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Abstract. This paper is a contribution to understanding what properties
should a topological algebra on a Stone space satisfy to be profinite. We
reformulate and simplify proofs for some known properties using syntac-
tic congruences. We also clarify the role of various alternative ways of
describing syntactic congruences, namely by finite sets of terms and by
compact sets of continuous self mappings of the algebra.
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1. Introduction

Profinite algebras, that is, inverse limits of inverse systems of finite algebras,
appear naturally in several contexts. There is an extensive theory of profinite
groups, which appear as Galois groups but are also studied as a generaliza-
tion of finite groups [19,27]. One may also view p-adic number theory as an
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early study of special profinite algebraic structures [28]. In the context of gen-
eral algebras, profinite topologies seem to have first appeared in [12]. A fruit-
ful line of development came about with the discovery that formal equalities
between elements of free profinite algebras may be used to describe pseu-
dovarieties [25,11], which are classes of finite algebras of a fixed type closed
under taking homomorphic images, subalgebras, and finite direct products.
Since pseudovarieties play an important role in algebraic theories developed
for computer science, profinite algebras are also a useful tool in that context. In
particular, profinite semigroups have been extensively used (see, for instance,
[2,30,9,4,26,5,6]).

As the underlying topological structure of a profinite algebra is compact
and 0-dimensional, that is, a Stone space, profinite algebras may also be viewed
as dual spaces of Boolean algebras augmented by continuous operations. For
finitely generated relatively free profinite algebras, the corresponding Boolean
algebras have special significance [2, Theorem 3.6.1] and are particularly rel-
evant in the applications of finite semigroup theory to the theory of formal
languages, where they appear as Boolean algebras of regular languages. The
dual role of the algebraic operations in relatively free profinite algebras has
also been investigated [21,22,20].

For certain classes of (topological) algebras, it turns out that being a
Stone space is sufficient to guarantee profiniteness. Special cases were consid-
ered in [24] but the essential ingredient lies in the fact that syntactic congru-
ences are determined by finitely many terms [1,16] using an idea of Hunter
[23] that may be traced back to Numakura [24]. For such classes of algebras,
profiniteness is thus a purely topological property, although this is not true in
general.

Recently, several characterizations of profiniteness in a Stone topologi-
cal algebra A have been obtained in [29]. They are formulated in terms of
topological properties of the translation monoid of the algebra A, which is a
submonoid of the monoid of continuous transformations of A, which is itself a
topological monoid under the compact-open topology.

We explore further the role of syntactic congruences in the characteriza-
tion of profiniteness. This leads us to an extension to topological algebras over
topological signatures of Gehrke’s sufficient condition for a quotient of a profi-
nite algebra to be profinite, with a simplified proof. The proofs of Schneider
and Zumbrägel’s characterizations of profiniteness in this language are also
somewhat simplified. The key ingredient is quite simple: a Stone topological
algebra is profinite if and only if the syntactic congruence of every clopen
subset is clopen (Theorem 4.1).

As already mentioned above, the existence of descriptions of the syntac-
tic congruences of clopen subsets by a finite number of terms is a sufficient
condition for profiniteness. In such terms, all but one variable are evaluated to
arbitrary values in the algebra, which means that potentially infinitely many
polynomials in one variable are used. In a profinite algebra, each such syntac-
tic congruence may in fact be described by finitely many linear polynomials in
one variable, which may depend on the congruence. We explore more generally
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the property of a syntactic congruence being determined by a compact set of
continuous self mappings of the algebra, a property that, for a clopen subset
of a locally compact algebra is equivalent to the congruence being clopen. This
leads to several further characterizations of profiniteness for a Stone topologi-
cal algebra in terms of how their syntactic congruences may be described. This
is summarized at the very end of the paper, in Theorem 6.1.

2. Topological algebras

We say that an equivalence relation on a topological space X is closed (respec-
tively open or clopen) if it is a closed (respectively open or clopen) subset of
the product space X × X. It is easy to verify that an equivalence relation
is open if and only if it is clopen, if and only if its classes are open, if and
only if its classes are clopen (see, for instance, [6, Exercise 3.40]). For a closed
equivalence relation, the classes are closed, but the converse fails in general [6,
Exercise 3.39]. Given an equivalence relation θ on a topological space X, the
quotient set X/θ is endowed with the largest topology that renders continu-
ous the natural mapping X → X/θ. In particular, a set of θ-classes is closed
(respectively, open) if and only if so is its union in X.

Unlike some literature on topology, we require the Hausdorff separation
property for a space to be locally compact or compact.

The following observation may be considered as an exercise in topology,
based on [13, Chapter I, §10.4, Proposition 8].

Proposition 2.1. Let X be a compact space and θ an equivalence relation on X.
Then the quotient space X/θ is compact if and only if θ is closed.

Following [29], by a signature we mean a sequence Ω = (Ωn)n∈N of sets of
operation symbols arranged by arity. We say that it is a topological signature
if each set Ωn is endowed with a topology.

An Ω-algebra is a pair (A,E), where A is a set and E = (EA
n )n∈N is a

sequence of evaluation mappings EA
n : Ωn ×An → A. In case A is a topological

space and Ω is a topological signature, we say that the Ω-algebra is a topological
Ω-algebra if each mapping EA

n is continuous. For an Ω-algebra (A,E) and
w ∈ Ωn, we let wA : An → A be the operation defined by

wA(a1, . . . , an) = EA
n (w, a1, . . . , an).

Reference to the sequences E and Ω, which should be understood from
the context, will usually be omitted and so we simply say that A is an algebra.

We view finite algebras as discrete topological algebras. Note that the
requirement that the evaluation mappings be continuous may still be nontriv-
ial. For instance, consider the signature Ω with one binary operation symbol
and Ω1 the one-point (∞) compactification of N (in which the open sets are
all subsets of N together with the subsets of the form {∞} ∪ (N \ F ), where F
is a finite subset of N). We may then consider finite semigroups as Ω-algebras
by interpreting the binary operation symbol as the semigroup multiplication,
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Figure 1. A Stone topological unary algebra which is not
profinite

each unary operation symbol n ∈ N as the n! power and ∞ as the unique idem-
potent power. The evaluation mappings are continuous, and so we obtain a
topological Ω-algebra. However, it is sometimes useful to consider an (“unnat-
ural”) interpretation of the operation symbol ∞ that makes the evaluation
mapping E1 discontinuous. This idea underlies the recent paper [7].

