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1. Introduction

Let L be a first-order language, A be a collection of L-sentences, and C be
the class of all L-structures satisfying A. On C , we consider a binary relation
� interpreted as accessibility : for M,N ∈ C , we write M � N if M accesses
N. This gives (C ,�) the structure of a Kripke frame whose Kripke models we
can study. The natural analysis of such structures is in terms of their modal
logic or their structure modal logic (precise definitions of these notions will be
given in § 2).

In this paper, we shall consider the class A of abelian groups and the
accessibility relation of being (isomorphic to) a subgroup (i.e., A � B if and
only if A ≤ B). We prove that the modal logic of this structure is the well-
known modal logic S4.2 (Main Theorem 3.1).

Background and related work. Modal logics of classes of structures were orig-
inally studied in the context of multiverses of set theory where the modal
�-operator was interpreted as “in all forcing extensions”, “in all ground mod-
els”, or “in all inner models” to yield the modal logic of forcing, the modal
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logic of grounds, and the modal logic of inner models, respectively [10,11,15].
The work that started this line of investigation was the proof of Hamkins
and the third author that the modal logic of forcing is S4.2 [10, Main The-
orem 6]; in this context, the technique of control statements was developed
to prove upper and lower bounds for modal logics of classes of structures
[12]. Various other aspects of the modal logic of forcing were considered in
[9,16,14,6,7,17,19,5,4,11,8,12,21,18].

The original definitions used for the modal logic of forcing and grounds
required that the interpretation of the modal �-operator is expressible in the
language L; this is not true in the general context of this paper. The first
generalisation in this direction was discussed by Inamdar, the second author,
and the third author in [15,3] to allow arbitrary interpretations of the modal
�-operator. These generalised definitions are the basis for our notion of validity
of modal formulas in a class of structures. This has been studied abstractly in
[20] and more concretely in the context of the class of graphs in [13].

2. Definitions and modal logic tools

Modal logic. The language L� of modal logic is the closure of a countable set
Prop of propositional variables under the binary operation ∧ and the unary
operations ¬ and �. The symbol � is interpreted as “it is necessarily the case
that”. As usual, we consider ∨, →, ↔, and ♦ to be defined in terms of ∧, ¬,
and �; in this case, ♦ is interpreted as “it is possible that”. The elements of
L� are called modal formulas.

A collection Λ of modal formulas closed under modus ponens is called a
modal logic; it is called a normal modal logic if it contains the modal formula
�(p → q) → (�p → �q) and is additionally closed under uniform substitution
and the necessitation rule (i.e., if ϕ ∈ Λ, then �ϕ ∈ Λ; cf. [2, § 1.6]).

Let C be any class and � be a definable binary (class) relation on C .
We consider (C ,�) as a Kripke frame; a valuation is a (class) function v :
Prop × C → {0, 1}; the triple (C ,�, v) is called a Kripke model ; we say that
the Kripke model (C ,�, v) lives on the Kripke frame (C ,�).

We can now define Kripke semantics for the language L�. If M ∈ C ,
then

C ,�, v,M |= p : ⇐⇒ v(p,M) = 1 (if p ∈ Prop),

C ,�, v,M |= φ ∧ ψ : ⇐⇒ C ,�, v,M |= φ and C ,�, v,M |= ψ,

C ,�, v,M |= ¬φ : ⇐⇒ not C ,�, v,M |= φ, and

C ,�, v,M |= �φ : ⇐⇒ for all N ∈ C such that M � N,

we have that C ,�, v,N |= φ.

A modal formula ϕ is called valid in a Kripke model (C ,�, v) if for each
M ∈ C , we have that C ,�, v,M |= ϕ.

