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Lattices and quantales of ideals of semigroups
and their preservation under Morita contexts

Valdis Laan, László Márki and Ülo Reimaa

Abstract. We study properties of the lattice of unitary ideals of a semi-
group. In particular, we show that it is a quantale. We prove that if two
semigroups are connected by an acceptable Morita context then there is
an isomorphism between the quantales of unitary ideals of these semi-
groups. Moreover, factorisable ideals corresponding to each other under
this isomorphism are strongly Morita equivalent.
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1. Introduction

Just like in rings, Morita contexts have turned out to be very useful for study-
ing Morita equivalence of semigroups as well. Using Morita contexts it is pos-
sible to prove that many properties are shared by all semigroups in the same
Morita equivalence class (such properties are said to be Morita invariant). In
our earlier paper [4] we proved that the ideal lattices of Morita equivalent
semigroups with weak local units are isomorphic. However, the question if this
holds also for larger classes of semigroups remained open. In the present article
we show that the ideal lattices of Morita equivalent firm semigroups need not
be isomorphic. On the other hand, it turns out that considering unitary ideals
instead of all ideals it is possible to prove the isomorphism of the corresponding
lattices (actually even quantales) under much weaker assumptions—putting no
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assumptions on the semigroups and requiring only acceptability for the context
that connects the two semigroups.

In this paper, semigroups and ideals are allowed to be empty and S, T
will always stand for semigroups.

A right S-act AS is said to be unitary (firm) if the mapping A ⊗ S →
A, a ⊗ s �→ as is surjective (bijective). Thus AS is unitary if and only if
AS = A. A biact SAT is called unitary if SA = A = AT . A semigroup S is
said to be factorisable (firm) if the act SS is unitary (firm).

Definition 1.1. A Morita context is a six-tuple (S, T, SPT , TQS , θ, φ), where S
and T are semigroups, SPT is an (S, T )-biact and TQS is a (T, S)-biact, and

θ : S(P ⊗T Q)S → SSS , φ : T (Q ⊗S P )T → TTT

are biact morphisms such that, for every p, p′ ∈ P and q, q′ ∈ Q,

θ(p ⊗ q)p′ = pφ(q ⊗ p′), qθ(p ⊗ q′) = φ(q ⊗ p)q′.

This context is said to be surjective if θ and φ are surjective, and unitary if
the biacts SPT and TQS are unitary.

Example 1.2. Let S be a semigroup and let E be the set of its idempotents.
Then we have a unitary Morita context (S,ESE, SSEESE ,ESEESS , θ, φ)
where

θ : SE ⊗ ES → S, se ⊗ e′s′ �→ see′s′ ,

φ : ES ⊗ SE → ESE, es ⊗ s′e′ �→ ess′e′ .

If S = SES then this context is also surjective.

Acceptable Morita contexts for semigroups were introduced in [1] as
non-additive analogues of acceptable Morita contexts of rings (see [8]). The
existence of an acceptable Morita context with an extra condition guarantees
Morita equivalence of the semigroups in that context (see [1, Theorem 2.4]).
While unitary surjective Morita contexts can exist only between factorisable
semigroups, acceptable Morita contexts can also connect nonfactorisable semi-
groups (see Example 1.4 and Example 3.8) giving another possibility (besides
the equivalence of categories) for developing Morita theory for arbitrary semi-
groups.

Definition 1.3. A Morita context (S, T, SPT , TQS , θ, φ) is said to be right
acceptable if
(1) for every sequence (sm)m∈N ∈ SN, there exists m0 ∈ N such that

sm0 . . . s2s1 ∈ im(θ),
(2) for every sequence (tm)m∈N ∈ TN, there exists m0 ∈ N such that

tm0 . . . t2t1 ∈ im(φ).
Left acceptable Morita contexts are defined dually. A Morita context is accept-
able if it is both right and left acceptable.

Clearly, every surjective Morita context is acceptable. The converse does
not hold.
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Example 1.4. Let n ≥ 2, S = 〈s | sn = sn+1〉 and let T = {0} where 0 := sn.
Then T is an ideal of the semigroup S and we have a Morita context with
homomorphisms

θ : SST ⊗ TTS → SSS , s ⊗ 0 �→ 0,

φ : TTS ⊗ SST → TTT , 0 ⊗ s �→ 0,

where φ is surjective, but θ is not. However, this context is acceptable.