For a class K of topological algebras, we say that a topological algebra
A is residually K if, for every pair a, a′ of distinct elements of A, there is
a continuous homomorphism ϕ : A → B into a member B of K such that
ϕ(a) �= ϕ(a′).

A topological algebra A is said to be profinite if it is an inverse limit of
finite discrete algebras. Equivalently, A is residually finite and compact (see,
for instance, [5]). On the other hand, we say that A is a Stone topological
algebra if its underlying topological space is a Stone space (note that “Stone
algebra” has a different meaning in the literature). While it is not hard to see
that every profinite algebra is a Stone topological algebra, the converse fails,
because Stone topological algebras need not be residually finite. We present
two examples of such algebras. The first example is borrowed from the paper
[8, Example 5.2], which deals with unary algebras. Variations of this example
are also found in [29, Examples 6.2 and 6.3] and [16, Example 7.2].

Example 2.2. Consider the one-point compactification U = N ∪ {∞} of N.
Equip U with the unary operation a defined by a(n) = max{0, n − 1} and
a(∞) = ∞, as in Figure 1. This gives a Stone topological algebra over a
signature consisting of a single unary operation symbol. Moreover, all contin-
uous homomorphisms defined on this topological algebra and taking values in
finite unary algebras are constant. Indeed, all continuous mappings from U to
a finite discrete space must be eventually constant, and eventually constant
homomorphisms must in fact be constant.

Within the context of this paper, the previous example can serve as a
basic negative example, on which one can test various conditions equivalent
to profiniteness. We further include the next example which shows that the
argument from Example 2.2 can occur also in a richer algebra. The example is
interesting in itself, as it is a Stone topological (modular) lattice which is not
profinite. It already appeared in [16, Example 7.4] and can be traced back to
an earlier paper of Clinkenbeard [17].

Example 2.3. Let U = N ∪ {∞} be the one-point compactification of N,
equipped with the partial ordering depicted in Figure 2. One can check that
U is indeed a Stone topological modular lattice. Let us briefly suggest how to
prove that it is not residually finite. Like in the previous example, continuous
mappings from U onto finite discrete spaces are eventually constant. Moreover,
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Figure 2. A Stone topological modular lattice which is not
profinite

eventually constant homomorphisms defined on U are in fact constant: the key
is to show that a homomorphism ϕ which identifies (n, n + 3) for n ∈ 3N also
identifies (n − 3, n). In particular, eventually constant homomorphisms must
be constant on 3N ∪ {∞}, and thus also constant on all of U .

A continuous mapping from a topological space X to a topological algebra
A is said to be a generating mapping if its image generates (algebraically) a
dense subalgebra of A. In case X is a subset of A, we say that the topological
algebra A is generated by X if the inclusion X ↪→ A is a generating mapping.
We also say that A is X-generated if there is a generating mapping X → A
and that it is finitely generated if it is X-generated for some finite set X.

By a congruence on an Ω-algebra A we mean an equivalence rela-
tion θ that is compatible with the Ω operations. The set A/θ of all con-
gruence classes a/θ inherits a natural structure of Ω-algebra: for w ∈ Ωn,
wA/θ(a1/θ, . . . , an/θ) = wA(a1, . . . , an)/θ. In case A is a compact Ω-algebra
and θ is a closed congruence, the quotient algebra A/θ is a compact Ω-algebra
for the quotient topology [29, Lemma 4.3].

For a set X, let TΩ(X) be the Ω-term algebra, that is, the absolutely free
Ω-algebra. The elements of TΩ(X) are usually viewed in computer science as
trees whose leaves are labeled by elements of X or of Ω0 and each non-leaf
node is labeled by an element of some Ωn, in which case the node has exactly
n children.

For instance, for u ∈ Ω2, v ∈ Ω3, and w ∈ Ω0, the term

u(v(x1, u(w, x1), x3), u(x3, x2))

is represented by the labeled tree pictured in Figure 3.
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Figure 3. A labeled tree representing an element of an Ω-
term algebra

If the tree representing the term t has exactly one occurrence of x ∈ X
as a leaf label, then we say that t is linear in x. For instance, the term above
is linear only in x2.

Let ϕ : X → A be any mapping. Since the term algebra TΩ(X) is
the absolutely free algebra over the set X, there is a unique homomor-
phism ϕ̂ : TΩ(X) → A such that ϕ̂ ◦ ι = ϕ, where ι is the inclusion map-
ping of X in TΩ(X). In case X = {x1, . . . , xm}, we also denote ϕ̂(t) by
tA

(
ϕ(x1), . . . , ϕ(xm)

)
for t ∈ TΩ(X). In this case, given elements aj ∈ A

(j �= i), a term t ∈ TΩ(X) determines a polynomial transformation of A
given by

a �→ tA(a1, . . . , ai−1, a, ai+1, . . . , am).

The translation monoid M(A) consists of all such polynomial transformations
given by terms that are linear in the distinguished variable xi.

For two topological spaces X and Y , let C(X,Y ) be the set of continuous
mappings from X to Y ; it is endowed with the compact-open topology, for
which a subbase consists of all sets of the form

[K,U ] =
{
f ∈ C(X,Y ) : f(K) ⊆ U

}
,

where K ⊆ X and U ⊆ Y are respectively compact and open. Subsets of
C(X,Y ) are endowed with the induced topology. We also write C(X) for
C(X,X). Note that, in case A is a topological algebra, M(A) is a submonoid
of the monoid C(A).

Note that, if X is compact 0-dimensional (that is, a Stone space), then
we may restrict the choice of both K and U to be clopen subsets of X in
the subbasic open sets [K,U ] of the compact-open topology of C(X) (cf. [14,
Chapter X, §3.4, Remark 2]).

