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Abstract. The algebraic geometry of a universal algebraA is defined as the
collection of solution sets of systems of term equations. Two algebras A1

and A2 are called algebraically equivalent if they have the same algebraic
geometry. We prove that on a finite set A with |A| there are countably
many algebraically inequivalent Mal’cev algebras and that on a finite
set A with |A| there are continuously many algebraically inequivalent
algebras.
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1. Introduction

Universal algebraic geometry, introduced in [19,7,11], is based on the notion
of algebraic sets. Given a universal algebra A = (A; (fi)i∈I), a subset B of An

is algebraic if it is the solution set of a system of (possibly infinitely many)
term equations in the language of A. Following [18], we denote the collection
of the algebraic subsets of An by Algn A and we define the universal algebraic
geometry of A by AlgA :=

⋃
n∈N

Algn A. Clearly, for a universal algebra A,
AlgA is completely determined by its clone of term functions (cf. [9,20]). We
define the universal algebraic geometry of a clone C on a set A by Alg C :=
Alg(A; C). Following [18], we say that two clones C and D on the same set A
are algebraically equivalent, C ∼alg D, if Alg C = Alg D. In [18,22] one finds
examples of different clones that are algebraically equivalent; in fact Tóth and
Waldhauser [22] proved that on the two element set there are only finitely
many algebraically inequivalent clones. Pinus showed that on each finite set
there are only finitely many universal algebraic geometries closed under taking
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unions [18,6]. The aim of this note is to provide infinite families of algebraically
inequivalent clones on a finite set.

Analysing the construction of 2ℵ0 clones on {0, 1, 2} in [14], we obtain:

Theorem 1.1. Let A be a finite set with |A| ≥ 3. Then there are 2ℵ0 alge-
braically inequivalent clones on A.

The proof will be given in Section 5.
A clone C is called a Mal’cev clone if it contains a ternary function such

that for all a, b ∈ A,

d(a, b, b) = d(b, b, a) = a,

and it is called constantive if every unary constant function on A is in C. Using
Idziak’s construction from [13], we prove:

Theorem 1.2. Let A be a finite set with |A| ≥ 4. Then there are exactly ℵ0

algebraically inequivalent constantive Mal’cev clones on A.

The proof will be given in Section 4. It relies on the following fact:

Theorem 1.3. Let p be a prime, and let n ∈ N. Then there are exactly ℵ0

algebraically inequivalent clones that contain Pol(Znp2 ,+).

The proof will be given in Section 3.
In Table 1 we summarize our current knowledge on the number of alge-

braically inequivalent clones on a finite set.

2. Notation

We write N for the set of positive integers and for n ∈ N, [n] := {1, . . . , n}. For
a set A, the i-th component of a ∈ An is denoted by ai and a(i), and for an
algebra A with universe A, we will use the notions clone, Poln(A) and Clon(A)
as they are commonly used in universal algebra [9,17]. For k ∈ N with k ≤ n,
we define the k-th n-ary projection π

(n)
k : An → A by π

(n)
k (a1, . . . , an) = ak

for all a ∈ An, and we set JA := {π
(n)
k | n ∈ N and k ≤ n}. For a clone C

on A, C[n] denotes the set of n-ary functions in C. For k ∈ N, for σ : [k] → [n]
and for f ∈ C[k], we define fσ ∈ C[n] by fσ(x1, . . . , xn) := f(xσ(1), . . . , xσ(k))
for all x1, . . . , xn ∈ A, and we call fσ a minor of f . If t is a k-ary term in the
language of a universal algebra A, we write tσ for the term t(xσ(1), . . . , xσ(k)).
Observe that in this case (tσ)A = (tA)σ.

Let A be a set and let C be a clone on A. For n ∈ N and for X ⊆ An

we say that X is algebraic with respect to C if there exist an index set I and
two families (pi)i∈I , (qi)i∈I of functions in C[n] such that X = {x ∈ An | ∀i ∈
I : pi(x) = qi(x)}. We define Algn C to be the collection of all the subsets of
An that are algebraic with respect to C and we define the algebraic geometry
of C by Alg C :=

⋃
n∈N

Algn C. For an algebra A, we set AlgA := Alg Clo(A).
For n ∈ N and for X ⊆ An, we define VC(X) to be the intersection of

all the elements of Algn C that contain X as a subset. Since the intersection
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of a collection of elements of Algn C is an element of Algn C, we infer that
VC(X) ∈ Algn C. The following lemma will be used to assess whether a set X
is algebraic with respect to a clone C, which is equivalent to X = VC(X).

Lemma 2.1. Let A be a set, let C be a clone on A, let n ∈ N, let X ⊆ An, and
let a ∈ An. Then we have

a ∈ VC(X) ⇐⇒
(
∀f, g ∈ C[n] : f |X = g|X ⇒ f(a) = g(a)

)
.