Definition 1.5. Semigroups S and T are said to be
• strongly Morita equivalent [10] if they are contained in a unitary surjective

Morita context,
• Morita equivalent if the category of firm right S-acts is equivalent to the

category of firm right T -acts.

Strongly Morita equivalent semigroups are necessarily factorisable. In
fact, on the class of factorisable semigroups Morita equivalence coincides with
strong Morita equivalence [5, Theorem 4.11].

2. The quantale of unitary ideals

In this section we study the lattice of unitary ideals of a semigroup. Some
results will be formulated in the more general situation of unitary biacts.

We denote the set of all unitary sub-biacts of a biact SXT by USub(SXT ).
This is a poset with respect to inclusion where the empty sub-biact is the
bottom element. Every biact SXT has also a largest unitary sub-biact: the
union of all its unitary sub-biacts, which will be denoted by U(SXT ) or just
U(X). Similar considerations hold for right (or left) acts.

Lemma 2.1. An element x belongs to U(SXT ) if and only if there exist elements
si ∈ S, ti ∈ T , and xi, yi ∈ X such that

x = s1x1, x1 = y1t1, y1 = s2x2, x2 = y2t2, . . . .

Proof. Let V denote the set of all elements x for which the above equalities
hold. Then the inclusion U(SXT ) ⊆ V holds because U(SXT ) is unitary.

Conversely, consider an arbitrary element x ∈ V with the above equali-
ties. For every s ∈ S and t ∈ T we have sx ∈ V because of the equalities

sx = (ss1)x1, x1 = y1t1, y1 = s2x2, x2 = y2t2, . . .

and xt ∈ X because of the equalities

xt = s1(x1t), x1t = y1(t1t), y1 = s2x2, x2 = y2t2, . . . .

Hence V is a sub-biact of SXT .
The equality V = V T follows from the fact that x = (s1y1)t1 and s1y1 ∈

V because of the equalities

s1y1 = (s1s2)x2, x2 = y2t2, y2 = s3x3, . . . .

Similarly, we have V = SV because x = s1x1 and x1 ∈ V due to

x1 = y1t1 = s2(x2t1), x2t1 = y2(t2t1), y2 = s3x3, . . . .
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Thus V is a unitary sub-biact, hence it must be contained in U(SXT ). �
Corollary 2.2. If S and T are factorisable semigroups then U(SXT ) = SXT .

Proof. Clearly, SXT is a unitary sub-biact of SXT , so SXT ⊆ U(SXT ).
Conversely, for an element x ∈ U(SXT ) consider the equalities given by

Lemma 2.1. Then x = s1x1 = s1y1t1 ∈ SXT . �
Remark 2.3. The equalities in Lemma 2.1 can be described by an infinite tree
as in Figure 1 where each parent is the product of its descendants.

Since the union of unitary sub-biacts is also a unitary sub-biact, the poset
USub(SXT ) is a complete lattice where joins are unions. If Ai, i ∈ I, are unitary
subacts of SXT then it can be checked that

∧

i∈I

Ai = U(∩i∈IAi)

in the lattice USub(SXT ).

x

s1 x1

y1 t1

s2 x2

y2 t2

Figure 1. A tree for x ∈ U(SXT )

Proposition 2.4. For any semigroups S, T and any biact SXT , the lattice
USub(SXT ) is distributive.

Proof. For any unitary sub-biacts A,B,C ∈ USub(SXT ) we have to prove the
inequality A ∧ (B ∨ C) ≤ (A ∧ B) ∨ (A ∧ C), that is,

U(A ∩ (B ∪ C)) ⊆ U(A ∩ B) ∪ U(A ∩ C).

If x ∈ U(A ∩ (B ∪ C)) then by Lemma 2.1 there exist si ∈ S, ti ∈ T and
xi, yi ∈ A ∩ (B ∪ C) such that

x = s1x1, x1 = y1t1, y1 = s2x2, x2 = y2t2, . . . .

In particular, every yi belongs to B or C. Note also that, for every n ∈ N, we
have

yn = sn+1xn+1 = sn+1yn+1tn+1 .