3. Syntactic congruences

We say that an equivalence relation θ on a set A saturates a subset L of A if
L is a union of θ-classes. The following purely algebraic result is well known.
We provide a proof for the sake of completeness.
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Lemma 3.1. For an algebra A and a subset L of A, the set of all pairs
(a, a′) ∈ A × A such that

∀f ∈ M(A)
(
f(a) ∈ L ⇐⇒ f(a′) ∈ L

)

is the largest congruence on A saturating L.

Proof. Let θ denote the set of pairs in the statement of the lemma. Note that it
is an equivalence relation on A. Let w ∈ Ωn and (ai, a

′
i) ∈ θ for i = 1, . . . , n and

suppose that f ∈ M(A) is such that f
(
wA(a1, . . . , an)

) ∈ L. Considering the
polynomial transformation g given by g(x) = f

(
wA(x, a2, . . . , an)

)
, we deduce

from (a1, a
′
1) ∈ θ that f

(
wA(a′

1, a2, . . . , an)
) ∈ L. Proceeding similarly on each

of the remaining components, we see that f
(
wA(a′

1, . . . , a
′
n)

) ∈ L. Hence, θ is
a congruence on A. Taking for f the identity transformation of A we conclude
that θ saturates L.

Now, suppose that ρ is a congruence on A saturating L and let (a, a′) ∈ ρ
and f ∈ M(A). Because polynomial transformations of A preserve ρ-equiva-
lence, we have

(
f(a), f(a′)

) ∈ ρ. Since ρ saturates L, it follows that f(a) ∈ L
if and only if f(a′) ∈ L, which shows that (a, a′) ∈ θ. Hence, ρ is contained
in θ, thereby completing the proof of the lemma. �

The congruence of the lemma is called the syntactic congruence of L on A
and it is denoted σA

L .

Remark 3.2. Let L be a subset of an algebra A and let αL be the equivalence
relation whose classes are L and A\L. Then we may reformulate the definition
of the syntactic congruence by saying that σA

L is the largest congruence con-
tained in αL. This equivalent definition can also be expressed by the following
useful formula:

σA
L =

⋂

f∈M(A)

(f × f)−1(αL) =
⋂

f∈M(A)

αf−1(L). (3.1)

Corollary 3.3. Let L be a clopen subset of a topological algebra A. Then the
syntactic congruence σA

L is closed.

Proof. Consider the equivalence relation αL of Remark 3.2, so that for-
mula (3.1) holds. Since αL is a clopen subset of A × A and each mapping
f ∈ M(A) is continuous, so that f × f ∈ C(A × A), it follows that σA

L is
an intersection of clopen sets of the form (f × f)−1(αL) and, therefore, it is
closed. �

The following result is another simple application of Lemma 3.1.

Proposition 3.4. Let ϕ : A → B be an onto homomorphism between two Ω-
algebras and let L be a subset of B. Then we have

(ϕ × ϕ)−1σB
L = σA

ϕ−1(L),

so that ϕ induces an isomorphism A/σA
ϕ−1(L) → B/σB

L .
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Proof. By the general correspondence theorem of universal algebra [15, The-
orem 6.20], (ϕ × ϕ)−1σB

L is a congruence on A. It saturates ϕ−1(L) since, if
(a, a′) ∈ (ϕ × ϕ)−1σB

L and a ∈ ϕ−1(L), then (ϕ(a), ϕ(a′)) ∈ σB
L and ϕ(a)

belongs to L and, therefore, so does ϕ(a′). This shows that (ϕ × ϕ)−1σB
L ⊆

σA
ϕ−1(L).

Conversely, suppose that (a, a′) ∈ σA
ϕ−1(L) and t(x1, . . . , xm) is a term

linear in x1 such that tB(ϕ(a), b2, . . . , bm) ∈ L with the bj in B. For each
j ∈ {2, . . . , m}, let aj ∈ A be such that bj = ϕ(aj). Then, we must have
tA(a, a2, . . . , am) ∈ ϕ−1(L), which yields tA(a′, a2, . . . , am) ∈ ϕ−1(L), which
in turn entails tB(ϕ(a′), b2, . . . , bm) ∈ L. This establishes the reverse inclusion
σA

ϕ−1(L) ⊆ (ϕ × ϕ)−1σB
L . �

4. Profiniteness

To give an application of Proposition 3.4, we first need some connections of
syntactic congruences with profiniteness. Recall, as stated in Corollary 3.3,
that the syntactic congruence of a clopen subset of a topological algebra is
always closed.

Theorem 4.1. A Stone topological algebra A is profinite if and only if, for every
clopen subset L of A, the syntactic congruence σA

L is clopen.

Proof. (⇒) It follows from residual finiteness and compactness that there is
a continuous homomorphism ϕ : A → B onto a finite algebra B such that
L = ϕ−1(ϕ(L)) [3, Lemma 4.1]. The kernel of ϕ (by which we mean the
equivalence relation on A given by {(s1, s2) ∈ A2 : ϕ(s1) = ϕ(s2)}) is thus
a clopen congruence on A that saturates L. By Lemma 3.1, σA

L contains the
kernel of ϕ. Hence, the classes of σA

L are also clopen, as they are unions of
classes of the kernel of ϕ.

(⇐) We need to show that A is residually finite. Given distinct points
a, a′ ∈ A, since A is a Stone space, there is a clopen subset L ⊆ A such that
a ∈ L and a′ /∈ L. Since σA

L is clopen, the canonical homomorphism A → A/σA
L

is a continuous homomorphism onto a finite (discrete) algebra that separates
the points a and a′, as σA

L saturates L by Lemma 3.1. �

We are now ready to prove the following result. The special case where
the signature is discrete was first proved in [20, Theorem 4.3] using duality
theory.

Theorem 4.2. Let A be a profinite algebra and let θ be a closed congruence
on A such that A/θ is 0-dimensional. Then the quotient A/θ is profinite.