In order to avoid metamathematical issues, we shall consider definable
valuations, i.e., valuations v such that there is a set parameter π and a set



Vol. 84 (2023) The modal logic of abelian groups Page 3 of 12 25

theoretic formula Φ such that

v(p,M) = 0 ⇐⇒ Φ(M, p, π);

a Kripke model (C ,�, v) is called definable if v is definable in the above sense.
A modal formula ϕ is called definably valid in a Kripke frame (C ,�) if it is
valid in every definable Kripke model living on (C ,�). We write ML(C ,�)
for the collection of modal formulas definably valid in (C ,�), called the modal
logic of (C ,�).

The modal logic relevant for this paper is the modal logic S4.2; it is the
smallest normal modal logic containing the formulas

T �p → p,

4 �p → ��p, and
.2 ♦�p → �♦p.

Modal logics of classes of structures. Let S be a non-logical vocabulary, LS be
the first order language with vocabulary S, and C be a class of LS-structures.
Any language L ⊇ LS is called C -adequate if there is a definable model relation
|= between elements of C and L-sentences that extends the usual model re-
lation of LS . Examples include infinitary languages or higher-order languages
with the vocabulary S.

We call a function T : Prop → Sent(L) assigning L-sentences to propo-
sitional variables an L-translation. An L-translation gives rise to a valuation
for the class C called the L-structure valuation:

vT (p,M) = 1 : ⇐⇒ M |= T (p).

Since the relation |= is definable, the L-structure valuation is definable. We
say that the L-structure modal logic of (C ,�) is the set of modal formulas
that are valid in each Kripke model (C ,�, vT ) for an L-translation T . We
write MLL(C ,�) for the L-structure modal logic of (C ,�); by definition and
definability, ML(C ,�) ⊆ MLL(C ,�).

Lower bounds. The validity of modal formulas on frames is closely linked to
properties of the relation �; e.g., it is very easy to check that the formula
T = �p → p is valid on a frame (C ,�) if and only if the relation � is reflexive.
We say that a frame (C ,�) is directed if for any M0,M1 ∈ C there is a N ∈ C
such that M0 � N and M1 � N. The relevant result for our context is the
following theorem.

Theorem 2.1. If (C ,�) is any frame such that � is reflexive, transitive, and
directed, then S4.2 ⊆ ML(C ,�).

Proof. This is an easy argument along the lines of the standard soundness
proofs in modal logic; cf., e.g., [2, Theorems 4.28, and 4.29] and the analogous
results for .2 (using directedness). �

Upper bounds. The main tools to determine the structure modal logic of a class
C of structures are control statements, as developed in [10,12]. The technique
of control statements (based on the technique of Jankov-Fine formulas; cf. [2,
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pp. 143sq ]) works in a setting where it is suspected that the established lower
bound Λ is a normal modal logic with the finite frame property (i.e., there is
a class F of finite frames such that ϕ ∈ Λ is ϕ is valid in all frames in F ). Cf.
[3, § 6] for an exposition of the general proof strategy for these proofs.

Let S be a vocabulary, C be a class of LS-structures, L be any C -adequate
language, and and � a binary relation on C . An L-sentence β is called a button
in (C ,�) if for every L-translation T such that T (p) = β, we have that �♦�p
is valid in (C ,�, vT ); an L-sentence σ is called a switch in (C ,�) if for every
translation T such that T (p) = σ, we have that �♦p ∧ �♦¬p is valid in
(C ,�, vT ). If M ∈ C , we say that a button β is pushed in M if for each
T with T (p) = β, we have that C ,�,M, vT |= �p; otherwise, we say that
it is unpushed. Similarly, a switch σ is switched on in M if for each T with
T (p) = σ, we have that C ,�,M, vT |= p; otherwise, we say that it is switched
off.

Buttons are statements that can be made necessarily true; once they are
pushed, they can never become unpushed again; moreover, they are necessarily
of that form, i.e., they can necessarily be made necessarily true. In contrast,
switches are statements that can always be switched on or off.