Proof. “⇐”: We assume that for all f, g ∈ C[n] with f |X = g|X , we have
f(a) = g(a), and we show that then a ∈ VC(X). To this end, we show that for
each B ∈ Algn C with X ⊆ B, we have a ∈ B. Since B is algebraic with respect
to C, there exist an index set I and two families (pi)i∈I , (qi)i∈I of functions in
C[n] such that B = {x ∈ An | ∀i ∈ I : pi(x) = qi(x)}. Since X ⊆ B, we have
pi|X = qi|X for all i ∈ I. Therefore, the assumption yields pi(a) = qi(a) for
all i ∈ I, and thus a ∈ B.

“⇒”: We assume that there exist f, g ∈ C[n] such that f |X = g|X and
f(a) �= g(a). Then B := {x ∈ An | f(x) = g(x)} satisfies B ∈ Algn C, X ⊆ B,
and a /∈ B. Thus, a /∈ VC(X). �

3. Countably many algebraically inequivalent constantive
expansions of Znp2

Let A = (A; +,−, 0, (fi)i∈I) be an expanded group. Following [3], a function
f : An → A is absorbing if f(a1, . . . , an) = 0 for all a1, . . . , an ∈ A with
0 ∈ {a1, . . . , an}.

Lemma 3.1. Let p be a prime, let n, d, k ∈ N with d ≥ 2 and k ≥ d + 1, let Ad

be the algebra (Znp2 ; +,−, 0, fd), where fd : Zd
np2 → Znp2 is defined by

fd(x1, . . . , xd) = np
d∏

j=1

xj for x1, . . . , xd ∈ Znp2 ,

and let g ∈ Polk(Ad). If g is absorbing, then g is the constant zero function.

Lemma 3.1 states that the algebra Ad is d-supernilpotent (cf. [5]). We
provide a proof that makes no use of the notion of supernilpotency.

Proof. Let Cd be the set of all operations on Znp2 that are induced by a sum
of monomials of the form axn1

i1
. . . xnr

ir
, where n1, . . . , nr ∈ N, xi1 , . . . , xir are

pairwise distinct variables, a ∈ Znp2 , and the following property is satisfied:

(r = 0) or (r = n1 = 1) or (2 ≤ n1 + · · · + nr ≤ d and np divides a). (3.1)

It is clear that {+,−, 0, fd} ⊆ Cd, that the projection clone satisfies JZnp2
⊆ Cd,

and that Cd contains the constant functions. Furthermore, it is straightforward
to verify that for t1, t2, . . . , td ∈ Cd we have that t1 + t2 ∈ Cd, t1 − t2 ∈ Cd

and fd(t1, . . . , td) ∈ Cd. Hence Pol(Ad) ⊆ Cd. We assume that g ∈ Polk(Ad)
is absorbing, and consider the representation of g as a sum of monomials,
each one satisfying (3.1). Since g is absorbing, g(0, x2, . . . , xk) is the constant
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0-function. Thus, the sum of those monomials of g that do not involve x1

induces the constant zero function. Therefore, there exists a representation
of g as a sum of monomials of the above form, each of them involving the
variable x1. A similar argument applies to all the other variables x2, . . . , xk.
Therefore, there exists a (possibly empty) sum of monomials that induces
the same polynomial function as g such that each monomial involves all the
variables x1, . . . , xk and satisfies (3.1). If xn1

i1
. . . xnr

ir
is such a monomial, then

r ≥ k, and therefore n1 + · · · + nr ≥ k. Since k ≥ 3, (3.1) implies d ≥
n1 + · · · + nr ≥ k, contradicting the assumption k ≥ d + 1. Hence g is induced
by the empty sum of monomials, and therefore it is the constant 0-function. �

Proof of Theorem 1.3. For each d ∈ N \ {1}, let Ad and fd be as in the state-
ment of Lemma 3.1. For d ∈ N \ {1}, for m ∈ N and for X ⊆ Z

m
np2 , we use

Vd(X) as a shorthand for VPol(Ad)(X). Let l, i ∈ N with l > i ≥ 2. We claim
that Pol(Ai) �∼alg Pol(Al). For proving this, we let

Q := {a ∈ Z
l
np2 | ∃s ∈ [l] : a(s) = 0}

and show that Vi(Q) �= Vl(Q); as a consequence Pol(Ai) �∼alg Pol(Al).
First we prove that (1, . . . , 1) /∈ Vl(Q). To this end, we consider the term

equation fl(x1, . . . , xl) ≈ 0. We have that fl(1, . . . , 1) = np and fl|Q = 0.
Hence Lemma 2.1 yields (1, . . . , 1) �∈ Vl(Q).