Proof. Let B = A/θ and let ϕ : A → B be the canonical homomorphism. By
assumption and Proposition 2.1, B is a Stone topological algebra. We apply
the criterion for B to be profinite of Theorem 4.1. So, let L be a clopen subset
of B. By Proposition 3.4, we obtain the equality

(ϕ × ϕ)−1σB
L = σA

ϕ−1(L).
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Since ϕ is continuous, the set ϕ−1(L) is clopen. Hence, by Theorem 4.1, σA
ϕ−1(L)

is a clopen congruence, and so A/σA
ϕ−1(L) is finite. By Proposition 3.4, the

algebra B/σB
L is finite. Since σB

L is a closed congruence by Corollary 3.3, it
follows that σB

L is clopen. �

A compact space X has a natural uniform structure in the sense of [13,
Chapter II] with base consisting of the open neighborhoods of the diagonal
{(x, x) : x ∈ X}, that is, its entourages are the subsets of X × X that contain
such neighborhoods. This is the only uniform structure that determines the
topology of X. In case X is a Stone space, one may take as basic members
the sets of the form

⋃n
i=1 Li × Li where the Li constitute a clopen partition

of X; we call the union
⋃n

i=1 Li ×Li the entourage determined by the partition
L1, . . . , Ln. Suppose A is a profinite algebra and L1, . . . , Ln is a clopen parti-
tion of A. By Theorem 4.1, the set θ =

⋂n
i=1 σA

Li
is a clopen congruence on A

that saturates each set Li. Hence, to obtain a subbase of the uniform structure
of A one may consider only the clopen partitions defined by clopen congru-
ences.

Let X be a uniform space and let F ⊆ C(X). We say that F is equicon-
tinuous if for every entourage α of X and every x ∈ X, there is an open subset
U ⊆ X such that x ∈ U and, for every f ∈ F , f(U) × f(U) ⊆ α. We say
that F is uniformly equicontinuous if for every entourage α of X, there is an
entourage β of X such that, for every f ∈ F , (f × f)(β) ⊆ α. In case X is
compact, the two properties are equivalent [14, Chapter X, §2.1, Corollary 2].

Here is another characterization of profiniteness for Stone topological
algebras. It is taken from [29, Theorem 4.4]. The proof presented here is basi-
cally the same as that in [29] although it is slightly simplified thanks to the
usage of syntactic congruences.

Theorem 4.3. A Stone topological algebra A is profinite if and only if M(A)
is equicontinuous.

Proof. (⇒) Let L1, . . . , Ln be a clopen partition of A and let θ =
⋂n

i=1 σA
Li

.
Then, by Lemma 3.1, for every f ∈ M(A), we have

(f × f)(θ) ⊆
n⋃

i=1

Li × Li.

(⇐) We apply the criterion of Theorem 4.1. So, let L be a clopen
subset of A and consider the entourage αL determined by the clopen par-
tition L,A \ L. By (uniform) equicontinuity, there exists a clopen partition
L1, . . . , Ln of A, determining an entourage β of X, such that, for every
f ∈ M(A), the inclusion (f × f)(β) ⊆ αL holds or, equivalently, β ⊆⋂

f∈M(A)(f × f)−1(αL). By Remark 3.2, we have

⋂

f∈M(A)

(f × f)−1(αL) = σA
L .
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Hence, we have β ⊆ σA
L . It follows that each class of σA

L is a union of some of
the Li and, therefore it is clopen. Hence, σA

L is a clopen congruence and A is
profinite by Theorem 4.1. �

A subset of a topological space X is said to be relatively compact if
it is contained in a compact subset of X. The following is a reformulation
of Theorem 4.3. As observed in [29], the equivalence between the criteria of
Theorems 4.3 and 4.4 is an immediate application of the Arzelà-Ascoli theorem
of functional analysis [14, Chapter X, §2.5, Corollary 3].

Theorem 4.4 ([29]). A Stone topological algebra A is profinite if and only if
M(A) is relatively compact in C(A).

5. Determination of syntactic congruences

In this section, we examine several ways of describing syntactic congruences.

5.1. Determination by terms and functions

Moving forward, we drop the superscripts when denoting syntactic congru-
ences, as it will always be clear from the context to which algebra they pertain.
We say that a syntactic congruence σL of an algebra A is finitely determined
by terms if there exists a finite subset F of TΩ({x1, . . . , xm}) such that σL

consists of all pairs (a, a′) ∈ A2 for which

∀t ∈ F ∀b2, . . . , bm ∈ A
(
tA(a, b2, . . . , bm) ∈ L ⇐⇒ tA(a′, b2, . . . , bm) ∈ L

)
.

We then also say that the set of terms F determines σL. In Lemma 5.13
below, it is observed that if σL is determined by a finite set of terms, then
it is also determined by such a set in which every term is linear in the first
variable. Finite determination occurs in many important examples: in semi-
groups, monoids, rings and distributive lattices, all syntactic congruences are
determined by finite sets of terms, even in a uniform way in the sense that the
same finite set of terms works for all syntactic congruences on all algebras of
the chosen type. This holds because in each case, there are only finitely many
types of linear polynomials (in rings for instance, the linear polynomials in the
variable x are all of the form x + c, ax + c, xb + c, or axb + c).

Generalizing a result of Numakura [24] (for the cases of semigroups and
distributive lattices), the first author [1] has shown that a sufficient condition
for a Stone topological algebra to be profinite is that its syntactic congruences
of clopen subsets are finitely determined (see also [10,16]).

There is a stronger form of determination of a syntactic congruence, which
is suggested by Lemma 3.1. We say that the syntactic congruence σL of a subset
L of an algebra A is S-determined if S is a set of functions A → A such that,
for all a, a′ ∈ A, (a, a′) ∈ σL holds if and only if

∀f ∈ S
(
f(a) ∈ L ⇐⇒ f(a′) ∈ L

)
.
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Note that σL is M(A)-determined by Lemma 3.1. As in Remark 3.2, note that
σL is S-determined if and only if

σL =
⋂

f∈S

(f × f)−1(αL) =
⋂

f∈S

αf−1(L).

For example, in the unary algebra U from Example 2.2, the syntactic congru-
ence σ{0} (which is in fact the diagonal relation) is S-determined for S ⊆ M(U)
if and only if S = M(U).