If B = {βi; 0 ≤ i ≤ n} is a finite collection of buttons for (C ,�) and
S = {σj ; 0 ≤ j ≤ m} is a finite collection of switches for (C ,�), we say
that the collection B ∪ S is L-independent for (C ,�) if for every I0 ⊆ I1 ⊆
{0, . . . , n} und J0, J1 ⊆ {0, . . . ,m} and every L-translation T with T (pi) = βi

and T (qj) = σj , the formula
⎛
⎝ ∧

i∈I0

�pi ∧
∧
i/∈I0

¬�pi ∧
∧
j∈J0

qj ∧
∧
j /∈J0

¬qj

⎞
⎠ →

♦

⎛
⎝ ∧

i∈I1

�pi ∧
∧
i/∈I1

¬�pi ∧
∧
j∈J1

qj ∧
∧
j /∈J1

¬qj

⎞
⎠

is valid in (C ,�, vT ). We express this formula in words:

If exactly the buttons with index in I0 are pushed and the switches
with index in J0 are switched on, then it is possible to push exactly
the buttons with index in I1 ⊇ I0 and switch exactly the switches
with index in J1 on.

The existence of large independent sets of buttons and switches is closely linked
to getting S4.2 as an upper bound.

Theorem 2.2 (Hamkins and Löwe). Let C be a class of LS-structures, L be a
C -adequate language, and and � be a reflexive and transitive binary relation
on C . If there are arbitrarily large finite sets B and S of buttons and switches
for (C ,�) in L, respectively, such that B∪S is L-independent for (C ,�), then
MLL(C ,�) ⊆ S4.2.

Proof. A proof can be found in [10, Theorem 12] and [12, Theorem 13] for the
context of multiverses of models of set theory. �
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Remark on the choice of language. Let C be a class of LS-structures for
some vocabulary S. If L is a C -adequate language, any LS-translation is a
L-translation, and thus we have ML(C ,�) ⊆ MLL(C ,�) ⊆ MLLS

(C ,�). As
a consequence, if we are in a situation where Theorems 2.1 and 2.2 apply for
the first order language LS and we thus obtain

S4.2 ⊆ ML(C ,�) ⊆ MLLS
(C ,�) ⊆ S4.2,

then for all C -adequate languages L, the equality S4.2 = MLL(C ,�) holds.
Therefore, S4.2 = MLLS

(C ,�) is robust in the sense of [20, p. 1008]. Saveliev
and Shapirovsky argue that “intuitively, the robust theory can be considered
as a ‘true’ modal logic of the model-theoretical relation”.

3. The main result

In the following, we shall consider the first-order language of group theory LGr

with a single binary operation symbol + and the usual axioms

A := { ∀x∀y∀z(x + (y + z) = (x + y) + z),

∃x∀y∃z(x + y = y ∧ y + z = x),

∀x∀y(x + y = y + x) }
defining the class A of abelian groups. We use the symbol 0 to denote the
neutral element and the symbol − to denote the unary inverse operation; both
are definable in LGr, so we may use them freely in LGr-formulas. As usual, if
n ∈ N and a ∈ A, we define

n · a := a + · · · + a︸ ︷︷ ︸
n times

and

−n · a := (−a) + · · · + (−a)︸ ︷︷ ︸
n times

.

If n ∈ N, we say that an element a ∈ A has order n if n is the least
positive number such that n ·a = 0; we say that a ∈ A is divisible by n if there
is some a∗ ∈ A such that n · a∗ = a. For A,B ∈ A , we write A ≤ B if A is
a subgroup of B and A × B for the direct product of A and B. As usual, we
identify isomorphic groups, so par abus de langage, we use A ≤ B to stand for
“A is isomorphic to a subgroup of B”.

Clearly, A ≤ A × B and B ≤ A × B. If a has order n or is divisible by
n in A and A ≤ B, then a has order n or is divisible by n in B, respectively.
Furthermore, if p is a prime number, then A × B has an element of order p if
and only if at least one of A and B does.