We now prove that Vi(Q) = Z
l
np2 . To this end, let us consider an equa-

tion of the form t1(x1, . . . , xl) ≈ t2(x1, . . . , xl) with t1, t2 ∈ Poll(Ai). This
equation is equivalent to (t1 − t2) (x1, . . . , xl) ≈ 0. Hence it suffices to consider
equations of the form t(x1, . . . , xl) ≈ 0. If t(x1, . . . , xl) ≈ 0 is satisfied by all
elements of Q, then the function t is absorbing and has arity greater than i.
Lemma 3.1 implies that t is the constant zero function. Therefore, the equation
t(x1, . . . , xl) ≈ 0 is satisfied by all elements in Z

l
np2 . Hence Lemma 2.1 yields

(1, . . . 1) ∈ Vi(Q) and therefore Vi(Q) �= Vl(Q).
We conclude that (Pol(Ai))i∈N\{1} is an infinite family of algebraically

inequivalent clones. �

4. Countably many algebraically inequivalent constantive
Mal’cev clones on finite sets with at least 4 elements

We report a construction from [13, Section 3]: Let A be a finite set such that
|A| ≥ 4 and let C be a constantive clone on A with a Mal’cev term p. The
construction picks an element 1 ∈ A and an element 0 /∈ A and constructs a
new clone C⊕ on the set A⊕ := A ∪ {0}.

For all k ∈ N and for all f ∈ C, the operation f⊕ : (A⊕)k → A⊕ is defined
by

f⊕(x1, . . . , xk) :=

{
f(x1, . . . , xk) if (x1, . . . , xk) ∈ Ak,

0 otherwise.
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A binary operation · on A⊕ is defined by

x · y :=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0 if (x, y) ∈ A2,

1 if x = y = 0,

x if x ∈ A and y = 0,

y if x = 0 and y ∈ A.

Finally, C⊕ is defined as the clone on A⊕ generated by {f⊕ | f ∈ C}∪{·}
and all unary constant operations.

Lemma 4.1. Let A be a finite set with |A| ≥ 4, let C be a constantive clone on
A and let f ∈ C⊕. Then

f |Ak = 0 or there exists f̂ ∈ C such that f |Ak = f̂ . (4.1)

Proof. Let K be the set of all unary constant functions on A⊕. We will show
that all projections on A⊕ satisfy (4.1), and that for all k, n ∈ N, for all n-ary

s ∈ {f⊕ | f ∈ C} ∪ {·} ∪ K

and for all k-ary t1, . . . , tn that satisfy (4.1), also s(t1, . . . , tn) satisfies (4.1).
From this, we conclude that every function in C⊕ satisfies (4.1).

Clearly, all the projections satisfy (4.1).
Let k, n ∈ N, let t1, . . . , tn be k-ary functions on A⊕ that satisfy (4.1),

and let s be an n-ary function on A⊕ from {f⊕ | f ∈ C} ∪ {·} ∪ K. We will
show that s(t1, . . . , tn) satisfies (4.1).

We first consider the case that s = f⊕ with f ∈ C[n]. If there exists i ∈ [n]
such that ti|Ak = 0, then by the definition of f⊕, f⊕(t1, . . . , tn)|Ak = 0, and
hence s(t1, . . . , tn) satisfies (4.1). If for all i ∈ [n], there exists t̂i ∈ C[k] such
that ti|Ak = t̂i, then by the definition of f⊕ we have

s(t1, . . . , tn)|Ak = f⊕(t1, . . . , tn)|Ak = f(ĝ1, . . . , ĝn) ∈ C.

Therefore s(t1, . . . , tn) satisfies (4.1).
Now we consider the case that s is the function · (and n = 2). Let t1, t2

be k-ary functions on A⊕ satisfying (4.1). We show that t1 · t2 satisfies (4.1).
Since t1, t2 satisfy (4.1), we have to consider the following cases.

Case 1: t1|Ak = t2|Ak = 0: In this case, the definition of · yields t1 ·t2|Ak =
1. Since C is constantive, t1 · t2|Ak ∈ C, and thus t1 · t2 satisfies (4.1).

Case 2: t1|Ak = 0 and there exists t̂2 ∈ C[k] such that t2|Ak = t̂2: In this
case, the definition of · yields t1 · t2|Ak = t̂2. This implies that t1 · t2|Ak ∈ C,
and thus t1 · t2 satisfies (4.1).

Case 3: t2|Ak = 0 and there exists t̂1 ∈ C[k] such that t1|Ak = t̂1: In
this case, the definition of · yields t1 ·t2|Ak = t̂1. This implies that t1 ·t2|Ak ∈ C,
and thus t1 · t2 satisfies (4.1).

Case 4: There exist ĝ1, ĝ2 ∈ C[k] such that g1|Ak = ĝ1 and g2|Ak = ĝ2:
In this case, the definition of · yields t1 · t2|Ak = 0, thus t1 · t2 satisfies (4.1).

Finally, let us consider the case s ∈ K (and n = 1). Let a ∈ A⊕ be the
unique function value of s, and let t be a k-ary function on A⊕ that satisfies
(4.1). Clearly, s(t)(x1, . . . , xk) = a for all x1, . . . , xk ∈ A⊕. If a ∈ A, since C is
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constantive, we have that s(t) satisfies (4.1). If a = 0, then s(t)(x1, . . . , xk) = 0
for all (x1, . . . , xk) ∈ Ak. Thus, s(t) satisfies (4.1). �

Lemma 4.2. Let A be a finite set with |A| ≥ 4, let C be a constantive clone on
A, let f ∈ (C⊕)[k], and let a, b ∈ Ak. Then f(a) = 0 if and only if f(b) = 0.