Proposition 5.1. Let A be an algebra and L a subset of A. If the syntactic
congruence σL has finite index then it is F -determined for some finite subset
F of M(A).

Proof. Consider the syntactic homomorphism η : A → A/σL, which sends each
a ∈ A to its syntactic class a/σL. By assumption, the algebra A/σL is finite.
Hence, M(A/σL) is a finite monoid. For each f ∈ M(A/σL), we may choose a
term t ∈ TΩ({x1, . . . , xk+1}) which is linear in x1 and elements a2, . . . , ak+1 ∈
A such that f(x/σL) = tA(x, a2, . . . , ak+1)/σL for every x ∈ A. We let f̂(x) =
tA(x, a2, . . . , ak+1) for each x ∈ A, which defines an element f̂ of M(A) such
that η ◦ f̂ = f ◦ η. Let F = {f̂ : f ∈ M(A/σL)}. We claim that σL is F -
determined.

Since F ⊆ M(A), we have σL ⊆ ⋂
g∈F (g×g)−1(αL). Conversely, suppose

a, a′ ∈ A are such that, for every f ∈ M(A/σL), we have f̂(a) ∈ L if and only
if f̂(a′) ∈ L. Since σL saturates L, x ∈ L is equivalent to η(x) ∈ η(L). Thus,
we get f(η(a)) ∈ η(L) if and only if f(η(a′)) ∈ η(L) for every f ∈ M(A/σL).
By definition of the syntactic congruence, we deduce that (η(a), η(a′)) ∈ ση(L),
that is, (a, a′) ∈ (η × η)−1(ση(L)). By Proposition 3.4, it follows that (a, a′) ∈
σL, which establishes the claim. �

Note that Proposition 5.1 applies in particular to clopen syntactic con-
gruences σL on a compact algebra A, which are necessarily determined by a
clopen subset L of A. One may ask whether the same finite subset F of M(A)
may be used to determine all syntactic congruences of clopen subsets L of A.
This is trivially the case for finite algebras but here is an infinite example for
which such a finite set F also exists.

Example 5.2. Let A be a Stone space and consider a constant binary operation
on A. This turns A into a profinite semigroup. Note that, for every L ⊆ A,
we have σL = αL. Thus, all syntactic congruences are F -determined for every
subset F of M(A). The same conclusion would be reached if we took the empty
signature instead.

The next result shows that such an example cannot be simultaneously
finitely generated and infinite.

Proposition 5.3. If A is an infinite finitely generated profinite algebra then, for
every finite subset F of M(A), there exists a clopen subset L of A such that
σL is not F -determined.
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Proof. Suppose that F is a finite subset of M(A) that determines the syntactic
congruence of every clopen subset L of A, that is, its syntactic congruence σL is
given by the formula σL =

⋂
f∈F αf−1(L). Note that each equivalence relation

αf−1(L) has at most two classes. Hence, σL has at most 2|F | classes, that is,
the syntactic algebra A/σL has at most 2|F | elements. Now, given a finite set
S and a finite generating set X of A, there are only finitely many functions
X → S. Thus, on subsets of S there are only finitely many algebraic structures
which are homomorphic images of A. There are only finitely many congruences
that are kernels of these homomorphisms from A to S. In particular, there are
only finitely many syntactic congruences σL of clopen subsets L of A. Since
the corresponding syntactic homomorphisms A → A/σL suffice to separate the
points of A, we conclude that A is finite, in contradiction with the hypothesis.

�

5.2. Compact determination

Suppose that A is a topological algebra and L ⊆ A. We say that the syntactic
congruence σL is compactly determined if σL is C-determined for some compact
subset C of C(A). Similarly, σL is finitely determined if σL is F -determined
for some finite subset F of C(A). This is not to be confused with σL being
determined by a finite set of terms, which is, a priori, a weaker property in
case F ⊆ M(A). Theorem 5.16 at the end of Subsection 5.3 shows that all
these properties are equivalent in case A is compact and L ⊆ A is clopen.

In this subsection, among other results, we establish that, if all syntactic
congruences of clopen subsets of a Stone topological algebra A are compactly
determined, then A is profinite. Several of our results are stated for locally
compact algebras because they hold in that more general setting.

Let us briefly introduce a convenient notation for partial evaluation.
Given f : Y × Z → X, we define f � : Z → XY by:

f �(z)(y) = f(y, z).

The following proposition regroups a few useful properties of the compact-open
topology. For proofs, we refer the reader to [14, Chapter X, §3.4, Theorem 3
and Proposition 9].

Proposition 5.4. Let X, Y and Z be topological spaces.
(1) If f ∈ C(Y × Z,X), then f � ∈ C(Z, C(Y,X)).

Assume, additionally, that Y is locally compact.
(2) Composition is a continuous mapping C(Y,X) × C(Z, Y ) → C(Z,X).
(3) Evaluation is a continuous mapping Y × C(Y,X) → X.

In particular, from Proposition 5.4(2) it follows that, for every locally
compact topological space X, C(X) is a topological monoid. In case A is a
topological algebra, M(A) is a submonoid of C(A), whence so is its closure
M(A) if A is locally compact.

The following statement is an elementary observation in topology whose
proof is presented for the sake of completeness.
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Proposition 5.5. Let X and Y be two topological spaces, with X locally com-
pact, and let K be a compact subspace of C(X,Y ).
(1) The following mapping is closed:

ΦK : 2Y → 2X

V �→
⋃

f∈K

f−1(V ).

(2) The following mapping is open:

ΨK : 2Y → 2X

U �→
⋂

f∈K

f−1(U).

Proof. Clearly, (1) and (2) imply each other by taking the complement:
ΦK(2Y \ U) = 2X \ ΨK(U). To prove (1), consider a closed subset V of Y .
Let {xi}i∈I be a net in ΦK(V ) converging to x ∈ X. By definition of ΦK ,
there exists a net {fi}i∈I in K such that, for all i ∈ I, fi(xi) ∈ V . Since
K is compact, we may assume by taking a subnet that the first component
of {(fi, xi)}i∈I converges, to say f ∈ K. Since V is closed and evaluation is
continuous by Proposition 5.4(3), we obtain

f(x) = lim
i∈I

fi(xi) ∈ V.