The relation ≤ is clearly reflexive, transitive, and directed on A . As a
consequence of Theorem 2.1, all modal formulas in S4.2 are valid in (A ,≤).
The main theorem of this paper is that this lower bound is also an upper
bound.

Main Theorem 3.1. The LGr-structure modal logic of (A ,≤) is S4.2.
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Towards a proof of the upper bound, we shall use Theorem 2.2 and pro-
duce arbitrarily large independent collections of buttons and switches.

Buttons. If p is a prime number, we define an LGr-sentence

βp = ∃x(x �= 0 ∧ p · x = 0),

i.e., “there is an element of order p”. This is a button: if it is true in any
group A, then it will remain true in all B such that A ≤ B. Note that these
buttons are so called pure buttons: if one of them is true, then it is pushed
(i.e., necessarily true). We can therefore say “βp is pushed in A” if A |= βp.
Clearly, the torsion group Z/pZ has the button βp pushed and all others are
unpushed. Furthermore, by the above remark about elements of finite order in
products, βp is pushed in A × B if and only if it is pushed in A or in B.

These two algebraic facts immediately imply that if P is a finite set of
primes, forming the product with the group BP :=

∏
p∈P Z/pZ will push all

buttons with index in P and no additional buttons.

Switches. For our switches, we define for each prime number p the LGr-
sentence

σp = ∀x∃y(p · y = x),

i.e., “every element is divisible by p”. It is easy to switch σp off: if p �= q, then
for any group A, the group B := A×Z/qZ will have switched σp off. Switching
σp on requires more work, in particular if we aim to avoid interference with
the other switches and buttons. That the sentences σp are switches will follow
from Lemma 3.5.

The following main lemma about these control statements will provide
us with all we need to prove the main result.

Lemma 3.2. Let P and Q be two finite disjoint sets of prime numbers. The set
{βp ; p ∈ P} ∪ {σq ; q ∈ Q} is independent over (A ,≤).

Main Theorem 3.1 follows directly from Theorem 2.2 and Lemma 3.2.
This means that our remaining task is the proof of Lemma 3.2. This in turn
requires two technical group theoretic tools: controlled group amplifications
and localisations.

Controlled group amplifications. Let A = (A,+) and B = (B,+) be two
abelian groups and assume that Z ≤ B; without loss of generality, we can
assume that Z ⊆ H.

Consider the set BA of functions from A to B; if f ∈ BA, we define
the support of f by supp(f) := {a ∈ A ; f(a) �= 0}. The set BA becomes
an abelian group BA with component-wise addition f + g(a) := f(a) + g(a),
inverse (−f)(a) := −(f(a)), and the constant function 0(a) := 0 as neutral
element. As usual, we write f − g := f + (−g).

A function f ∈ BA is called integral if supp(f) is finite and ran(f) ⊆ Z.
For integral functions f , the weighted sum

W (f) :=
∑
a∈A

f(a) · a
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is defined since all values f(a) are integers and only finitely many of them are
non-zero. It is easy to see that if f and g are integral, then so are −f and
f + g, and (using the fact that A is abelian) we have W (−f) = −W (f) and
W (f + g) = W (f) + W (g).

For f, g ∈ BA, we say that f and g are equivalent, in symbols, f ∼ g, if
f −g is integral and W (f −g) = 0. Note that if f is integral and f ∼ g, then g
is integral. Obviously, ∼ is reflexive and since g −f = −(f − g), the above fact
about inverses of integral functions shows that it is symmetric. Furthermore,
since f − h = f − (g − g) − h = (f − g) + (g − h), transitivity follows from the
above fact about sums of integral functions. Thus, ∼ is an equivalence relation
on BA. As usual, we write [f ] for the ∼-equivalence class of f .

We write A[B] for the quotient of BA by the equivalence relation ∼ and
call it the controlled amplification of A by B. It is easy to check that A[B]
with the well-defined operation [f ] + [g] := [f + g] forms an abelian group.