Proof. If f(a) �= 0, then f |Ak �= 0. Thus by Lemma 4.1, there exists f̂ ∈ C such
that f |Ak = f̂ , and therefore f(b) = f̂(b) ∈ A, which implies f(b) �= 0. �

Lemma 4.3. [13, Section 3] Let A be a finite set with |A| ≥ 4 and let C be a
constantive Mal’cev clone on A. Then C⊕ is a constantive Mal’cev clone on a
set of cardinality |A| + 1.

Proposition 4.4. Let A be a finite set with |A| ≥ 4, and let C1, C2 be two con-
stantive clones on A. If C1 and C2 are not algebraically equivalent, then C⊕

1

and C⊕
2 are not algebraically equivalent.

Proof. Without loss of generality, we assume that there exists B ⊆ Ak that
is algebraic with respect to C1 but not with respect to C2. Note that then
B �= Ak. Since C2 is constantive, B is not empty. Then there exists a ∈ Ak \B
such that a ∈ VC2(B).

Let B0 := B ∪ ((A⊕)k \ Ak). We claim that

B0 ∈ Alg C⊕
1 . (4.2)

To prove (4.2), let c /∈ B0. By Lemma 2.1 it suffices to show that there are
two functions p1, p2 ∈ C⊕

1 such that p1|B0 = p2|B0 and p1(c) �= p2(c). Since
c ∈ Ak \B and B is algebraic with respect to C1, Lemma 2.1 implies that there
are f1, f2 ∈ C[k]

1 such that f1|B = f2|B and f1(c) �= f2(c). We set p1 = f⊕
1 and

p2 = f⊕
2 . Then p1|B0 = p2|B0 and p1(c) �= p2(c), which concludes the proof of

(4.2).
We now claim that

a ∈ VC⊕
2

(B0). (4.3)

Suppose that a /∈ VC⊕
2

(B0). Then Lemma 2.1 implies that there are f1, f2 ∈
(C⊕

2 )[k] such that f1|B0 = f2|B0 and f1(a) �= f2(a). Since B ⊆ B0 we infer that
f1|B = f2|B . From Lemma 4.2 and B �= ∅, we deduce that f1|B = f2|B �= 0.
Moreover, by Lemma 4.1, there are f̂1, f̂2 ∈ C[k]

2 such that f1|Ak = f̂1 and
f2|Ak = f̂2. Therefore, f̂1|B = f̂2|B and f̂1(a) �= f̂2(a). Hence by Lemma 2.1,
a /∈ VC2(B), contradicting the choice of a.

From (4.2) and (4.3) we obtain Alg C⊕
1 �= Alg C⊕

2 . �

Proof of Theorem 1.2. We proceed by induction on n = |A|. For the base case
n = 4, we use Theorem 1.3 with n = 1 and p = 2. For the induction step we
let n ≥ 4 and {Ci | i ∈ N} be a collection of pairwise algebraically inequivalent
constantive Mal’cev clones on a set of cardinality n. Then Proposition 4.4 and
Lemma 4.3 imply that {C⊕

i | i ∈ N} is a collection of pairwise algebraically
inequivalent constantive Mal’cev clones on a set of cardinality n + 1. �
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5. Continuously many algebraically inequivalent clones on sets
with at least 3 elements

Let Z = {0, 1, 2}. For n ∈ N and for i ≤ n, a function f : Zn → Z de-
pends on its i-th argument if there exist a ∈ Zn and b ∈ Z such that
f(a) �= f(a1, . . . , ai−1, b, ai+1, . . . , an). If f depends on exactly one of its ar-
guments, then f is called essentially unary. The essential arity of f is defined
by essArity(f) := |{i ∈ [n] : f depends on its i-th argument}|. Let F be a
set of finitary functions on Z. We say that f belongs to F up to inessential
arguments if there exist l ∈ N, 1 ≤ i1 < · · · < il ≤ n and a function g ∈ F [l]

such that f(x1, . . . , xn) = g(xi1 , . . . , xil) for all x ∈ Zn. We note that then
essArity(f) = essArity(g).

Let D1 := ∅ and for each m ∈ N \ {1}, let

Dm := {(1, 2, . . . , 2), . . . , (2, . . . , 2, 1)}.

For each n ∈ N, let Fn be the set consisting of all the functions f : Zn → Z
such that

f(Zn) ⊆ {0, 1}, and (5.1)

f−1({1}) ⊆ Dn. (5.2)

We set F :=
⋃

n∈N
Fn and

F ′ :=
⋃

n∈N

{f : Zn → Z | f belongs to F up to inessential arguments} ∪ JZ .