It follows that x ∈ ΦK(V ), thus showing that ΦK(V ) is closed. �

A further result in topology that we require for later considerations is the
following.

Lemma 5.6. Let X be a Hausdorff topological space. The diagonal mapping
Δ: C(X) → C(X × X) defined by Δ(f) = f × f is continuous with respect to
the compact-open topologies.

Proof. By [18, Lemma 3.4.6], the sets of the form [K,U1×U2], where K ranges
over all compact subsets of X×X and U1 and U2 range over all open subsets of
X, constitute a subbase for the compact-open topology of C(X×X). Therefore,
it suffices to show that for each compact subset K ⊆ X × X and open subsets
U1, U2 ⊆ X, the set Δ−1[K,U1 × U2] is open in the compact-open topology of
C(X).

Let p1, p2 be the natural projections of X × X on its first and second
components, respectively. Note that, for i = 1, 2, we have pi ◦ Δ(f) = f ◦ pi.
It follows that:

Δ(f)(K) ⊆ U1 × U2 ⇐⇒ pi(Δ(f)(K)) ⊆ Ui for i = 1, 2

⇐⇒ f(pi(K)) ⊆ Ui for i = 1, 2.

This shows that Δ−1[K,U1 × U2] = [p1(K), U1] ∩ [p2(K), U2]. But for i = 1, 2,
the projection pi is continuous, so pi(K) is a compact subset of X and
[pi(K), Ui] is open in the compact-open topology of C(X). Hence, so is
Δ−1[K,U1 × U2]. �
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The next proposition shows that, in order to be compactly determined,
the syntactic congruence of a clopen subset merely needs to be determined by
a relatively compact subset of C(A).

Proposition 5.7. Let A be a locally compact algebra and L be a clopen subset of
A. If F ⊆ C(A) is such that σL is F -determined, then σL is also F -determined.

Proof. Clearly, we have:
⋂

f∈F

(f × f)−1(αL) ⊆
⋂

f∈F

(f × f)−1(αL) = σL.

To prove the reverse inclusion, let us fix x ∈ σL and take an arbitrary f ∈ F .
Let {fi}i∈I be a net in F converging to f . By assumption, (fi ×fi)(x) belongs
to αL for every i ∈ I. Since αL is closed and the evaluation and diagonal
mappings are continuous, respectively by Proposition 5.4(3) and Lemma 5.6,
we deduce that

(f × f)(x) = lim
i∈I

(fi × fi)(x) ∈ αL.

This shows that x ∈ (f × f)−1(αL), as required. �

Combining Proposition 5.7 with Theorem 4.4, we get the following result.

Corollary 5.8. Let A be a profinite algebra and L be a clopen subset of A. Then
σL is compactly determined.

The following result shows the significance of the notion of compactly
determined syntactic congruence.

Theorem 5.9. Let A be a locally compact algebra and L a subset of A. Then L
is clopen and σL is compactly determined if and only if σL is clopen.

Proof. Suppose first that L is clopen and σL is K-determined, where K is
a compact subset of C(A). Since σL is K-determined, we may write σL =
ΨΔK(αL) in the notation of Proposition 5.5 and Lemma 5.6. By Lemma 5.6,
Δ is continuous with respect to the compact-open topologies, so ΔK is a
compact subset of C(A×A). By Proposition 5.5 applied to X = Y = A×A, it
follows that ΨΔK maps open relations on A to open relations on A. But since
L is clopen, so is αL, whence σL is clopen.

For the converse, assume that σL is clopen. If σL is the universal relation,
then L is either ∅ or A and σL is K-determined for every subset K of C(A).
Otherwise, we may choose elements a, b ∈ A that are not σL-equivalent. Let
K be the set of all mappings A → {a, b} that are constant on each σL-class.
Since σL is clopen, K is contained in C(A). Consider the mapping

ϕ : C(A/σL, {a, b}) → K

f �→ f ◦ η,

where η : A → A/σL is the natural quotient mapping. Note that A/σL is a
discrete space under the quotient topology, whence it is locally compact. By
Proposition 5.4(2), ϕ is a continuous mapping. As both spaces A/σL and {a, b}
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are discrete, the space C(A/σL, {a, b}) is in fact the product space {a, b}A/σL .
Since ϕ is onto and continuous, we deduce that K is compact. The proof is
achieved by observing that σL is K-determined. �

Note that the second part of the above proof does not use the hypothesis
that the algebra A is locally compact. In the locally compact case, the proof
could also be given by invoking the Arzelà-Ascoli theorem.

Theorems 5.9 and 4.1 yield the following result.

Corollary 5.10. Let A be a Stone topological algebra, and suppose that for every
clopen subset L of A, σL is compactly determined. Then A is profinite.

Given a profinite algebra A and a clopen subset L of A, one may wonder
what are the compact subsets of C(A) determining σL. The following shows
that, at the very least, there is always one that is minimal.

Proposition 5.11. Let A be a locally compact algebra, L be a clopen subset
of A. Then, every compact subset of C(A) determining σL contains a minimal
compact subset determining σL.

Proof. We apply Zorn’s lemma. Let F be a compact subset of C(A) determining
σL. Fix a descending chain {Fi}i∈I of closed subsets of F that determines σL

and let:

F ′ =
⋂

i∈I

Fi.

We want to show that F ′ determines σL. Fixing an arbitrary i ∈ I, the inclu-
sion F ′ ⊆ Fi gives:

⋂

f∈F ′
(f × f)−1(αL) ⊇

⋂

f∈Fi

(f × f)−1(αL) = σL. (5.1)

It remains to show the reverse inclusion. Let us suppose that x ∈ A2 \ σL.
Then, we have

∀i ∈ I ∃fi ∈ Fi, (fi × fi)(x) /∈ αL.

This defines a net {fi}i∈I in F , which by compactness has a converging subnet
{fij}j∈J ; let f ′ ∈ F denote its limit.