Lemma 3.3. A ≤ A[B].

Proof. Define F : A → BA by

F (a) : A → B : F (a)(a∗) =

{
1 if a = a∗,
0 otherwise.

Note that for any a, F (a) is an integral function with W (F (a)) = a. Clearly,
F (0) �= 0 �= F (a) + F (−a), so F is not a homomorphism from A into BA.
However, F (0) ∼ 0 and F (a)+F (−a) ∼ 0; the function F induces a monomor-
phism from A into the quotient A[B]:

To see that it is a homomorphism, we need to show for any a, a∗ ∈ A
that [F (a + a∗)] = [F (a) + F (a∗)]. Since all of the functions F (a) are integral,
so are their sums and inverses. We have that

W (F (a + a∗) − F (a) − F (a∗)) = 1 · (a + a∗) − 1 · a − 1 · a∗

= a + a∗ − a − a∗ = 0.

In order to show its injectivity, suppose that [F (a)] = [F (a∗)], i.e., F (a) −
F (a∗) ∼ 0. Thus

0 = W (F (a) − F (a∗))

= 1 · a − 1 · a∗

= a − a∗.

But this implies that a = a∗ due to the cancellation laws in groups. �

Localisations. Our second technical tool is that of a localisation. If P is a set
of prime numbers, let 〈P 〉 be the set of all natural numbers that have only
prime factors in P (including 1). We write QP := { z

n ∈ Q ; z ∈ Z, n ∈ 〈P 〉}.
By the usual rules of addition of fractions, QP is an additive subgroup of the
rational numbers, i.e., Z ≤ QP ≤ Q. We shall use the arithmetical fact that
for all primes p /∈ P and a ∈ QP , we have that a /∈ Z if and only if p · a /∈ Z.
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This implies that for any set X,

if p /∈ P is a prime and f : X → QP ,

then ran(p · f) ⊆ Z if and only if ran(f) ⊆ Z. (*)

As a subgroup of the rationals, QP has no elements of finite order, so all of
our buttons βp are unpushed in QP . Moreover, as the next lemma shows,
amplifying by QP does not push any buttons with index not in P .

Lemma 3.4. Let A be an abelian group and P be a set of prime numbers. If
p /∈ P is a prime, then βp is pushed in A if and only if βp is pushed in A[QP ].

Proof. Using Lemma 3.3, if βp is pushed in A, it will remain pushed in A[QP ].
Suppose βp is pushed in A[QP ], i.e., there is some f : A → QP such that f �∼ 0,
but p · f ∼ 0. Since 0 is integral, p · f must be integral, and hence by (*), f is
integral (utilising that p /∈ P ). Therefore W (f) is defined and f �∼ 0 implies
that W (f) �= 0. But then

0 = W (p · f) =
∑
a∈A

p · f(a) · a = p ·
∑
a∈A

f(a) · a = p · W (f)

and hence W (f) is an element of order p in A. �

It is easy to see that the switch σp is on in QP if and only if p ∈ P ; this
generalises to certain amplifications of groups by QP .

Lemma 3.5. Let A be an abelian group and P be a set of prime numbers. Let
A∗ = A× Z. Then for all primes p, the switch σp is switched on in A∗[QP ] if
and only if p ∈ P .

Proof. Firstly, suppose that p ∈ P . Let [f ] ∈ A∗[QP ], i.e., f : A × Z → QP .
This means that for every (a, z) ∈ A × Z, we have that f(a,z)

p ∈ QP . Define

g : A × Z → QP : (a, z) �→ f(a, z)
p

and by definition p · g = f , so f is divisible by p in QP
A∗

. Thus [f ] is divisible
by p in A∗[QP ].

Now suppose that p /∈ P . Consider (0, 1) ∈ A × Z and F (0, 1) ∈ QP
A×Z,

i.e.,

F (0, 1)(a, z) :=

{
1 if (0, 1) = (a, z),
0 otherwise

(cf. the proof of Lemma 3.3 for the definition of F ). We claim that [F (0, 1)] ∈
A∗[QP ] is not divisible by p.

