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Abstract. We show that Lemma 4.4 and Theorem 4.5 in [Zhang, X., Laan,
V., Injective hulls for ordered algebras, Algebra Universalis, 76 (2016),
339–349] are incorrect. These results can be corrected by replacing unary
polynomial functions by linear functions.
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1. Introduction

In this note we will show that some results in the paper [5] are incorrect
and explain how these results can be corrected. The key observation is that
instead of arbitrary unary polynomial functions one has to use linear functions
in order to define a closure operator. We will mostly use the same notation
and terminology as in [5]. Let us just recall that

cl(D) = {u ∈ A | (∀p ∈ P 1
A)(∀a ∈ A)(p(D) ⊆ a↓ =⇒ p(u) � a)},
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where P 1
A is the set of all unary polynomial functions on an ordered algebra

A and D ⊆ A. We also point out that following [6] we prefer to use the term
‘lax morphism’ instead of ‘subhomomorphism’.

Throughout this text, a type Ω is fixed and all ordered algebras that
we consider will be Ω-algebras even if Ω is not explicitly mentioned. If S is a
subset of a poset P then we write S↓ = {a ∈ P | a � s for some s ∈ S} and
denote the set of upper bounds of S by Su. The next claim (where a↓ := {a}↓)
holds.

Lemma 1.1. If A is an ordered algebra then cl(a↓) = a↓ for all a ∈ A.

Proof. Since cl is a closure operator on P(A) by [5, Lemma 4.1], we have a↓ ⊆
cl(a↓). Note that the identity mapping of A is a unary polynomial function.
Thus, if u ∈ cl(a↓) then idA(a↓) ⊆ a↓ implies u = idA(u) � a, proving the
inclusion cl(a↓) ⊆ a↓. �

The following counter-example shows that Lemma 4.4 in [5] does not
hold. More precisely, the equality

tP (A)(D1, . . . , Dn) = tA(D1, . . . , Dn)↓
need not hold for an arbitrary n-ary term t and D1, . . . , Dn ∈ P(A).

Example 1.2. Let S be a posemigroup with the following multiplication and
ordering:

· a b c
a a a a
b a b c
c a c b c.b

a

Then

cl({b, c}) = {b, c} .

Indeed, a �∈ cl({b, c}), because, for the unary polynomial function p(x) = x2

we have p({b, c}) = {b2, c2} = {b} ⊆ b↓, but p(a) = a �� b.
Using Lemma 1.1 we conclude that

Q(S) = P(S)cl = {D ∈ P(S) | cl(D) = D} = {∅, a↓, b↓, c↓, {b, c}} = P(S) .

For the unary term t = x2 we have

tP (S)({b, c}) = {b, c} ·P (S) {b, c} = {u · v | u, v ∈ {b, c}}↓ = {b, c}↓
= {b, c} = cl({b, c}) ,

tS({b, c})↓ = {b2, c2}↓ = {b}↓ = {b} = cl({b}).

This contradicts Lemma 4.4 in [5].

Lemma 4.4 is used in the proof of Theorem 4.5 in [5], more precisely, to
justify the equality

ψ(˜tQ(A)(a1↓, . . . , am−1↓,D)) = ψ(cl(˜tA(a1↓, . . . , am−1↓,D)↓)).

Thus, this equality need not hold. We will show that this problem can be
overcome if we replace P 1

A in the definition of cl(D) by the set of all linear
functions.
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2. Linear functions

We define linear functions on an ordered algebra A as follows.

L1. The identity mapping A → A, x 
→ x, is a linear function.
L2. If n ∈ N, ω ∈ Ωn, i ∈ {1, . . . , n}, a1, . . . , ai−1, ai+1, . . . , an ∈ A and

p : A → A is a linear function, then the mapping

A → A, x 
→ ω(a1, . . . , ai−1, p(x), ai+1, . . . , an)

is a linear function.

Linear functions obtained by step L1 or by step L2 with p = idA are called
elementary translations of A. We denote the set of all elementary translations
on A by EA and the set of all linear functions by LA. Linear functions are the
composites of elementary translations and

EA ⊆ LA ⊆ P 1
A.

Example 2.1. If R is a commutative semiring with identity, then unary poly-
nomial functions have the form p(x) = anxn+· · ·+a1x+a0, a0, a1, . . . , an ∈ R,
but linear functions have the form p(x) = ax + b, a, b ∈ R. Elementary trans-
lations are x 
→ x + b and x 
→ ax, a, b ∈ R.