For each i ∈ I, there is k ∈ J such that ik � i, and so the net {fij}j∈J

is eventually in Fi. Since Fi is closed, it follows that f ′ ∈ Fi, and this holds
for each i ∈ I. Thus, f ′ belongs to F ′. Furthermore, as the evaluation and
diagonal mappings are continuous, again respectively by Proposition 5.4(3)
and Lemma 5.6, and αL is clopen, we get

(f ′ × f ′)(x) = lim
j∈J

(fij × fij )(x) /∈ αL.

This shows that:

x ∈
⋃

f∈F ′
(f × f)−1(A2 \ αL) = A2 \

⋂

f∈F ′
(f × f)−1(αL).

Thus, the reverse inclusion in (5.1) is proved and σL is F ′-determined. �
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In case A is a compact algebra and L is a clopen subset of A, one may use
the ideas in the proof of Proposition 5.1 to show that every minimal compact
subset of C(A) determining σL is finite. Combining with Proposition 5.11, it
follows that every compact subset of C(A) determining σL contains a finite such
set. The following example shows that Proposition 5.11 cannot be improved
in the same direction for arbitrary locally compact algebras.

Example 5.12. Consider the additive monoid N of natural numbers under the
discrete topology. Let L be an infinite subset of N containing no infinite arith-
metic progression, for instance the set of all powers of 2 or the set of all primes.
We claim that:

(1) σL is the equality relation;
(2) σL is not finitely determined.

As N is locally compact, being discrete, and σL is clopen, for the same reason,
Theorem 5.9 yields that σL is compactly determined. Hence, by (2), σL is an
example of a compactly determined syntactic congruence of a clopen subset of
a locally compact algebra that is not finitely determined.

To prove Claim (1), since N is a commutative monoid, a pair (m,n) of
natural numbers belongs to σL if and only if

∀x ∈ N (m + x ∈ L ⇐⇒ n + x ∈ L). (5.2)

Suppose that Property (5.2) holds with m < n. Since L is infinite, there exists
k such that m + k belongs to L and whence so does n + k. Using (5.2), we
deduce that all the elements in the arithmetic progression starting with m+ k
with period n − m lie in L, which contradicts the assumption on the set L.
Hence no two distinct elements of N can be σL-equivalent, thereby proving (1).

To establish Claim (2), it suffices to observe that the argument at the
beginning of the proof of Proposition 5.3 shows that a finitely determined
syntactic congruence has finite index, which is not the case of σL by (1).

5.3. Compact determination versus finite determination by terms

We next show that, for compact algebras, a syntactic congruence is compactly
determined if and only if it is determined by a finite set of terms, in the sense
introduced at the beginning of Subsection 5.1.

We start with some notation. Let A be a topological algebra, F be a
subset of C(A), and S be a subset of C(Ak+1, A). Given s ∈ S, in view of
Proposition 5.4(1), we obtain a function s� ∈ C(Ak, C(A)). We define:

FS = {f ∈ F : ∃s ∈ S ∃v ∈ Ak, f = s�(v)}.

We also abbreviate F{s} by Fs. Note that

FS =
⋃

s∈S

Fs = F ∩
(

⋃

s∈S

s�(Ak)

)

⊆ C(A).

In case T is subset of TΩ({x1, . . . , xk+1}), we also write FT for FS , where
S = {tA : t ∈ T}.
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Lemma 5.13. Let L be a subset of an algebra A. Then σL is determined by a
finite set of terms if and only if it is determined by some set of the form FT ,
where T is a finite subset of TΩ({x1, . . . , xk+1}) for some k � 0, consisting of
terms linear in x1, and F ⊆ M(A).

Proof. The if part of the statement of the lemma is trivial. For the converse,
we first associate with each term t ∈ TΩ({x1, . . . xk+1}) a term s ∈ TΩ(X) with
X = {y1, . . . , yr, x2, . . . , xk+1} by replacing each occurrence of x1 by a distinct
yi. Let

si = sTΩ(X)(y(i−1), x, z(r−i), x2 . . . , xk+1) ∈ TΩ(x, y, z, x2, . . . , xk+1),

where u(�) stands for � components equal to u. Then each term si is linear in
x and the following formulas hold for a, a′ ∈ A and v ∈ Ak:

(s1)
�
A(a, a′, v)(a′) = t�A(v)(a′)

(sr)
�
A(a, a′, v)(a) = t�A(v)(a)

(si)
�
A(a, a′, v)(a) = (si+1)

�
A(a, a′, v)(a′) (i = 1, . . . , r − 1).

It follows that

σL ⊆
⋂

i=1,...,r; b,b′∈A

(
(si)

�
A(b, b′, v) × (si)

�
A(b, b′, v)

)−1(αL)

⊆ (
t�A(v) × t�A(v)

)−1(αL),

which shows that σL is also determined by a finite set of terms that are linear
in x1 by simply taking, for a finite set of terms determining σL, the union of
the sets of terms constructed above for each term in the given set. �

The next lemma examines how the operation F �→ FT behaves with
respect to topological closure when T is a finite set of terms.

Lemma 5.14. Let A be a compact algebra, F be a subset of C(A) and T be a
finite set of terms in TΩ({x1, . . . , xk+1}). Then, FT is contained in FT .

Proof. Let f ∈ FT . Then, we can write f as a limit

f = lim
i∈I

fi,

where {fi}i∈I is a net in FT . For each i ∈ I, choose ti ∈ T and vi ∈ Ak such
that fi = (ti)

�
A(vi). Since T is finite and Ak is compact, we may extract a

subnet {fij}j∈J such that {tij}j∈J takes a constant value t ∈ T and {vij}j∈J

converges to v in Ak. By Proposition 5.4(1), t�A is continuous and it follows
that

f = lim
j∈J

fij = lim
j∈J

t�A(vij ) = t�A(v).

Hence, f lies in FT . �

We are now ready to achieve the goal announced at the beginning of this
subsection.
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Proposition 5.15. Let A be a compact algebra, and L be a clopen subset of A.
If σL is determined by a finite set of terms, then it is compactly determined.