There are two possibilities.
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(1) The set {i ∈ N | yi ∈ B} is infinite. Take an arbitrary k ∈ N. Then there
exists l ∈ N such that yk+l ∈ B. Now

yk = sk+1yk+1tk+1 = · · · = sk+1 . . . sk+lyk+ltk+l . . . tk+1

implies that yk ∈ B, because B is a sub-biact of SXT . Also xk ∈ B
because xk = yktk, and thus xk, yk ∈ A ∩ B. By Lemma 2.1 this means
that x ∈ U(A ∩ B).

(2) The set {i ∈ N | yi ∈ C} is infinite. Then a similar argument shows that
x ∈ U(A ∩ C). �

A semigroup S is said to have weak local units if, for every s ∈ S, there
exist u, v ∈ S such that s = us = sv.

Proposition 2.5. If S and T are semigroups with weak local units and SXT is
a biact then the lattice USub(SXT ) is algebraic.

Proof. As mentioned before, this lattice is complete. It is straightforward to
check that the compact elements of the lattice USub(SXT ) are the finitely
generated unitary sub-biacts of SXT . If A ∈ USub(SXT ) then each element a
of A can be written as a = sa = at for some s ∈ S, t ∈ T , hence the 1-generated
sub-biact S1aT 1 is unitary. Now A is the join of the compact elements S1aT 1,
a ∈ A. �

Now we turn our attention to unitary ideals.

Definition 2.6. We say that an ideal I of a semigroup S is right (resp. left)
unitary if the S-act IS (resp. SI) is unitary, that is, IS = I (resp. SI = I).
An ideal is called unitary if it is both right and left unitary.

We denote the set of all unitary ideals of a semigroup S by UId(S). Every
semigroup has the unitary ideal ∅. If S is factorisable then S is also a unitary
ideal of itself. If a semigroup has a zero element 0 then {0} is a unitary ideal.

Example 2.7. There exist ideals which are not unitary, so for a semigroup S
the inclusion UId(S) ⊆ Id(S) may be proper. For example, the ideals of the
4-element firm semigroup S = {0, 1, 2, 3} with the Cayley table

0 0 0 0
0 0 0 0
0 0 0 2
0 1 2 3

are

∅, {0}, {0, 2}, S, {0, 1}, {0, 1, 2} ,

of which the last two are not unitary.

From the two-sided analogue of Proposition 2.4 of [9] we have the follow-
ing.

Corollary 2.8. If S is a semigroup with weak local units then all ideals of S
are unitary.
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Actually, even more is true.

Proposition 2.9. A semigroup has weak right local units if and only if all its
right ideals are unitary.

Proof. Straightforward. �

Since UId(S) = USub(SSS), the above results about biacts apply. So we
know that UId(S) is a complete distributive lattice.

Recall that a quantale is a complete lattice L with an associative binary
operation ∗ (called multiplication) such that

x ∗
(

∨

k∈K

yk

)
=

∨

k∈K

(x ∗ yk) and

(
∨

k∈K

yk

)
∗ x =

∨

k∈K

(yk ∗ x)

for all x, yk ∈ L, k ∈ K (where K is any index set). A quantale L is said to
be unital if the semigroup (L, ∗) is a monoid. Quantale homomorphisms are
mappings between quantales that preserve multiplication and joins. A homo-
morphism of unital quantales has to preserve also the identity element.

The poset of unitary ideals of any semigroup has the structure of a quan-
tale.

Proposition 2.10. If S is a semigroup then UId(S) is a quantale.

Proof. As mentioned earlier, the poset (UId(S),⊆) is a complete lattice where
joins are unions. If I and J are unitary ideals of S then also the set

IJ = {ij | i ∈ I, j ∈ J}
is a unitary ideal and the set UId(S) is a semigroup with respect to the mul-
tiplication (I, J) �→ IJ . It is also clear that

IJ =
⋃

k∈K

IkJ and JI =
⋃

k∈K

JIk

where I = ∪k∈KIk and J, Ik, k ∈ K, are unitary ideals of S. Hence UId(S) is
a quantale. �

Remark 2.11. A similar proof shows that also Id(S) is a quantale, where joins
and product are defined in the same way as in UId(S), but meet is intersection.