Lemma 5.1. The sets F and F ′ satisfy the following properties:
(1) For all f ∈ F with essArity(f) ≤ 1, we have f = 0.
(2) For all n ∈ N and for all f ∈ Fn with essArity(f) > 0, we have that

essArity(f) = n and n ≥ 2.
(3) For all f ∈ F ′ with essArity(f) = 1, we have f ∈ JZ .
(4) For all l, n ∈ N, for all g ∈ Fl and for all ρ : [l] → [n], we have gρ ∈ F ′

n.
(5) For all k, n ∈ N, for all f ∈ F ′

k and for all σ : [k] → [n], we have fσ ∈ F ′
n.

Proof. (1) Let n ∈ N, let f ∈ Fn with essArity(f) ≤ 1 and let x ∈ Zn. We
prove that f(x) = 0. If essArity(f) ≤ 1, then there exists i ∈ [n] such that
for all j ∈ [n] \ {i} the function f does not depend on its j-th argument. Let
us define f ′ ∈ ZZ by f ′(y) = f(y, . . . , y) for all y ∈ Z. We prove that f ′ = 0.
To this end, let a ∈ Z. Since (a, . . . , a) /∈ Dn, we have f ′(a) = f(a, . . . , a) =
0. Moreover, since for all j �= i, f does not depend on its j-th argument,
f(x) = f(xi, . . . , xi) = f ′(xi) = 0. This concludes the proof of (1). (2) Let
n ∈ N and let f ∈ Fn. If f is not constantly zero, then there exists a ∈ Dn

such that f(a) = 1. Changing any one of the coordinates of a to 0, the value
of f changes from 1 to 0. Hence f depends on all of its arguments and (1)
implies that it cannot be essentially unary. This concludes the proof of (2).
(3) Let f ∈ F ′

n with essArity(f) = 1. Seeking a contradiction, we suppose
that f is not a projection. Then f belongs to F up to inessential arguments.
Thus, there exist 1 ≤ j1 < · · · < jk ≤ n and f̂ ∈ F such that f(x1, . . . , xn) =
f̂(xj1 , . . . , xjk) for all x ∈ Zn; then essArity(f̂) = essArity(f) = 1. Thus, (1)
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yields f̂ = 0, contradicting essArity(f) = 1. (4) Let us assume that the image
of ρ is {j1, . . . , jk} ⊆ [n], with j1 < · · · < jk, and let us define

h := {((xj1 , . . . , xjk), g(xρ(1), . . . , xρ(l))
) | (x1, . . . , xn) ∈ Zn}.

We first prove that h is a functional relation. To this end, let x,y ∈ Zn be
such that (xj1 , . . . , xjk) = (yj1 , . . . , yjk). Since {j1, . . . , jk} is the image of ρ,
if (xj1 , . . . , xjk) = (yj1 , . . . , yjk), we have (xρ(1), . . . , xρ(l)) = (yρ(1), . . . , yρ(l)),
and therefore g(xρ(1), . . . , xρ(l)) = g(yρ(1), . . . , yρ(l)). This concludes the proof
that h is a functional relation. Now we prove that h ∈ Fk. Condition (5.1) is
clearly satisfied since g ∈ Fl. Next we prove that h satisfies (5.2). To this end,
we let x ∈ An with g(xρ(1), . . . , xρ(l)) = 1 and show that (xj1 , . . . , xjk) ∈ Dk.
Since g ∈ Fl and g(xρ(1), . . . , xρ(l)) = 1, exactly one of xρ(1), . . . , xρ(l) is equal
to 1, and all the others are equal to 2, which can be expressed formally by
saying that there exists a ∈ [l] such that xρ(a) = 1 and xρ(b) = 2 for all
b ∈ [l] \ {a}. We have to show that exactly one of xj1 , . . . , xjk is equal to 1.
Since j1 < · · · < jk and {j1, . . . , jk} is the image of ρ, there exists a unique
i ∈ [k] with ji = ρ(a), and this is also the unique i ∈ [k] with xji = 1. For
each r ∈ [k] \ {i} there exists b ∈ [l] \ {a} such that jr = ρ(b), and therefore
xjr = xρ(b) = 2. Thus, (xj1 , . . . , xjk) ∈ Dk, and so h satisfies (5.2). This proves
that h ∈ Fk. Since j1 < · · · < jk and gρ(a) = h(aj1 , . . . , ajk) for all a ∈ An, gρ

belongs to F up to inessential arguments. Hence gρ ∈ F ′
n. This concludes the

proof of (4). (5) Let k, n ∈ N, let f ∈ F ′
k and let σ : [k] → [n]. We prove that

fσ ∈ F ′
n. By the definition of F ′, there exist l ∈ N, g ∈ Fl and τ : [l] → [k]

injective and increasing such that f(y1, . . . , yk) = g(yτ(1), . . . , yτ(l)) for all
y ∈ Zk. Therefore, for all x ∈ Zn we have

fσ(x1, . . . , xn) = f(xσ(1), . . . , xσ(k)) = g(xσ(τ(1)), . . . , xσ(τ(l))).