Proof. By Lemma 5.13, there is a finite subset T of TΩ({x1, . . . , xk+1}) con-
sisting of terms linear in x1 and a subset F of M(A) such that FT determines
σL. Then, by Proposition 5.7, σL is also determined by FT . By Lemma 5.14,
we have

FT ⊆ FT ⊆ M(A).

Since both FT and M(A) determine σL, so does FT . We claim that FT is
compact. Indeed, for each t ∈ T , we have

F t = F ∩ t�A(Ak).

But note that t�A(Ak) is compact, because Ak is compact and t�A is continuous
by Proposition 5.4(1). Therefore, F t, being an intersection of a closed with a
compact subset, is itself compact. It follows that FT =

⋃
t∈T F t is compact,

as claimed. �

Combining Theorem 5.9 and Propositions 5.1 and 5.15, we obtain the
following main result of this section.

Theorem 5.16. The following conditions are equivalent for a compact algebra
A and a subset L ⊆ A:
(1) σL is clopen;
(2) L is clopen and σL is compactly determined;
(3) L is clopen and σL is finitely determined;
(4) L is clopen and σL is finitely determined by a set of terms;
(5) the quotient algebra A/σL is finite and discrete.

The following example shows that it is not possible to extend Propo-
sition 5.15 for the case of locally compact algebras. In fact, we exhibit a
locally compact semigroup and a clopen subset whose syntactic congruence
is not clopen. This syntactic congruence is not compactly determined by The-
orem 5.9, while it is determined by a finite set of terms as in fact every syntactic
congruence of a semigroup has this property.

Example 5.17. We consider the topological semigroup obtained as the direct
product of the following locally compact semigroups A and B, so that it is
locally compact. Let A = N be the discrete semigroup of natural numbers
with maximum as operation, and let B be the one point compactification of
the usual additive semigroup of natural numbers N. While the description of
the locally compact semigroup A is clear, we describe the compact semigroup
B in more detail: we have B = N ∪ {∞}, where ∞ is the new point for which
we put ∞ + n = n + ∞ = ∞ + ∞ = ∞, for n ∈ N.

Now we take L = {(n, n) | n ∈ N}, which is clopen in A × B because

L =
⋃

n∈N

{(n, n)} and (A × B) \ L =
⋃

n∈N

{n} × (B \ {n}).
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We claim that one class of the syntactic congruence σL is A×{∞}. All elements
in A×{∞} are σL-related as it is not possible to multiply them by any element
and obtain a result in L. To show that elements from A × {∞} are not σL-
related with other elements, consider pairs (i, j) and (k,∞) with i, j, k ∈ N.
Then (i + j, i) · (i, j) = (i + j, i + j) ∈ L but (i + j, i) · (k,∞) = (max{i +
j, k},∞) �∈ L. Hence, (i, j) and (k,∞) are not σL-equivalent. Finally, we claim
that A × {∞} is not open, which establishes that σL is not clopen. To show
that A × {∞} is not open, recall first that in the product space A × B, a base
of the topology consists of open subsets O × O′ with O and O′ open subsets
respectively of A and B. However, if we consider (k,∞) in such O × O′, then
there is also some element (k, �) in O × O′ with the same first coordinate and
� ∈ N.

This example has another feature that it is worth noting. The algebra A×
B is residually finite. Hence, while the condition that the syntactic congruence
of a clopen subset of a locally compact 0-dimensional algebra is always clopen
implies that the algebra is residually discrete (as indeed, the quotient of a
topological algebra by a clopen congruence is a discrete algebra under the
quotient topology), the converse fails even under the stronger assumption of
residual finiteness. This is in contrast with the case of compact algebras, for
which the two conditions are equivalent by Theorem 4.1.

6. Summary of results and conclusion

In conclusion, we have the following result building on the various characteri-
zations of profiniteness in Stone topological algebras presented in this paper.

Theorem 6.1. The following conditions are equivalent for a Stone topological
algebra A:
(1) A is profinite;
(2) for every clopen subset L ⊆ A, σL is a clopen congruence;
(3) M(A) is equicontinuous;
(4) M(A) is relatively compact in C(A);
(5) the closure of M(A) in C(A) is a profinite submonoid;
(6) for every clopen subset L ⊆ A, there exists a continuous homomorphism

ϕ : A → B onto a finite algebra B such that L = ϕ−1(ϕ(L));
(7) for every clopen subset L ⊆ A, the congruence σL is determined by some

finite set of terms;
(8) for every clopen subset L ⊆ A, the congruence σL is F -determined by

some finite subset F of M(A);
(9) for every clopen subset L ⊆ A, the congruence σL is F -determined by

some finite subset F of C(A);
(10) for every clopen subset L ⊆ A, the congruence σL is C-determined by

some compact subset C of C(A).

Proof. By Theorems 4.1, 4.3 and 4.4, we have the equivalences (2)⇔ (1) ⇔ (3)
⇔ (4). In fact, in the proof of Theorem 4.1, we showed that (1)⇒ (6)⇒ (2),
whence we also have (1)⇔ (6)
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The implication (5)⇒ (4) is obvious. To establish the reverse implica-
tion (4)⇒ (5) it is enough to prove that M(A) is a 0-dimensional topological
monoid, which holds if so is C(A). Now, given a clopen subset L ⊆ A, we have

C(A) \ [K,L] =
⋃

a∈K

[a,A \ L],

which shows that [K,L] is closed for every subset K of A. Thus, if K,L ⊆ A
are clopen, then so is [K,L]. Hence, C(A) is 0-dimensional and it was already
observed after Proposition 5.4 that C(A) is a topological monoid.

The equivalence of (1), (7), (8), and (10) follows from Theorems 5.16
and 4.1. To conclude the proof, it remains to observe that the implications
(8)⇒ (9) and (9)⇒ (10) are trivial. �

Some of the results of Section 5 suggest looking at locally compact resid-
ually discrete algebras as a generalization of profinite algebras and, more gen-
erally at locally compact 0-dimensional algebras as a generalization of Stone
topological algebras. However, it is not clear where such a study might lead,
perhaps for lack of interesting examples. Examples 5.12 and 5.17 show that
much of the good behavior observed in the compact case breaks down for
locally compact algebras.
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