Although UId(S) is a subset of Id(S), it is not a sublattice in general,
because meet is computed in different ways in these lattices. However, UId(S)
is a subquantale of Id(S).

Before formulating the next result note that every semigroup S has a
largest factorisable subsemigroup, which we denote by U(S). It is possible to
prove that U(S) is actually an ideal of S [6].

Proposition 2.12. Let S be a semigroup. The quantale UId(S) is unital if and
only if U(S) is its identity element.
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Proof. Necessity. Suppose that UId(S) has an identity element I with respect
to multiplication. Then II = I, meaning that I is a factorisable subsemigroup
of S. Therefore I lies in the largest factorisable subsemigroup U(S) of S. Since
U(S) is factorisable and an ideal, we have U(S) ∈ UId(S). Additionally, for all
J ∈ UId(S) we have

J = IJ ⊆ U(S)J ⊆ J ,

whence J = U(S)J , and similarly J = JU(S). Thus U(S) is the identity
element of the semigroup UId(S) and we conclude that I = U(S).

Sufficiency is clear. �
A unital quantale is said to be integral if the multiplicative identity is

the top element of the underlying lattice.

Corollary 2.13. If S is a factorisable semigroup then UId(S) is an integral
quantale.

Proof. If S is factorisable then U(S) = S and JS = J = SJ for every unitary
ideal J . �

3. Unitary ideals and Morita contexts

Recall the following result about ideal lattices.

Proposition 3.1 [4]. If S and T are Morita equivalent semigroups with weak
local units then their ideal lattices are isomorphic.

Combining this result with Proposition 2.2 from [9] one can even say that
the quantales of the ideals of such S and T are isomorphic.

The following example shows that Proposition 3.1 does not generalise to
the class of firm semigroups.

Example 3.2 (Ideal lattices of Morita equivalent firm semigroups need not be
isomorphic). Let T = {0, 1, 2, 3} be the semigroup with the Cayley table

0 0 0 3
0 0 1 3
0 0 2 3
3 3 3 0

.

This is a factorisable semigroup with a commutative factorisable subsemi-
group S = {0, 2, 3}. Since 2 is a right identity element of T and S, it follows
immediately that these two semigroups are firm. We will show that T is an
enlargement of S. This implies that they are strongly Morita equivalent as
shown in the beginning of Section 2 in [7].

Since

0 = 0 · 0 · 0,

1 = 1 · 2 · 2,

2 = 2 · 2 · 2,

3 = 0 · 0 · 3,
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we have the inclusion T ⊆ TST . The opposite inclusion being obvious, we
conclude that T = TST .

Factorisability of S implies S = SSS ⊆ STS. Since TS = T , we see that
STS = ST ⊆ {0, 2, 3} = S. Thus also S = STS and we have proved that T is
an enlargement of S.

The ideal lattices

Id(S) = {∅, {0, 3}, S},

Id(T ) = {∅, {0, 3}, {0, 1, 3}, T}
of the (strongly) Morita equivalent semigroups S and T are not isomorphic.

Our next aim is to show that under relatively weak assumptions two
semigroups will have isomorphic quantales of unitary ideals. For this we will
need the following lemma.

Lemma 3.3. If Γ = (S, T, SPT , TQS , θ, φ) is an acceptable Morita context and
BT is a unitary T -act then B = B im(φ).

Proof. Take b0 ∈ B. Since BT is unitary, we can find sequences (bk)k∈N ∈ BN

and (tk)k∈N ∈ TN such that bk = bk+1tk+1 for every k ≥ 0. Acceptability of Γ
implies that there exists n ∈ N such that tn . . . t2t1 = φ(q ⊗ p) for some p ∈ P
and q ∈ Q, hence

b0 = b1t1 = b2t2t1 = · · · = bntn . . . t2t1 = bnφ(q ⊗ p) ∈ B im(φ).

Thus B ⊆ B im(φ). The opposite inclusion is obvious. �
Now we can prove our main result.

Theorem 3.4. If two semigroups are connected by an acceptable Morita context
then there exists an isomorphism between the quantales of their unitary ideals.
This isomorphism takes finitely generated ideals to finitely generated ideals
and principal ideals to principal ideals. If the quantales are unital then this
isomorphism is an isomorphism of unital quantales.