We call a term linear (cf. [2]) if it contains at least one variable and
every variable occurring in it occurs precisely once. A function p : A → A
on an ordered algebra A is linear if and only if there exists a linear term
t = t(x1, . . . , xn−1, xn) and elements a1, . . . , an−1 ∈ A such that p(x) =
tA(a1, . . . , an−1, x) for every x ∈ A.

An ordered Ω-algebra Q = (Q,ΩQ,�Q) is called a sup-algebra (cf. [1,
Definition 2.2.1]) if the poset (Q,�Q) is a complete lattice and all elemen-
tary translations preserve joins. Since linear functions are the composites of
elementary translations, we have the following fact.

Lemma 2.2. Let A be an ordered algebra such that (A,�) is a complete lattice.
Then A is a sup-algebra if and only if all linear functions on it preserve joins.

Example 2.3. Arbitrary unary polynomial functions of sup-algebras need not
preserve joins. Consider a commutative non-unital quantale A = {�,⊥, a, b}
with the following multiplication table and ordering:

· ⊥ � a b
⊥ ⊥ ⊥ ⊥ ⊥
� ⊥ � � �
a ⊥ � a b
b ⊥ � b a

b .a

�

⊥
For the unary polynomial function p : A → A, x 
→ xx, we have

p
(

∨

{a, b}
)

= p(�) = �·� = � �= a =
∨

{a} =
∨

{a·a, b·b} =
∨

p({a, b}).
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A closure operator j on a sup-algebra Q is a nucleus if it is a lax en-
domorphism of Q. The subset Qj = {q ∈ Q | j(q) = q} can be made into
a sup-algebra called a quantic quotient of Q (see [1, Theorem 2.2.7] or [4,
Proposition 16]).

If A is an ordered algebra then P(A) can be considered as a sup-algebra
in a certain canonical way (see [5]). A nucleus j on P(A) is called topological
(cf. [3, Definition 2.2]), if j(a↓) = a↓ for all a ∈ A.

For an ordered algebra A and a subset D ⊆ A we will use the notation

D = {u ∈ A | (∀p ∈ LA)(∀a ∈ A)(p(D) ⊆ a↓ =⇒ p(u) � a)}.

Since LA ⊆ P 1
A, we conclude that, for each subset D of A,

cl(D) ⊆ D .

Lemma 2.4. For every subset D of an ordered algebra A, D↓ = D.

Proof. The inclusion D ⊆ D↓ is obvious. To prove the opposite inclusion, take
a ∈ D↓ and let p ∈ LA, b ∈ A and p(D) ⊆ b↓. Since p is monotone, also
p(D↓) ⊆ b↓. By assumption, p(a) � b, and hence a ∈ D. �

Lemma 2.5. If A is an ordered algebra then the mapping P(A) → P(A),
D 
→ D, is a topological nucleus on the sup-algebra P(A).

Proof. Very similarly to Lemma 4.1 in [5] one can prove that D 
→ D is a
nucleus. Precisely as in Lemma 1.1 one can see that a↓ = a↓ for every a ∈ A,
so the nucleus is topological. �

Since the mapping D : P(A) → P(A),D 
→ D, is a nucleus on the
sup-algebra P(A), we may consider the quotient sup-algebra

L (A) := P(A)− = {D ∈ P(A) | D = D}.

Operations in L (A) are defined by

ωL (A)(D1, . . . , Dn) = ωP (A)(D1, . . . , Dn) = ωA(D1, . . . , Dn)↓ (2.1)

if n ∈ N, ω ∈ Ωn, D1, . . . , Dn ∈ L (A), and ωL (A) = ωP (A) = ωA↓ = ωA↓ if
ω ∈ Ω0.

By [5, Lemma 4.1], cl is also a nucleus on the sup-algebra P(A), and we
have the quotient sup-algebra

Q(A) := P(A)cl = {D ∈ P(A) | cl(D) = D}.

Lemma 2.6. For every ordered algebra A,

L (A) ⊆ Q(A).

