧ x∗ = 0 is true in any PCS.

Conversely, assume that x ∨ x∗ = 1, and suppose x∗ = 0. Then x∗ ≤ x
and x ≤ x, hence x = 1. Hence, if S is complemented, then D(S) = {1}. �

We now present some properties concerning the free PCS’s, which all are
actually pseudocomplemented lattices (Theorem 4.4).
Theorem 5.4. Let F = F [X] be a free PCS considered as a lattice. Then F
satisfies the following identities

(i) x ∨ x∗ = 1;
(ii) x∗ ∨ x∗∗ = 1;
(iii) x∗ ∨ y∗ = (x ∧ y)∗ and
(iv) (x ∨ y)∗ = x∗ ∧ y∗.
Proof. (i) Clearly, (x ∨ x∗)∗ = 0, because (iv) is true for any PCL (see [5]
or [7]). It follows that x ∨ x∗ ∈ F1 = D(F ). But, by Lemma 2.9, we have
F1 = {1}, and consequently we obtain (i). Similarly, we can establish (ii).
Applying Lemma 4.3 we can prove (iii). The condition (iv) is true in any PCL.

�
Corollary 5.5. If F is a free PCS, then F is both a complemented and sec-
tionally pseudocomplemented lattice. Moreover, the Boolean algebra of closed
elements B(F ) is a sublattice of F .
Proof. Apply Theorems 4.4, 5.4 and Lemmas 4.2, 4.3. �
Definition 5.6. Let L be a p-algebra, that means L is a PCL. We say that L
is a complemented p-algebra, if L satisfies the identity

x ∨ x∗ = 1.

Corollary 5.7. Let F be a free PCS considered as a lattice. Then F is a com-
plemented p-algebra.
Proof. See Theorem 5.4(i). �
Definition 5.8. Let L be a pseudocomplemented lattice. Then L is called a gen-
eralized Stone lattice, if it satisfies the conditions (ii) and (iii) of Theorem 5.4.
Corollary 5.9. Let F be a free PCS considered as a lattice. Then F is a gen-
eralized Stone lattice.
Proof. See Theorem 5.4(ii)–(iv). (Notice that F is not a distributive lattice.) �
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