Proof. 1. Let Γ = (S, T, SPT , TQS , θ, φ) be an acceptable Morita context con-
necting semigroups S and T . For any unitary ideal J of T we see that the set
θ(PJ ⊗ Q) = {θ(pj ⊗ q) | p ∈ P, j ∈ J, q ∈ Q} is an ideal of S because θ is a
homomorphism of (S, S)-biacts. We will prove that it is a unitary ideal. Using
Lemma 3.3 we can calculate

θ(PJ ⊗ Q) = θ(PJ im(φ) ⊗ Q) = θ(PJ ⊗ im(φ)Q) = θ(PJ ⊗ Q im(θ))

= θ(PJ ⊗ Q) im(θ) ⊆ θ(PJ ⊗ Q)S = θ(PJ ⊗ QS) ⊆ θ(PJ ⊗ Q).

Thus θ(PJ ⊗ Q) = θ(PJ ⊗ Q)S and it is a unitary right ideal of S. Similar
calculations show that it is left unitary.

Analogously φ(QI ⊗ P ) is a unitary ideal of T for every unitary ideal I
of S.

This allows to consider the mappings

Φ : UId(S) → UId(T ), Φ(I) := φ(QI ⊗ P ),
Θ : UId(T ) → UId(S), Θ(J) := θ(PJ ⊗ Q).
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Then, precisely as in the proof of Theorem 3 in [4], one can show that Θ and
Φ are inverses of each other. They also preserve order and hence they are
isomorphisms of complete lattices. Moreover, for arbitrary I1, I2 ∈ UId(S) we
have

Φ(I1)Φ(I2) = φ(QI1 ⊗ P )φ(QI2 ⊗ P ) = φ(QI1 ⊗ Pφ(QI2 ⊗ P ))

= φ(QI1 ⊗ θ(P ⊗ QI2)P ) = φ(QI1 ⊗ θ(P ⊗ Q)I2P )

= φ(QI1 ⊗ im(θ)I2P ) = φ(QI1 ⊗ I2P ) = φ(QI1I2 ⊗ P ) = Φ(I1I2)

where im(θ)I2 = I2 by the dual of Lemma 3.3. Similarly, Θ(J1)Θ(J2) =
Θ(J1J2) for arbitrary J1, J2 ∈ UId(T ). Thus Φ and Θ are isomorphisms of
quantales.

2. We prove the claim about finitely generated ideals. Obviously, Φ(∅) = ∅
and Θ(∅) = ∅.

Take a unitary finitely generated ideal I =
⋃n

j=1 S1ajS
1 of S and i ∈

{1, . . . , n}. AS ai ∈ I and I = I im(θ), we can write ai = ski
aki

θ(pki
⊗ qki

)
for some ki ∈ {1, . . . , n}, ski

∈ S1, pki
∈ P and qki

∈ Q. From I = im(θ)I it
follows that aki

= θ(pli ⊗ qli)alizli for some li ∈ {1, . . . , n}, zli ∈ S1, pli ∈ P
and qli ∈ Q. Hence

ai = ski
θ(pli ⊗ qli)alizliθ(pki

⊗ qki
) .

Now, for any p ∈ P and q ∈ Q we have

φ(qai ⊗ p) = φ(qθ(ski
pli ⊗ qli)aliθ(zlipki

⊗ qki
) ⊗ p)

= φ(φ(q ⊗ ski
pli)φ(qliali ⊗ zlipki

)qki
⊗ p)

= φ(q ⊗ ski
pli)φ(qliali ⊗ zlipki

)φ(qki
⊗ p)

⊆ T 1φ(qliali ⊗ zlipki
)T 1.

Therefore

Φ(I) = {φ(qai ⊗ p) | p ∈ P, q ∈ Q, i ∈ {1, . . . , n}}

⊆
n⋃

j=1

T 1φ(qliali ⊗ pki
)T 1 .

The opposite inclusion being clear, we conclude that

Φ(I) =
n⋃

j=1

T 1φ(qliali ⊗ pki
)T 1 .