Proof. If D = D then cl(D) ⊆ D = D ⊆ cl(D) implying cl(D) = D. �

Example 2.7. It can happen that cl(D) ⊂ D and L (A) ⊂ Q(A). Consider the
po-semigroup S of Example 1.2. Then

{b, c} = {a, b, c}.
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To see this we only need to prove that a ∈ {b, c}. Because of commutativity,
the linear functions are idS , pa(x) = ax, pb(x) = bx and pc(x) = cx. We need
to prove that

(∀p ∈ LS)(∀s ∈ S) (s ∈ p({b, c})u =⇒ p(a) � s) .

It is straightforward to calculate that p({b, c})u = {a} for every p ∈ LS , and
the inequality p(a) � a clearly holds.

For this posemigroup S we have

L (S) = {a↓, b↓, c↓, ∅} ⊂ {a↓, b↓, c↓, ∅, {b, c}} = Q(S).

3. Injective hulls

In this section we will prove that L (A) is the M�-injective hull of an ordered
algebra A in the category OAlg�, thereby correcting Theorem 4.5 in [5].

Recall that M� is the class of mappings h : A → B between ordered
Ω-algebras that satisfy the following conditions:

M1. h is monotone,
M2. ωB(h(a1), . . . , h(an)) � h(ωA(a1, . . . , an)) for every n ∈ N, ω ∈ Ωn,

a1, . . . , an ∈ A,
M3. ωB = h(ωA) for all ω ∈ Ω0,
M4. for all n ∈ N, t ∈ Tn

Ω , a1, . . . , an, a ∈ A,

tB(h(a1), . . . , h(an)) � h(a) =⇒ tA(a1, . . . , an) � a.

It turns out that arbitrary terms in condition M4 can be replaced by
linear terms.

Lemma 3.1. A mapping h : A → B between ordered Ω-algebras satisfies condi-
tion M4 if and only if it satisfies the following condition:

M4′. for all n ∈ N, a1, . . . , an, a ∈ A, and a linear term t = t(x1, . . . , xn),

tB(h(a1), . . . , h(an)) � h(a) =⇒ tA(a1, . . . , an) � a.

Proof. Obviously M4 implies M4′. Conversely, assume that M4′ holds and
consider an arbitrary term t = t(x1, . . . , xn), where a variable xi appears ri

times, i = 1, . . . , n. We replace each occurrence of xi by a distinct new variable
xj

i , j ∈ {1, . . . , ri}. In the resulting term

t̂ = t̂(x1
1, . . . , x

r1
1 , . . . , x1

n, . . . , xrn
n )

each variable occurs precisely once, thus it is a linear term. We say that t̂ is
obtained from t by linearizing. Now if tB(h(a1), . . . , h(an)) � h(a) then

t̂B(h(a1), . . . , h(a1), . . . , h(an), . . . , h(an)) � a.

Applying condition M4′, we obtain t̂A(a1, . . . , a1, . . . , an, . . . , an) � a, but then
also tA(a1, . . . , an) � a. �

We will use the following lemma.
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Lemma 3.2. For an ordered algebra A, D1, . . . , Dn ∈ P(A) and a linear term
t = t(x1, . . . , xn) we have

tP (A)(D1, . . . , Dn) = tA(D1, . . . , Dn)↓
and

tL (A)(D1, . . . , Dn) = tA(D1, . . . , Dn)↓.

Proof. If t = x then tP (A)(D1) = D1 = D1↓ = tA(D1)↓.

Let us consider t = ω(t1(x11, . . . , x1n1), . . . , t
k(xk1, . . . , xknk

)) where t1,
. . . , tk are linear terms and xij ∈ {x1, . . . , xn}. Assume that for the terms
t1, . . . , tk the claim holds. Then

tP (A)(D1, . . . , Dn)

= ωP (A)(t1P (A)(D11, . . . , D1n1), . . . , t
k
P (A)(Dk1, . . . , Dknk

))

= {ωA(u1, . . . , uk) | ui ∈ tiP (A)(Di1, . . . , Dini
)}↓

= {ωA(u1, . . . , uk) | ui ∈ tiA(Di1, . . . , Dini
)↓}↓

= {ωA(u1, . . . , uk) | ui ∈ tiA(Di1, . . . , Dini
)}↓

= {ωA(t1A(d11, . . . , d1n1), . . . , t
k
A(dk1, . . . , dknk

)) | dij ∈ Dij}↓
= {tA(d1, . . . , dn) | di ∈ Di}↓
= tA(D1, . . . , Dn)↓

and

tL (A)(D1, . . . , Dn) = tP (A)(D1, . . . , Dn) = tA(D1, . . . , Dn)↓. �

Theorem 3.3. If A is an ordered algebra then L (A) is the M�-injective hull
of A in the category OAlg�.