Since g ∈ Fl, (4) implies that gσ◦τ ∈ F ′
n, and thus fσ ∈ F ′

n. This concludes
the proof of (5). �

Lemma 5.2. The set F ′ is a clone.

Proof. We prove that F ′ is closed under ζ, τ , Δ, ∇ and ∗ as they are de-
fined in [15] (cf. [10,20]). To this end, let f ∈ F ′

n. Lemma 5.1(5) yields that
ζ f ∈ F ′

n, τ f ∈ F ′
n, Δ f ∈ F ′

n−1, and ∇ f ∈ F ′
n+1. Let g ∈ F ′

m and let h be the
function defined by h(x) = (f ∗ g)(x) = f(g(x1, . . . , xm), xm+1, . . . , xm+n−1)
for all x ∈ Zm+n−1. We prove that h belongs to F ′. If f is constant, then h
is a constant mapping with the same function value as f . Hence h is a minor
of f , and thus by Lemma 5.1(5), h ∈ F ′. If f is a projection, then either h
is a projection or h = g. In both cases h belongs to F ′. If g is a projection,
then h is a minor of f . Hence Lemma 5.1(5) yields h ∈ F ′. Finally, let us
assume that both f and g belong to F up to inessential arguments and f is
not constant. Then there exist 1 ≤ j1 < · · · < jn′ ≤ n, 1 ≤ i1 < · · · < im′ ≤ m,
f̂ ∈ Fn′ and ĝ ∈ Fm′ such that for all x ∈ Zn and for all y ∈ Zm we have
f(x) = f̂(xj1 , . . . , xjn′ ) and g(y) = ĝ(yi1 , . . . , yim′ ). If j1 ≥ 2, then for all
x ∈ Zm+n−1 we have h(x) = f̂(xm+j1−1, . . . , xm+jn′ −1). Thus, h is a minor
of f̂ and Lemma 5.1(4) yields h ∈ F ′. Let us now assume that j1 = 1 and let
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ĥ be defined by ĥ(x1, . . . , xm′+n′−1) = f̂(ĝ(x1, . . . , xm′), xm′+1, . . . , xm′+n′−1)
for all x ∈ Zm′+n′−1. We now prove that ĥ ∈ F . Since f̂ belongs to F ,
ĥ satisfies (5.1). We now prove that ĥ satisfies (5.2). To this end, let a ∈
Zm′+n′−1 be such that ĥ(a) = 1. Then, since f̂ satisfies (5.2), we infer that
(g(a1, . . . , am′), am′+1, . . . , am′+n′−1) ∈ Dn′ . Moreover, since g satisfies (5.1)
and (5.2), we have that (a1, . . . , am′) ∈ Dm′ and (am′+1, . . . , am′+n′−1) =
(2, . . . , 2). Thus, there exists r ∈ [m′] such that ar = 1 and for all k ∈
[m′ + n′ − 1] \ {r} we have ak = 2. This proves that a ∈ Dm′+n′−1. Thus,
ĥ satisfies (5.2), and so ĥ ∈ F . Moreover, we have that for all x ∈ Zm+n−1

h(x1, . . . , xm+n−1) = f̂(ĝ(xi1 , . . . , xim′ ), xm+j2−1, . . . , xm+jn′ −1).

Therefore h belongs to F up to inessential arguments, and so h ∈ F ′. Therefore,
F ′ is closed under ∗. �

We make use of the following construction from [14] (cf. [20, Chapter 3]).
For each i ∈ N \ {1}, the function gi : Zi → Z is defined by

gi(x1, . . . , xi) =

{
1 if (x1, . . . , xi) ∈ Di,

0 otherwise.

For each I ⊆ N \ {1}, ZI is defined as (Z; (gi)i∈I).

Lemma 5.3. Let I ⊆ N \ {1}, let k ∈ N and let g ∈ Clok(ZI). Then we have:
(1) If g is constant, then g = 0.
(2) If g is essentially unary, then g is a projection.
(3) If g depends exactly on the arguments i1 < · · · < il with l ≥ 2, then the

following two conditions are satisfied:
(a) For all b ∈ Zk we have g(b) �= 2.
(b) For all a ∈ Zk with (ai1 , . . . , ail) /∈ Dl, we have g(a) = 0.

Proof. Equations (5.1) and (5.2) imply that for all i ∈ N \ {1}, gi ∈ F . Thus,
Lemma 5.2 yields that for all I ⊆ N\{1}, Clo(ZI) ⊆ F ′. Since g ∈ Clok(ZI) ⊆
F ′, then either g ∈ JZ or g belongs to F up to inessential arguments. If g
is a constant, then it cannot be a projection. Hence it belongs to F up to
inessential arguments. Thus, by Lemma 5.1(1), it is the constant zero func-
tion. This proves (1). Statement (2) follows directly from Lemma 5.1(3). We
now prove (3). Let us assume that g depends on its arguments i1 < · · · < il,
let b ∈ Zk and let a ∈ Zk be such that (ai1 , . . . , ail) /∈ Dl. Since l ≥ 2, g is
not a projection. Since g ∈ F ′, g belongs to F up to inessential arguments.
This, together with Lemma 5.1(2), implies that there exists ĝ ∈ Fl such that
g(x1, . . . , xk) = ĝ(xi1 , . . . , xil) for all x ∈ Zk, and ĝ depends on all of its argu-
ments. Since ĝ ∈ F , (5.1) implies that g(b) = ĝ(bi1 , . . . , bil) ∈ {0, 1}. Moreover,
since (ai1 , . . . , ail) /∈ Dl, (5.2) and (5.1) yield g(a) = ĝ(ai1 , . . . , ail) = 0. This
proves (3). �

Proposition 5.4. Let I ⊆ N \ {1}, let i ∈ N \ {1} and let

g•
i = {(x1, . . . , xi, xi+1) ∈ Zi+1 | xi+1 = g(x1, . . . , xi)}.

Then g•
i ∈ AlgZI if and only if i ∈ I.
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Proof. If i ∈ I, then g•
i ∈ AlgZI by definition. We now assume that g•

i ∈
AlgZI and prove that i ∈ I. If g•

i ∈ AlgZI , since (1, . . . , 1) /∈ g•
i , Lemma 2.1

implies that there exist f1, f2 ∈ Cloi+1(ZI) such that f1|g•
i

= f2|g•
i

and
f1(1, . . . , 1) �= f2(1, . . . , 1). We now prove that one of the two is a projection
and the other one depends on at least two of its arguments. Seeking contradic-
tions, let us suppose that this is not the case. We distinguish cases according
to the essential arities of f1 and f2.

Case 1: f1 and f2 are constant : In this case f1(1, . . . , 1) = f2(1, . . . , 1).
Case 2: f1 is constant and f2 is essentially unary : In this case, Lemma

5.3 yields that f1 is the constant 0 function and f2 is a projection. Let a =
(1, 2, . . . , 2, 1) ∈ Zi+1. Since g(a1, . . . , ai) = 1, a ∈ g•

i . Lemma 5.3 yields
f1(a) = 0 and f2(a) ∈ {1, 2}. Hence f1(a) �= f2(a). Thus, f1|g•

i
�= f2|g•

i
.

Case 3: f1 is essentially unary and f2 is constant : This case is symmetric
to Case 2.

Case 4: f1 is constant and f2 depends on at least two of its arguments:
In this case Lemma 5.3 yields f1(1, . . . , 1) = 0 = f2(1, . . . , 1).

Case 5: f1 depends on at least two of its arguments and f2 is constant :
This case is symmetric to Case 4.

Case 6: f1 and f2 are both essentially unary : In this case Lemma 5.3(2)
implies that both f1 and f2 are projections. Thus, we have f1(1, . . . , 1) = 1 =
f2(1, . . . , 1).

Case 7: f1 and f2 both depend on at least two of their arguments: In this
case Lemma 5.3(3) yields f1(1, . . . , 1) = 0 = f2(1, . . . , 1).

Thus, we have proved that one among f1 and f2 is a projection, while the
other one depends on at least two of its arguments. Without loss of generality,
let us assume that f2 is a projection and that f1 depends on at least two of
its arguments. Let

T := {a ∈ Zi+1 | ai+1 = 1 and (a1, . . . , ai) ∈ Di}.

Note that T ⊆ g•
i . Let j ∈ {1, . . . , i, i + 1} be such that f2(x1, . . . , xi+1) = xj

for all x ∈ Zi+1. We claim j = i + 1. Seeking a contradiction, let us suppose
that j ≤ i. Let x ∈ T be such that x(j) = 2. Then, since f1|T = f2|T , we have
f1(x) = 2. On the other hand, Lemma 5.3(3) implies that f1(x) �= 2. Thus we
get the desired contradiction and deduce that f2 is the (i + 1)-th projection.
Next, we prove that f1 does not depend on its (i + 1)-th argument. Seeking a
contradiction, let us suppose that f1 depends on its (i+1)-th argument. Then,
since f1 depends on at least two of its arguments, there exists j ∈ [i] such that
f1 depends also on its j-th argument. Let a ∈ T be such that a(j) = 1.
Since f1|T = f2|T , we have that f1(a) = f2(a) = ai+1 = 1. On the other
hand, Lemma 5.3 implies that f1(a) = 0 because aj = ai+1 = 1. From this
contradiction, we conclude that f1 does not depend on its (i+1)-th argument.

Let f : Zi → Z be defined by f(x1, . . . xi) := f1(x1, . . . , xi, x1). Since f1
does not depend on its (i + 1)-th argument, for each b ∈ g•

i , we have

f(b1, . . . , bi) = f1(b1, . . . , bi, b1) =

f1(b1, . . . , bi+1) = f2(b1, . . . , bi+1) = bi+1.
(5.3)
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We show that gi = f . To this end, let c ∈ Zi. Then (c1, . . . , ci, gi(c)) ∈ g•
i ,

and thus (5.3) yields f(c) = gi(c). Since f ∈ Cloi(ZI), we deduce that gi ∈
Cloi(ZI). We now apply [20, Theorem 3.1.4] and deduce that i ∈ I. �

Corollary 5.5. On the set Z = {0, 1, 2} there are exactly 2ℵ0 algebraically in-
equivalent clones.