3. The relation above for n = 1 tells us that Φ maps unitary principal
ideals to unitary principal ideals.

4. If UId(S) and UId(T ) are unital quantales then by Proposition 2.12
their identity elements are U(S) and U(T ). Note that U(S) is an idempotent
in the quantale UId(S) such that I ⊆ U(S) for every other idempotent I. A
similar statement is true for U(T ). Since the quantale isomorphisms preserve
idempotents and order, it follows that Φ(U(S)) = U(T ) and Θ(U(T )) = U(S).
So Φ and Θ are isomorphisms of unital quantales. �
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Corollary 3.5. The quantales of unitary ideals of strongly Morita equivalent
semigroups are isomorphic.

Proof. Two strongly Morita equivalent semigroups are contained in a unitary
surjective Morita context which, of course, is acceptable. �

Corollary 3.6. If two strongly Morita equivalent semigroups have weak local
units then their quantales of ideals are isomorphic.

Proof. This follows from Theorem 3.4 and Proposition 2.9. �

As an application of Theorem 3.4 we point out the following.

Example 3.7. Let M be a factorisable Rees matrix semigroup over a factoris-
able semigroup S. By Proposition 2 in [3] the semigroups S and M are strongly
Morita equivalent. Hence they have isomorphic quantales of unitary ideals.

Example 3.8. Let S be an arbitrary semigroup, n a natural number, and let
us denote Sn = {s1s2 . . . sn | s1, s2, . . . , sn ∈ S}. Then we have an acceptable
Morita context (S, Sn, SSSn , SnSS , θ, φ) where

θ : S ⊗Sn S → S, s ⊗ s′ �→ ss′ ,

φ : S ⊗S S → Sn, s ⊗ s′ �→ ss′ .

Hence UId(S) and UId(Sn) are isomorphic quantales. It follows that if S is an
inflation of its subsemigroup T then UId(S) is isomorphic to UId(T ) because
S2 = T 2.

We also have the following analogue of Theorem 2.5 in [9].

Theorem 3.9. If two semigroups S and T are connected by an acceptable
Morita context (S, T, SPT , TQS , θ, φ) then the following lattices are isomor-
phic:
(1) UId(S),
(2) UId(T ),
(3) USub(SPT ),
(4) USub(TQS).

Proof. We only prove the isomorphism of (1) and (3) (the isomorphism of (2)
and (4) is similar and the isomorphism of (1) and (2) is proved in Theorem 3.4).

Observe that if I ∈ UId(S) then IP is a sub-biact of SPT . We need
to show that it is unitary. Since I = SI, we have IP = S(IP ). The inclusion
IPT ⊆ IP is clear. We have to prove the inclusion IP ⊆ IPT . Take an element
i0p0 ∈ IP . Using the equality I = IS we can find sequences (ik)k∈N ∈ IN and
(sk)k∈N ∈ SN such that ik = ik+1sk+1 for every k ≥ 0. Since the context is
acceptable, there exist n ∈ N, p ∈ P , q ∈ Q such that sn . . . s2s1 = θ(p ⊗ q).
Now

i0p0 = insn . . . s2s1p0 = inθ(p ⊗ q)p0 = inpφ(q ⊗ p0) ∈ IPT .

Thus the equality IP = (IP )T also holds and IP ∈ USub(SPT ).
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If A ∈ USub(SPT ) then using Lemma 3.3 we obtain

θ(A ⊗ Q) = θ(A im(φ) ⊗ Q) = θ(Aφ(Q ⊗ P ) ⊗ Q)

= θ(A ⊗ φ(Q ⊗ P )Q) = θ(A ⊗ Qθ(P ⊗ Q)) = θ(A ⊗ Q) im(θ)

⊆ θ(A ⊗ Q)S = θ(A ⊗ QS) ⊆ θ(A ⊗ Q),

whence θ(A ⊗ Q) = θ(A ⊗ Q)S. Also, θ(A ⊗ Q) = θ(SA ⊗ Q) = Sθ(A ⊗ Q),
and so θ(A ⊗ Q) ∈ UId(S).

This allows to consider the mappings

Ψ : UId(S) → USub(SPT ), Ψ(I) := IP,
Ω : USub(SPT ) → UId(S), Ω(A) := θ(A ⊗ Q).

These mappings preserve order, and they are inverses of each other because,
by Lemma 3.3,

(ΩΨ)(I) = θ(IP ⊗ Q) = Iθ(P ⊗ Q) = I im(θ) = I,

(ΨΩ)(A) = θ(A ⊗ Q)P = Aφ(Q ⊗ P ) = A im(φ) = A . �
An ideal I of a semigroup S is said to be factorisable if it is factorisable

as a semigroup (that is, the equality I2 = I holds).
Every factorisable ideal is unitary. The converse does not hold.