Proof. By [5, Theorem 2.6] we know that the sup-algebra L (A) is an injective
object in the category OAlg�. The mapping η : A → L (A), a 
→ a↓ is clearly
an order-embedding. It is also an ordered algebra homomorphism, because, by
(2.1)

ωL (A)(η(a1), . . . , η(an)) = ωA(a1↓, . . . , an↓)↓ = ωA(a1, . . . , an)↓
= ωA(a1, . . . , an)↓ = η(ωA(a1, . . . , an))

for every n ∈ N, ω ∈ Ωn, a1, . . . , an ∈ A, and ωL (A) = ωA↓ = η(ωA) for every
ω ∈ Ω0. Thus η belongs to M� by [5, Lemma 1.1].

We will prove that η is an M�-essential morphism in the category OAlg�.
Assume that ψ : L (A) → B is a morphism in OAlg� such that the composite

A η−→ L (A)
ψ−→ B

belongs to M�. Denote φ := ψη. We have to show that ψ ∈ M�. Clearly con-
ditions M1 and M2 are satisfied. If ω ∈ Ω0 then ωB = (ψη)(ωA) = ψ(ωA↓) =
ψ(ωL (A)), so condition M3 also holds.

It remains to verify condition M4. Suppose that

tB(ψ(D1), . . . , ψ(Dn)) � ψ(D) (3.1)
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in B for an n-ary linear term t = t(x1, . . . , xn), where D1, . . . , Dn,D ∈ L (A).
Our aim is to establish the inclusion tL (A)(D1, . . . , Dn) ⊆ D. Take

u ∈ tL (A)(D1, . . . , Dn) = tP (A)(D1, . . . , Dn).

We need to prove that u ∈ D = D. Suppose that p(D) ⊆ a↓ where a ∈ A,
p ∈ LA. We are done if p(u) � a.

Since p is a linear function, there exists a linear term ˜t(y1, . . . , ym, y) (we
may assume that {x1, . . . , xn} ∩ {y1, . . . , ym, y} = ∅) and a1, . . . , am ∈ A such
that p = ˜tA(a1, . . . , am, −). Then p′ = ˜tL (A)(η(a1), . . . , η(am), −) ∈ LL (A).
Using Lemma 3.2 and Lemma 2.4 we obtain

p′(D) = ˜tL (A)(a1↓, . . . , am↓,D) = ˜tA(a1↓, . . . , am↓,D)↓
= ˜tA(a1, . . . , am,D)↓ = p(D).

We wish to prove the inclusion

p(tP (A)(D1, . . . , Dn)) ⊆ a↓. (3.2)

To this end, we take an arbitrary v ∈ tP (A)(D1, . . . , Dn). By Lemma 3.2,

v � tA(d1, . . . , dn),

where di ∈ Di for every i ∈ {1, . . . , n}. Then ˜t(y1, . . . , ym, t(x1, . . . , xn)) is a
linear term and
˜tB(φ(a1), . . . , φ(am), tB(φ(d1), . . . , φ(dn)))

= ˜tB(ψ(a1↓), . . . , ψ(am↓), tB(ψ(d1↓), . . . , ψ(dn↓))) (φ = ψη)
� ˜tB(ψ(a1↓), . . . , ψ(am↓), tB(ψ(D1), . . . , ψ(Dn))) (di↓ ⊆ Di)
� ˜tB(ψ(a1↓), . . . , ψ(am↓), ψ(D)) (by (3.1))
� ψ(˜tL (A)(a1↓, . . . , am↓,D)) (ψ is a lax morphism)
= ψ(p′(D)) (def. of p′)
= ψ

(

p(D)
)

(p′(D) = p(D))

� ψ
(

a↓)

(p(D) ⊆ a↓)
= ψ(a↓) (Lemma 2.5)
= φ(a). (ψη = φ)

Since φ satisfies condition M4′, we conclude that

p(v) � ˜t(a1, . . . , am, tA(d1, . . . , dn)) � a,

which proves (3.2). From p(tP (A)(D1, . . . , Dn)) ⊆ a↓ we conclude that p(u) �
a (because u ∈ tP (A)(D1, . . . , Dn) ), as was to be shown. This completes the
proof. �
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