Proof. Let LZ be the set of all clones on Z and let ψ : P(N \ {1}) → LZ/∼alg

be defined by I �→ Clo(ZI)/∼alg. Proposition 5.4 yields that for all I �= J ∈
P(N \ {1}) we have Clo(ZI)∼alg Clo(ZJ ) if and only if I = J . Therefore, ψ is
injective. Hence there are at least 2ℵ0 algebraically inequivalent clones on Z.
Since by [20, Theorem 3.1.4] there are at most 2ℵ0 clones on Z, we can conclude
that there are exactly 2ℵ0 algebraically inequivalent clones on Z. �

Proof of Theorem 1.1. We first show that for a set A and an element u /∈ A,
A ∪ {u} has at least as many algebraically inequivalent clones as A. To this
end, let A be a finite set with |A| ≥ 3, let LA be the set of all clones on A,
let u /∈ A, let A⊕ = A ∪ {u}, let LA⊕ be the set of all clones on A⊕, and let
Φ: LA → LA⊕ be defined by

Φ(C) =
⋃

n∈N

{f : (A⊕)n → A⊕ | f |An ∈ C}.

We first prove that for all C ∈ LA, Φ(C) is a clone on A⊕. Clearly, all the
projections belong to Φ(C). Let f ∈ Φ(C)[n], let t1, . . . , tn ∈ Φ(C)[k]. Then

f(t1, . . . , tn)|Ak = f(t1|Ak , . . . , tn|Ak) = f |An(t1|Ak , . . . , tn|Ak).

The definition of Φ yields f |An , t1|Ak , . . . , tn|Ak ∈ C. Thus, the function
f |An(t1|Ak , . . . , tn|Ak) belongs to C and f(t1, . . . , tn) ∈ Φ(C). Therefore, Φ(C)
is a clone on A⊕.

Next, we prove that Φ satisfies

∀C ∈ LA,∀n ∈ N,∀B ⊆ (A⊕)n : B ∈ Alg Φ(C) ⇔ B ∩ An ∈ Alg C. (5.4)

For proving (5.4), let C ∈ LA, let n ∈ N, let B ⊆ (A⊕)n and let us assume that
B ∈ Algn Φ(C). We prove that B∩An ∈ Algn C. To this end, let b ∈ An\B. By
Lemma 2.1 it suffices to prove that there are f̂1, f̂2 ∈ C such that f̂1|An∩B =
f̂2|An∩B and f̂1(b) �= f̂2(b). Since B ∈ Algn Φ(C) and b /∈ B, Lemma 2.1 yields
that there exist f1, f2 ∈ Φ(C) such that f1|B = f2|B and f1(b) �= f2(b). Let
f̂1 = f1|An and let f̂2 = f2|An . Then clearly f̂1, f̂2 ∈ C, f̂1|An∩B = f̂2|An∩B

and f̂1(b) �= f̂2(b). Thus, B ∩ An ∈ Alg C.
Let us now assume that B ∩ An ∈ Alg C. We prove that B ∈ Algn Φ(C).

Let a ∈ (A⊕)n\B. By Lemma 2.1 it suffices to show that there are f1, f2 ∈ Φ(C)
such that f1|B = f2|B and f1(a) �= f2(a). We split the proof into two cases.

Case 1: a ∈ An: In this case Lemma 2.1 implies that there are g1, g2 ∈ C
such that g1|B∩An = g2|B∩An and g1(a) �= g2(a). Then for i ∈ {1, 2}, we set

fi(x) =

{
gi(x) if x ∈ An,

u otherwise.
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By the definition of Φ(C), both f1 and f2 belong to Φ(C), f1|B = f2|B and,
since a ∈ An, f1(a) �= f2(a).

Case 2: a /∈ An: Let v1, v2 ∈ A with v1 �= v2. For i ∈ {1, 2}, we define

fi(x) =

⎧
⎪⎨

⎪⎩

u if x ∈ (A⊕)n \ (An ∪ {a}),
x1 if x ∈ An,

vi if x ∈ {a}.

By construction, we have that f1|An , f2|An ∈ C. Hence f1, f2 ∈ Φ(C). Moreover,
f1|B = f2|B and f1(a) �= f2(a). Thus, we can conclude that B ∈ Alg Φ(C).
Equation (5.4) implies that for all C,D ∈ LA, if D �∼alg C then Φ(C) �∼alg Φ(D).

Since by Corollary 5.5 there are 2ℵ0 algebraically inequivalent clones on
the set {0, 1, 2} and since there are at most 2ℵ0 clones on a finite set, we deduce
that on each finite set A with |A| ≥ 3 there are exactly 2ℵ0 algebraically
inequivalent clones. �
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