Example 3.10 (A unitary ideal need not be factorisable). Let X+ and X∗ be
the free semigroup and the free monoid on an alphabet X, respectively. Then
X+ is a unitary non-factorisable ideal of X∗.

The empty ideal is factorisable and any union of factorisable ideals of a
given semigroup is a factorisable ideal. Hence the set of factorisable ideals is a
complete lattice.

Proposition 3.11. Let S and T be arbitrary semigroups connected by an accept-
able Morita context (S, T, SPT , TQS , θ, φ) and let I ⊆ S, J ⊆ T be unitary
ideals that correspond to each other under the isomorphism of Theorem 3.4.
Then, if one of I and J is factorisable, so is the other and they are (strongly)
Morita equivalent as semigroups. In particular, U(S) and U(T ) are strongly
Morita equivalent.

Proof. By our assumptions I = Θ(J) = θ(PJ ⊗ Q). Since, in particular, Θ is
a semigroup homomorphism, one of I and J is factorisable precisely when the
other is.

Let now I and J be factorisable ideals. It is easy to see that Γ′ =
(I, J, IPJ, JQI, θ′, φ′), where the biact homomorphisms θ′ and φ′ are defined
by

θ′(ipj ⊗ j′qi′) := θ(ipj ⊗ j′qi′),

φ′(j′qi′ ⊗ ipj) := φ(j′qi′ ⊗ ipj),

is a unitary Morita context. Note that θ′ and φ′ are well defined because the
mappings

IPJ × JQI → I, (ipj, j′qi′) �→ θ(ipj ⊗ j′qi′),

JQI × IPJ → J, (j′qi′, ipj) �→ φ(j′qi′ ⊗ ipj)
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are balanced.
The map θ′ is surjective, since

θ′(IPJ ⊗ JQI) = θ(IPJ ⊗ JQI) = θ(IPJJ ⊗ QI)

= θ(IPJ ⊗ QI) = Iθ(PJ ⊗ Q)I = III = I ,

and φ′ can be shown to be surjective in an analogous way. Hence I and J are
(strongly) Morita equivalent semigroups.

As explained in the last part of the proof of Theorem 3.4, the factorisable
ideals U(S) and U(T ) correspond to each other under the isomorphisms Φ and
Θ. �

Corollary 3.12. If two semigroups are connected by an acceptable Morita con-
text then their lattices of factorisable ideals are isomorphic.

Proof. By Proposition 3.11 the mappings Θ and Φ restrict to mutually inverse
isomorphisms between the lattices of factorisable ideals. �

Theorem 3.4 does not hold for one-sided ideals.

Example 3.13 (The lattices of (unitary) right ideals of Morita equivalent semi-
groups with local units need not be isomorphic). If S = {1} and T is a non-
singleton rectangular band then they have non-isomorphic lattices of (unitary)
right ideals, although S is a monoid and T has local units. These semigroups
are strongly Morita equivalent by Theorem 16 in [2].

One may also consider the posets of firm ideals. An ideal I of a semigroup
S is said to be firm if it is firm as a right and left S-act. The following example
shows that, contrary to Corollary 3.5, the posets of firm ideals of strongly
Morita equivalent semigroups need not be isomorphic.

Example 3.14. Consider the factorisable semigroup S = {0, 1, 2, 3} from
Example 2.7 and its commutative subsemigroup T = {0, 2, 3}. This semi-
group has a left identity element 3 which also belongs to T . This easily implies
that S is an enlargement of T , and therefore S and T are (strongly) Morita
equivalent.

The semigroup T has firm ideals ∅, {0}, {0, 2}, T and the semigroup S
has firm ideals ∅, {0}, S. Thus the posets of firm ideals of S and T are not
isomorphic.
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[6] Laan, V., Reimaa, Ü., Tart, L.: U-fair semigroups (2020, preprint)

[7] Lawson, M.V., Márki, L.: Enlargements and coverings by Rees matrix semi-
groups. Monatsh. Math. 129, 191–195 (2000)
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