Suppose towards a contradiction that there is some f ∈ QP
A×Z such

that p · [f ] = [p · f ] = [F (0, 1)], i.e., p · f ∼ F (0, 1). Since F (0, 1) is integral
by definition, this means that p · f must be integral, so ran(p · f) ⊆ Z and
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thus, since p /∈ P , ran(f) ⊆ Z using (*). By equivalence of p · f and F (0, 1),
we obtain

(0, 0) =
∑

(a,z)∈A×Z

(p · f − F (0, 1))(a, z) · (a, z)

=
∑

(a,z)∈A×Z

(p · f)(a, z) · (a, z) − F (0, 1)(a, z) · (a, z)

=
∑

(a,z)∈A×Z

(p · f)(a, z) · (a, z) −
∑

(a,z)∈A×Z

F (0, 1)(a, z) · (a, z)

=
∑

(a,z)∈A×Z

(p · f)(a, z) · (a, z) − (0, 1),

hence
∑

(a,z)∈A×Z
(p · f)(a, z) · (a, z) = (0, 1). By the earlier analysis of the

integrality of f , we know that the sum on the left-hand side is a finite sum of
terms of the form p · ζ · (a, z) for some integer ζ. The group A∗ = A × Z is
a direct product, so we may consider the second coordinate of this sum; we
obtain as equation for the second coordinate

1 =
n∑

i=0

p · ζi · zi = p ·
n∑

i=0

ζi · zi

for some integers ζi and zi. But then 1 would be divisible by p in Z which is
absurd. Contradiction! �

Note that Lemma 3.5 implies that the sentences σp are switches: if A
is an arbitrary group, then A ≤ A × Z =: A∗ ≤ A∗[QP ] by Lemma 3.3. By
choosing P appropriately, we can create any pattern of switches turned on and
off in the group A∗[QP ] by Lemma 3.5.

These technical tools now allow us to finally prove Lemma 3.2.

Proof of Lemma 3.2. Let P and Q be two finite disjoint sets of primes. Let
A be an abelian group in which for some P0 ⊆ P the sentence

∧
p∈P0

βp ∧∧
p∈P\P0

¬βp holds. Let P0 ⊆ P1 ⊆ P and Q1 ⊆ Q. We need to find a group
B such that A ≤ B where the sentence

∧
p∈P1

βp ∧
∧

p∈P\P1

¬βp

∧
q∈Q1

σq ∧
∧

q∈Q\Q1

¬σq (†)

holds. First we push the additional buttons using the group

BP1\P0 =
∏

p∈P1\P0

Z/pZ

and obtain A+ := A × BP1\P0 . The buttons pushed in A+ are precisely the
ones with index in P1. We now form A∗ := A+ × Z and build the controlled
group amplification of A∗ with QQ1 , i.e., B := A∗[QQ1 ] and claim that B
satisfies (†).

Switches. By Lemma 3.5, the switches turned on in B are precisely those
with index in Q1.
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Buttons. The group A∗ is a direct product and so the buttons pushed in
A∗ are precisely the ones pushed in one of the factors; thus, βp is pushed in
A∗ if and only if p ∈ P1. But Q1 ∩P = ∅, so Lemma 3.4 implies that for every
p ∈ P , we have that βp is pushed in A∗ if and only if βp is pushed in B. �

4. The modal logic of groups

The lower bound argument given before Main Theorem 3.1 does not require
the groups to be abelian: the same argument yields that the structure modal
logic of the class of all groups contains S4.2.

However, our constructions for the upper bound made crucial use of com-
mutativity: most centrally, the definition of the controlled amplification A[B]
only works for abelian groups. This suggests the following open question:

Question 4.1. What is the modal logic of the class of all groups with the sub-
group relation?
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5–23 (2015)
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